Sufficient decrease is all you need

Fabian Pedregosa

DALI 2019

Google Al Berkeley

1/33

Problem Setting

Most first-order optimization methods are of the form
Xt41 = Xt + VeP; where

e p, is the update direction, determined by the algorithm.
® ~; is a the step-size, free parameter.

Chosen in advance, i.e., vy =1/Lor v =L/t +1
+ Simple, - Suboptimal

2/33

Problem Setting

Most first-order optimization methods are of the form

Xt41 = Xt + VeP; where

e p, is the update direction, determined by the algorithm.
® ~; is a the step-size, free parameter.

Chosen in advance, i.e., vy =1/Lor v =L/t +1
+ Simple, - Suboptimal

Exact line-search: v; € argmin_ o f(x: +yp;)
+ Optimal, - Expensive

2/33

Problem Setting

Most first-order optimization methods are of the form
Xt41 = Xt + VeP; where

e p, is the update direction, determined by the algorithm.
® ~; is a the step-size, free parameter.

Chosen in advance, i.e., 7t = 1/Lor vy = L/\/t+ 1
+ Simple, - Suboptimal
Exact line-search: v; € argmin_ o f(x: +yp;)
+ Optimal, - Expensive
Adaptive step-size (aka bactracking, inexact LS): Choose ¢
based on local sufficient decrease condition
+Efficient, 4+Simple 2/33

Adaptive Step-size Selection

For gradient descent (p, = —Vf(x¢)), Armijo
backtracking (Armijo, 1966) simple and efficient condition:

F(xer1) < F(xe) = el VF(xe) |

— This talk

3/33

1. Adaptive Three Operator Splitting and structured
saddle-point problems.

2. Adaptive Frank-Wolfe (and linearly-convergent variants).

3. Perspectives: stochastic optimization.

4/33

Three Operator Splitting (TOS) (Davis and Yin, 2017)

minimize f(x) + g(x) + h(x) ,
x€R

where f is convex and L-smooth, g, h are convex with access to

def .
prox. . (x) = argmin, g(z) + % |x — z|

2 prox. .
lterates on y, € R? given by

z; = prox,(y,)

Xt = prox.,(2y, — z: — yVf(z;))

Yer1 =Yt — Zt T Xt

5/33

Three Operator Splitting (TOS) (Davis and Yin, 2017)

minimize f(x) + g(x) + h(x) ,
x€R

where f is convex and L-smooth, g, h are convex with access to
def . 1
prox..(x) = argmin, g(z) + > |x — z|

2 Prox. .

lterates on y, € R? given by

z; = prox,p(y¢)
Xt = prox.,(2y, — z: — yVf(z;))
Yer1 =Ye — Ze + Xt
Generalizes proximal-gradient (FB, ISTA) and Douglas-Rachford.

5/33

Importance of step-size

Guaranteed convergence v < 2/L, with L = Lipschitz const. of Vf.

In practice, best performance is when v > 2/L

£
£ 102)
10~
NS
AN S = e 0
E 10*87 N ~ \\.
S 10
O 10-14 N N~
0] 1000 2000 3000 4000 S{0[0[0]
[terations
—— y=1/L —— y=5/L — y=20/L y=50/L

—— =2/l —e— y=10/L

S
What can we do about it? 6/33

Revisiting the Three Operator Splitting

Saddle-point reformulation of original problem

Xrg]g{ld f(x)+ g(x) + h(x)

= xng]iR[L f(x)+g(x)+ max (x,u) — h*(u)}

7/33

Revisiting the Three Operator Splitting

Saddle-point reformulation of original problem
min f(x) + g(x) + h(x)
x€Rd

i, mee) i les) o (o) —)

=L(x,u)
We can rewrite the three operator splitting as
X1 = Prox. (z:— y(VF(z;) + uy))

Upil = proxh*/'y(ut + xt41/7)

Zi1]l = X¢41 — ’Y(Ut+1 — Ut)

7/33

Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
x€Rd XERY e e N~

smooth proximal

8/33

Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
XERd xERdh/—/ N
smooth proximal

e Proximal-gradient iteration, with x = z; as starting point:

