Sufficient decrease is all you need

Fabian Pedregosa

DALI 2019

Google Al Berkeley



1/33



Problem Setting

Most first-order optimization methods are of the form
Xt41 = Xt + VeP; where

e p, is the update direction, determined by the algorithm.
® ~; is a the step-size, free parameter.

Chosen in advance, i.e., vy =1/Lor v =L/t +1
+ Simple, - Suboptimal
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Problem Setting

Most first-order optimization methods are of the form
Xt41 = Xt + VeP; where

e p, is the update direction, determined by the algorithm.
® ~; is a the step-size, free parameter.

Chosen in advance, i.e., 7t = 1/Lor vy = L/\/t+ 1
+ Simple, - Suboptimal
Exact line-search: v; € argmin_ o f(x: +yp;)
+ Optimal, - Expensive
Adaptive step-size (aka bactracking, inexact LS): Choose ¢
based on local sufficient decrease condition
+Efficient, 4+Simple 2/33



Adaptive Step-size Selection

For gradient descent (p, = —Vf(x¢)), Armijo
backtracking (Armijo, 1966) simple and efficient condition:

F(xer1) < F(xe) = el VF(xe) |

— This talk
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1. Adaptive Three Operator Splitting and structured
saddle-point problems.

2. Adaptive Frank-Wolfe (and linearly-convergent variants).

3. Perspectives: stochastic optimization.
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Three Operator Splitting (TOS) (Davis and Yin, 2017)

minimize f(x) + g(x) + h(x) ,
x€R

where f is convex and L-smooth, g, h are convex with access to

def .
prox. . (x) = argmin, g(z) + % |x — z|

2 prox. .
lterates on y, € R? given by

z; = prox,(y,)

Xt = prox.,(2y, — z: — yVf(z;))

Yer1 =Yt — Zt T Xt
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Three Operator Splitting (TOS) (Davis and Yin, 2017)

minimize f(x) + g(x) + h(x) ,
x€R

where f is convex and L-smooth, g, h are convex with access to
def . 1
prox..(x) = argmin, g(z) + > |x — z|

2 Prox. .

lterates on y, € R? given by

z; = prox,p(y¢)
Xt = prox.,(2y, — z: — yVf(z;))
Yer1 =Ye — Ze + Xt
Generalizes proximal-gradient (FB, ISTA) and Douglas-Rachford.
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Importance of step-size

Guaranteed convergence v < 2/L, with L = Lipschitz const. of Vf.

In practice, best performance is when v > 2/L
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What can we do about it? 6/33



Revisiting the Three Operator Splitting

Saddle-point reformulation of original problem

Xrg]g{ld f(x)+ g(x) + h(x)

= xng]iR[L f(x)+g(x)+ max (x,u) — h*(u)}
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Revisiting the Three Operator Splitting

Saddle-point reformulation of original problem
min f(x) + g(x) + h(x)
x€Rd

i, mee ) i les) o (o) — )

=L(x,u)
We can rewrite the three operator splitting as
X1 = Prox. (z:— y(VF(z;) + uy))

Upil = proxh*/'y(ut + xt41/7)

Zi1]l = X¢41 — ’Y(Ut+1 — Ut)
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Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
x€Rd XERY e e N~

smooth proximal
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Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
XERd xERdh/—/ N
smooth proximal

e Proximal-gradient iteration, with x = z; as starting point:

Xt11 = prox,(z: — v(Vf(z:) + uy))
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Minimizing with respect to primal variable

min L(x,u:) = min f(x) + (x,u:) + g(x)
x€Rd XERIN—eo ————
smooth proximal

e Proximal-gradient iteration, with x = z; as starting point:
Xt41 = Prox,,(ze — y(Vf(z:) + ue))

= first step of TOS
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Minimizing with respect to the dual variable

min L(x:, u) = min h*(u) — (x:, u
ueRd (xz, u) ueRd—( ) ,—/< )
proximal
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Minimizing with respect to the dual variable

min L(x:, u) = min h*(u) — (x:, u
ueRd (xz, u) ueRd—( ) ,—/< )
proximal

e Proximal-point iteration:

Uil = ProxX,p-(Us + oxei1)

= second update in TOS with o =1/~
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Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)
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Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)

Verifies 211 € Oh*(U¢41).
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Extrapolation Step

Last update:

Zir1 = Xep1 — V(U1 — uy) (extrapolation step)

Verifies 211 € Oh*(U¢41).
At optimum, we have x* € Oh*(u*).