Xt11 = prox,(z: — v(Vf(z:) + uy))

8/33

Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
x€Rd XERIN—eo ————
smooth proximal

e Proximal-gradient iteration, with x = z; as starting point:
Xt41 = Prox,,(ze — y(Vf(z:) + ue))

= first step of TOS

8/33

Minimizing with respect to the dual variable

min L(x:, u) = min h*(u) — (x:, u
ueRd (xz, u) ueRd—() ,—/<)
proximal

9/33

Minimizing with respect to the dual variable

min L(x:, u) = min h*(u) — (x:, u
ueRd (xz, u) ueRd—() ,—/<)
proximal

e Proximal-point iteration:

Uil = ProxX,p-(Us + oxei1)

= second update in TOS with o =1/~

9/33

Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)

10/33

Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)

Verifies 211 € Oh*(U¢41).

10/33

Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)

Verifies 211 € Oh*(U¢41).
At optimum, we have x* € Oh*(u*).

= Solving the KKT conditions at u1.

10/33

Revisiting the three operator splitting

Iteration 1: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX,), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 1: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 2: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Ups1 = ProXy (U + Tpr1/7)

Y 21 = Ty — V(U — W)

11/33

Revisiting the three operator splitting

Iteration 2: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX,), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 3: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 3: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Ups1 = ProXy (U + Tpr1/7)

Y 21 = Ty — V(U — W)

11/33

Revisiting the three operator splitting

Iteration 4: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX,), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 4: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 5: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Ups1 = ProXy (U + Tpr1/7)

Y 21 = Ty — V(U — W)

11/33

Revisiting the three operator splitting

Iteration 5: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX,), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 6: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)

11/33

Revisiting the three operator splitting

Iteration 6: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Uty = ProXy,), (ut + @e41/7)

> Zprl = Tl — V(W1 — Uy)

TOS is (basically) alternated proximal-gradient and
proximal-point

11/33

Revisiting the three operator splitting

Iteration 6: extrapolation

Zy1 = Prox, (2= y(Vf(21) + ur))

Uty = ProxXy. (s + xi11/7)

TOS is (basically) alternated proximal-gradient and
proximal-point

Can we use the adaptive step-size of proximal-gradient?
11/33

Adaptive TOS (Pedregosa and Gidel, 2018)

Let Qe(x) = f(ze) + (VF(2e), x — 22) + 2 ||x — ze.

Start with optimistic step-size ; and decrease it until:

f(xe41) < Q(xeq1) with X1 = prox., . (z:— 7:(VF(z:) + uyt))

12/33

Adaptive TOS (Pedregosa and Gidel, 2018)

Let Qe(x) = f(ze) + (VF(2e), x — 22) + 2 ||x — ze.

Start with optimistic step-size ; and decrease it until:

f(xe41) < Q(xeq1) with X1 = prox., . (z:— 7:(VF(z:) + uyt))

Run rest of algorithm with that
step-size:

Uep1 = ProXy /. (Ue + xep1/7e) (1)

Zit1 = X¢41 — %(Ut+1 — Ut) (2)

12/33

Performance of the adaptive step-size strategy

|

107°

\
\‘ \

1078 S \'

o T~
\)

\
\
\ |

0 1000 2000 3000 4000 5000

Iterations
—— =1/l —— y=5/L y=20/L - - adaptive

—— y=2/L y=10/L y=50/L

\\S:
I

Objective minus optimum

Performance is as good as best hand-tuned step-size y
13/33

Convergence rates (informal)

As good as the original method with fixed step-size
Theorem (sublinear convergence rate)

For any (x, u) € domL:

|20 — x| + 78 l|uo — u|?

ﬁ(?t, U) = E(X,Et) S TL| ot

Theorem

If f is Le-smooth, u-strongly convex and h is Lp-smooth then
1 t+1
< (t-mn{r 1o @3
th"‘l X H = min TLf7 1+’YOLh 0 ()

with 7 = line search decrease factor, Cy = only depends on initial

conditions.
14/33

Experiments

ogistic + Nearly-isotonic penalty

Problem

arg min, logistic(x) + A Zhl max{x; — xj11,0}

A=10"° A=10"3 A=0.01 A=01
—— estimated coefficients
ground truth
" , s s .
3 3 3 4[\,—'J 3
) | /_J
Coefficients Coefficients Coefficients

Coefficients

0.

.
0

10

1074

us optimum
=
s 3
<
23
° 2

10 . 106 —Te<g 10°
108 = . 107 g 10°®
1070 s 10710 .~ 10710 o 1070
° 2 e 2 % 2 12 n
0 00 200 300 400" 200 300 500'0 00 200 300 400'° 100 200 300 4
Time (in seconds) Time (in seconds) Time (in seconds) Time (in seconds)
Adaptive TOS (variant2) ~ —e— TOS(1) —— TOS (1.99/)TOS-AOLS PDHG —— Adaptive PDHG

—a— Adaptive TOS (variant 1)

15/33

Logistic + Overlapping group lasso penalty

Problem

arg min logistic(x) + A>_, g [l[x]gll2
X

A=10"° A=10"3 A=0.01 A=01

3 g g 9

¥ 3 3 ¥

2 2 2 2

Syt ek NTVSS | TN D I 7Y U6 O RS W Y B g

Ty | rr I | estinated coefficients
ground truth
Coeficents Coeficents Gefficents Gefficents

g 10° ,
g 10
E 102 \qgans .
| A A it | 10
210
2 10°
£ 10
FRTSI Y 10
L1010 \ 10710
] ns

, \ , . 1 .

00 20 0 50! 1020 30 40 500 ¢ 5 0 5 20000 02 04 06 08 1
Time (in seconds) Time (in seconds) Time (in seconds) Time (in seconds)
—e— Adaptive TOS (variant 1) —e— Adaptive TOS (variant2) ~ —e— TOS(1) —— TOS(199/) TOSAOLS ~—4— PDHG ~ —&— Adaptive PDHG

16/33

Quadratic loss + total variation penalty

Problem

arg min least_squares(x) + Al|x||Tv

Recovered coefficients

g 100 100 100 100
]
£ 107 1o 1072 107
a 104 10
g
] 10 106 100
2 10 10
g 107 10-10. 100
8 N A
v) . .
10 530 7000 7500 2000° 100 200 300 4000 G 0 20 30 40] 4 % d
Time (in seconds) Time (in seconds) Time (in seconds) Time (in seconds)
—e— Adaptive TOS (variant 1) #— Adaptive TOS (variant 2) —e— TOS (1/L) —— TOS(1.99/L) +— TOS-AOLS —4— PDHG —&— Adaptive PDHG

17/33

Adaptive Frank-Wolfe

The Frank-Wolfe (FW) algorithm, aka conditional gradient

1
P
K}
4

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

fort=0,1... do

st € argmingcp(V£(xy),s)
di=s;— x;

Find v;, e.g., by line-search:

Ve € argmin, (o 3 (X + vd)
Xer1 = X¢ +yd;

18/33

The Frank-Wolfe (FW) algorithm, aka conditional gradient

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do
p) s¢ € argming . (V£(x¢),s)
K} dt:St—Xt

4 Find v;, e.g., by line-search:
Ve € argmin, (o 3 (X + vd)
5 Xer1 = Xt +vd,;

18/33

The Frank-Wolfe (FW) algorithm, aka conditional gradient

1
P
K}
4

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

fort=0,1... do

st € argmingcp(V£(xy),s)

d: =s; — x¢

Find v;, e.g., by line-search:

Ve € argmin, (o 1) f(x¢ + vd+)
Xer1 = X¢ +yd;

18/33

The Frank-Wolfe (FW) algorithm, aka conditional gradient

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do

2 st € argmingcp(V£(xy),s)
3 di = s — x¢
4

Find v, e.g., by line-search:
Ve € argmin, g q f(x:+~dy)
5 Xtr1 = Xt +vd;

18/33

The Frank-Wolfe (FW) algorithm, aka conditional gradient

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do
2 st € argmingcp(V£(xy),s)
K} dt:St—Xt

4 Find v;, e.g., by line-search:
Ve € argmin, (o 3 (X + vd)
5 X1 = Xt +vd,;

18/33

Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.