= Solving the KKT conditions at u1.
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Revisiting the three operator splitting

Iteration 1: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX, ), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 1: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 2: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Ups1 = ProXy (U + Tpr1/7)

Y 21 = Ty — V(U — W)
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Revisiting the three operator splitting

Iteration 3: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)

11/33
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Revisiting the three operator splitting

Iteration 4: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX, ), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 4: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 5: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Ups1 = ProXy (U + Tpr1/7)

Y 21 = Ty — V(U — W)
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Revisiting the three operator splitting

Iteration 5: proximal-gradient step

— Tyy1 = Prox, (z;— 9 (Vf(z) +uy))
Uty = ProX, ), (ut + @e41/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 6: proximal-point step

x4 = prox, (zi— Y(Vf(z1) + w))
— Uty = ProXy. . (Ut + Ti1/7)

Ze = Tpp1 — V(U — Uy)
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Revisiting the three operator splitting

Iteration 6: extrapolation

x4 = prox, (zi— Y(Vf(z1) + w))
Uty = ProXy, ), (ut + @e41/7)

> Zprl = Tl — V(W1 — Uy)

TOS is (basically) alternated proximal-gradient and
proximal-point
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Revisiting the three operator splitting

Iteration 6: extrapolation

Zy1 = Prox, (2= y(Vf(21) + ur))

Uty = ProxXy. (s + xi11/7)

TOS is (basically) alternated proximal-gradient and
proximal-point

Can we use the adaptive step-size of proximal-gradient?
11/33



Adaptive TOS (Pedregosa and Gidel, 2018)

Let Qe(x) = f(ze) + (VF(2e), x — 22) + 2 ||x — ze.

Start with optimistic step-size ; and decrease it until:

f(xe41) < Q(xeq1) with X1 = prox., . (z:— 7:(VF(z:) + uyt))
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Adaptive TOS (Pedregosa and Gidel, 2018)

Let Qe(x) = f(ze) + (VF(2e), x — 22) + 2 ||x — ze.

Start with optimistic step-size ; and decrease it until:

f(xe41) < Q(xeq1) with X1 = prox., . (z:— 7:(VF(z:) + uyt))

Run rest of algorithm with that
step-size:

Uep1 = ProXy /. (Ue + xep1/7e) (1)

Zit1 = X¢41 — %(Ut+1 — Ut) (2)

12/33



Performance of the adaptive step-size strategy
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Performance is as good as best hand-tuned step-size y
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Convergence rates (informal)

As good as the original method with fixed step-size
Theorem (sublinear convergence rate)

For any (x, u) € domL:

|20 — x| + 78 l|uo — u|?

ﬁ(?t, U) = E(X,Et) S TL| ot

Theorem

If f is Le-smooth, u-strongly convex and h is Lp-smooth then
1 t+1
< (t-mn{r 1o @3
th"‘l X H = min TLf7 1+’YOLh 0 ( )

with 7 = line search decrease factor, Cy = only depends on initial

conditions.
14/33



Experiments




ogistic + Nearly-isotonic penalty

Problem

arg min, logistic(x) + A Zhl max{x; — xj11,0}
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Logistic + Overlapping group lasso penalty

Problem

arg min logistic(x) + A>_, g [l[x]gll2
X
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Quadratic loss + total variation penalty

Problem

arg min least_squares(x) + Al|x||Tv

Recovered coefficients
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Adaptive Frank-Wolfe




The Frank-Wolfe (FW) algorithm, aka conditional gradient

1
P
K}
4

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

fort=0,1... do

st € argmingcp(V£(xy),s)
di=s;— x;

Find v;, e.g., by line-search:

Ve € argmin, (o 3 (X + vd)
Xer1 = X¢ +yd;
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Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do
p) s¢ € argming . (V£(x¢),s)
K} dt:St—Xt
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arg min f(x)
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Algorithm 1: Frank-Wolfe (FW)

fort=0,1... do

st € argmingcp(V£(xy),s)

d: =s; — x¢

Find v;, e.g., by line-search:
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The Frank-Wolfe (FW) algorithm, aka conditional gradient

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do

2 st € argmingcp(V£(xy),s)
3 di = s — x¢
4

Find v, e.g., by line-search:
Ve € argmin, g q f(x:+~dy)
5 Xtr1 = Xt +vd;
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The Frank-Wolfe (FW) algorithm, aka conditional gradient

Problem: smooth f, compact D

arg min f(x)
xeD

Algorithm 1: Frank-Wolfe (FW)

—_—

1 fort=0,1...do
2 st € argmingcp(V£(xy),s)
K} dt:St—Xt

4 Find v;, e.g., by line-search:
Ve € argmin, (o 3 (X + vd)
5 X1 = Xt +vd,;

18/33



Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.
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2015) assume access to exact line search.
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2015) assume access to exact line search.