19/33

Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.

e "Oblivious” step-size v = 2/(t + 2) is convergent, but slow.

19/33

Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.
e "Oblivious” step-size v = 2/(t + 2) is convergent, but slow.

e New linearly-convergent variants (Lacoste-Julien and Jaggi,
2015) assume access to exact line search.

19/33

Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.
e "Oblivious” step-size v = 2/(t + 2) is convergent, but slow.

e New linearly-convergent variants (Lacoste-Julien and Jaggi,
2015) assume access to exact line search.

We would like:

o Efficient.
e Adaptive to local geometry.

e That achives best possible rates in every situation.

19/33

Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.
e "Oblivious” step-size v = 2/(t + 2) is convergent, but slow.

e New linearly-convergent variants (Lacoste-Julien and Jaggi,
2015) assume access to exact line search.

We would like:

o Efficient.
e Adaptive to local geometry.

e That achives best possible rates in every situation.

Is it possible?

19/33

A practical issue

e In a polytope, FW moves in the direction of a vertex.

20/33

A practical issue

e In a polytope, FW moves in the direction of a vertex.

e Two verteces can be far apart = optimal step-size does
not vary smoothly.

20/33

A practical issue

e In a polytope, FW moves in the direction of a vertex.

e Two verteces can be far apart = optimal step-size does
not vary smoothly.

e Directly using Armijo/Sufficient decrease conditions (Dunn,
1980) is particularly difficult because of this.

20/33

The Adaptive FW algorithm (Pedregosa et al., 2018)

Key Idea
Estimate smoothness, not step-size!

Algorithm 2: The Adaptive Frank-Wolfe algorithm (AdaFW)

for t=0,1... do

s¢ € argmingcp(VF(x,),s)

d: =s; — X

Find L; that verifies sufficient decrease (4), with
. [(=Vf(x¢),dy)

| e S

6 Xt41 = Xt + 7edy

s W N =

f(xer1) < f(xe) +7e(VF(xt), st — x¢) +

21/33

The Adaptive FW algorithm (Pedregosa et al., 2018)*

2
K f(Xt) +’)/<Vf(xt),st — Xt> -+ ’72/-1- Hst = Xj_-”2

e Worst-case, L; = L. Often L; < L = larger step-size.

'Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi (2018).
“Step-Size Adaptivity in Projection-Free Optimization”. In: ArXiv.

22/33

The Adaptive FW algorithm (Pedregosa et al., 2018)*

2
K f(Xt) +’)/<Vf(xt),st — Xt> -+ ’72/-1- Hst = Xj_-”2

e Worst-case, L; = L. Often L; < L = larger step-size.

e Two extra function evaluations per iteration. Often given as
byproduct of gradient.

'Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi (2018).
“Step-Size Adaptivity in Projection-Free Optimization”. In: ArXiv.

22/33

Extension to other FW variants

Zig-Zagging phenomena in FW

The Frank-Wolfe algorithm zig-zags when the solution lies in a
face of the boundary.

I

Some FW variants have been developed to address this issue.

23/33

1. Keep track of previously added vertices (activeset) S;.

2. Move weight mass between two vertices in each step.

Algorithm 3: Pairwise FW (Lacoste-
Julien and Jaggi, 2015)

1 fort=0,1...do /

p) s¢ € argming.n (V£ (x¢),s)

3 v: € argmaxgcs, (VF(xt),s)

4 dt =St — V; omt S

5 Find ¢ by line-search: ~; € T %) i

. T Tit1

arg min_ (o ma f(x¢+7d+)

6 | Xer1 = Xt + Vedy

24/33

Adaptive Away-steps and Pairwise FW (Pedregosa et al., 2018)

Linear convergence for strongly convex functions on polytopes
(Lacoste-Julien and Jaggi, 2015).

25/33

Adaptive Away-steps and Pairwise FW (Pedregosa et al., 2018)

Linear convergence for strongly convex functions on polytopes
(Lacoste-Julien and Jaggi, 2015).

Can we design variants with adaptive step-size?

25/33

Adaptive Away-steps and Pairwise FW (Pedregosa et al., 2018)

Linear convergence for strongly convex functions on polytopes
(Lacoste-Julien and Jaggi, 2015).

Can we design variants with adaptive step-size?

Choose L; such that it verifies

2]
Fxe +7ede) < F(xe) +7(VF(xe), de) + 222 e

£VF(xe) di) maX}

with v =min
b { Led:]?

25/33

Theory for Adaptive Step-size variants

Pairwise and Away-steps converge linearly on a polytope. For
each “good step” we have:

fF(xer1) = F(x") < (1= p)(F(xe) = F(x7)), p>0

26/33

Theory for Adaptive Step-size variants

Pairwise and Away-steps converge linearly on a polytope. For
each “good step” we have:

fF(xer1) = F(x") < (1= p)(F(xe) = F(x7)), p>0

For all FW variants, f(x;) — f(x*) < O(1/t)

26/33

Theory for Adaptive Step-size variants

Pairwise and Away-steps converge linearly on a polytope. For
each “good step” we have:

fF(xer1) = F(x") < (1= p)(F(xe) = F(x7)), p>0

For all FW variants, f(x;) — f(x*) < O(1/t)

For all FW variants, maxsep(V£(xt), x: — s) < O(1/1/1)

Same rate as with exact line search

26/33

Experiments

Experiments RCV1

Problem: /;-constrained logistic regression

arg min — ng a; x,b;) with ¢ = logistic loss.

lIx[[1<e 5T
Dataset dimension density ‘ Zt/L
RCV1 47236 10-3 ‘ 1.3x 1072
€ £7 ball radius = 100 £; ball radius = 200 £; ball radius = 300
3
S 0 [= i U SR I
EWO T 100 & S 100 e e
o it SEFCE
5107 102 107
C
€10 1074 104
g
510° 107 107
2
. -8 -8
o10% 700 200 300 4000 0 200 400 600 8009 0 250 500 750 1000
Time (in seconds) Time (in seconds) Time (in seconds)
AdaFw AdaPFW AdaAFW FW PFW AFW - D-FW

27/33

Experiments Madelon

Problem: /;-constrained logistic regression

arg min — ng a; x,b;) with ¢ = logistic loss.

lIx[[1<e 5T

Dataset dimension density ‘ L/L

Madelon 500 1. ‘ 3.3x 1073
c £; ball radius =13 £4 ball radius = 20 {1 ball radius = 30
£ 1072 remma 10°2f== 102}
N R e Bt R N Nt ST I PO —m
?10’4 107 10
€
210° 10°° 10
51
pR
o, 8 -8 -8
o10 2 4 %00 25 50 75 70d° 5 10 15 20

Time (in seconds) Time (in seconds) Time (in seconds)
AdaFW AdaPFW AdaAFW FW PFW AFW -4 D-FW

28/33

Experiments MovieLens 1M

Problem: trace-norm constrained robust matrix completion

N :
arg min —- Z h(Xij, Aij) with h = Huber loss.
”XH*SOC | ‘ (iJ)EB

Dataset dimension density ‘ Zt/L

MovieLens 1M 22,393,987 0.04 ‘ 1.1 x 1072

c trace ball radius = 300 trace ball radius = 350 trace ball radius = 400
3 -
£ 0
£ 0
g 1" \\ 10 100
o
s
2107 107 1072
£
210 107 107
o]
BN
5107 1076 1076
0 200 400 600 800~ 0O 1000 2000 0 2000 4000
Time (in seconds) Time (in seconds) Time (in seconds)
Adaptive FW FW —— D-FW

29/33

Perspectives

Stochastic optimization

arg min — Z fi(x

xcRd

Main challenge: How to evaluate Armijo condition
f(xer1) < f(xt) — v||p.]|? without access to f?

30/33

Experiments stochastic line search

Heuristic from (Schmidt et al. 2017)? to estimate L:

1 1
fi(xt — Zfo(Xt)) < fi(xt) — ZHVf,-(xt)Hz

with / random index sampled at iter t.