We would like:

o Efficient.
e Adaptive to local geometry.

e That achives best possible rates in every situation.
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Setting the step-size in Frank-Wolfe

e Exact line-search only feasible for quadratic objective.
e "Oblivious” step-size v = 2/(t + 2) is convergent, but slow.

e New linearly-convergent variants (Lacoste-Julien and Jaggi,
2015) assume access to exact line search.

We would like:

o Efficient.
e Adaptive to local geometry.

e That achives best possible rates in every situation.

Is it possible?

19/33



A practical issue

e In a polytope, FW moves in the direction of a vertex.
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A practical issue

e In a polytope, FW moves in the direction of a vertex.

e Two verteces can be far apart = optimal step-size does
not vary smoothly.
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A practical issue

e In a polytope, FW moves in the direction of a vertex.

e Two verteces can be far apart = optimal step-size does
not vary smoothly.

e Directly using Armijo/Sufficient decrease conditions (Dunn,
1980) is particularly difficult because of this.
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The Adaptive FW algorithm (Pedregosa et al., 2018)

Key Idea
Estimate smoothness, not step-size!

Algorithm 2: The Adaptive Frank-Wolfe algorithm (AdaFW)

for t=0,1... do

s¢ € argmingcp(VF(x,),s)

d: =s; — X

Find L; that verifies sufficient decrease (4), with
. [(=Vf(x¢),dy)

| e S

6 Xt41 = Xt + 7edy

s W N =

f(xer1) < f(xe) +7e(VF(xt), st — x¢) +
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The Adaptive FW algorithm (Pedregosa et al., 2018)*

2
K f(Xt) +’)/<Vf(xt),st — Xt> -+ ’72/-1- Hst = Xj_-”2

e Worst-case, L; = L. Often L; < L = larger step-size.

'Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi (2018).
“Step-Size Adaptivity in Projection-Free Optimization”. In: ArXiv.
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The Adaptive FW algorithm (Pedregosa et al., 2018)*

2
K f(Xt) +’)/<Vf(xt),st — Xt> -+ ’72/-1- Hst = Xj_-”2

e Worst-case, L; = L. Often L; < L = larger step-size.

e Two extra function evaluations per iteration. Often given as
byproduct of gradient.

'Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi (2018).
“Step-Size Adaptivity in Projection-Free Optimization”. In: ArXiv.
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Extension to other FW variants




Zig-Zagging phenomena in FW

The Frank-Wolfe algorithm zig-zags when the solution lies in a
face of the boundary.

I

Some FW variants have been developed to address this issue.
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1. Keep track of previously added vertices (activeset) S;.

2. Move weight mass between two vertices in each step.

Algorithm 3: Pairwise FW (Lacoste-
Julien and Jaggi, 2015)

1 fort=0,1...do /

p) s¢ € argming.n (V£ (x¢),s)

3 v: € argmaxgcs, (VF(xt),s)

4 dt =St — V; omt S

5 Find ¢ by line-search: ~; € T %) i

. T Tit1

arg min_ (o ma f(x¢+7d+)

6 | Xer1 = Xt + Vedy
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Adaptive Away-steps and Pairwise FW (Pedregosa et al., 2018)

Linear convergence for strongly convex functions on polytopes
(Lacoste-Julien and Jaggi, 2015).
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Adaptive Away-steps and Pairwise FW (Pedregosa et al., 2018)

Linear convergence for strongly convex functions on polytopes
(Lacoste-Julien and Jaggi, 2015).

Can we design variants with adaptive step-size?

Choose L; such that it verifies

2]
Fxe +7ede) < F(xe) +7(VF(xe), de) + 222 e

£VF(xe) di) maX}

with v =min
b { Led:]?
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Theory for Adaptive Step-size variants

Pairwise and