URL dataset

10
Tirne (in

*Mark Schmidt, Nicolas Le Roux, and Francis Bach (2017). “Minimizing finite
sums with the stochastic average gradient”. In: Mathematical Programming.

31/33

Experiments stochastic line search

Heuristic from (Schmidt et al. 2017)? to estimate L:

1 1
fi(xt — Zfo(Xt)) < fi(xt) — ZHVf,-(xt)Hz

with / random index sampled at iter t.

URL dataset

10
Tirne (in

Can we prove convergence of this (or similar) method?

*Mark Schmidt, Nicolas Le Roux, and Francis Bach (2017). “Minimizing finite
sums with the stochastic average gradient”. In: Mathematical Programming.

31/33

Recent developments

e (Shang et al., 2018) Adaptive step-size for SVRG. Condition
is costly to evaluate.

32/33

Recent developments

e (Shang et al., 2018) Adaptive step-size for SVRG. Condition

is costly to evaluate.

e (Paquette and Scheinberg, 2018) Evaluates a stochastic
version of the Armijo condition. Accepts step-size based on
concept of reliable/unreliable estimate.

32/33

Recent developments

e (Shang et al., 2018) Adaptive step-size for SVRG. Condition
is costly to evaluate.

e (Paquette and Scheinberg, 2018) Evaluates a stochastic
version of the Armijo condition. Accepts step-size based on
concept of reliable/unreliable estimate.

(step-size tends to be really small)

32/33

Conclusion

e Applicability of sufficient decrease beyond classical framework.

33/33

Conclusion

e Applicability of sufficient decrease beyond classical framework.

e Sufficient decrease condition to set step-size in TOS and FW
and variants.

33/33

Conclusion

e Applicability of sufficient decrease beyond classical framework.

e Sufficient decrease condition to set step-size in TOS and FW
and variants.

e Faster
e (Mostly) Hyperparameter-free.

33/33

Conclusion

e Applicability of sufficient decrease beyond classical framework.

e Sufficient decrease condition to set step-size in TOS and FW
and variants.

e Faster
e (Mostly) Hyperparameter-free.
e Perspectives in stochastic optimization.

Thanks for your attention

33/33

References

Armijo, Larry (1966). “Minimization of functions having Lipschitz continuous first
partial derivatives”. In: Pacific Journal of Mathematics.

Davis, Damek and Wotao Yin (2017). “A three-operator splitting scheme and its
optimization applications”. In: Set-valued and variational analysis.

Dunn, Joseph C (1980). “Convergence rates for conditional gradient sequences
generated by implicit step length rules”. In: SIAM Journal on Control and
Optimization.

Lacoste-Julien, Simon and Martin Jaggi (2015). “On the global linear convergence of
Frank-Wolfe optimization variants”. In: Advances in Neural Information Processing
Systems.

Paquette, Courtney and Katya Scheinberg (2018). “A stochastic line search method
with convergence rate analysis”. In: arXiv preprint arXiv:1807.07994.

Pedregosa, Fabian et al. (2018). “Step-Size Adaptivity in Projection-Free
Optimization”. In: ArXiv.

33/33

https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf
https://msp.org/pjm/1966/16-1/pjm-v16-n1-p01-p.pdf
https://doi.org/10.1137/0318035
https://doi.org/10.1137/0318035
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf

Pedregosa, Fabian and Gauthier Gidel (2018). “Adaptive Three Operator Splitting”.
In: Proceedings of the 35th International Conference on Machine Learning.

Schmidt, Mark, Nicolas Le Roux, and Francis Bach (2017). “Minimizing finite sums
with the stochastic average gradient”. In: Mathematical Programming.

Shang, Fanhua et al. (2018). “Guaranteed Sufficient Decrease for Stochastic Variance
Reduced Gradient Optimization”. In: arXiv preprint arXiv:1802.09933.

33/33

	Experiments
	Adaptive Frank-Wolfe
	Extension to other FW variants
	Experiments
	Perspectives
	References

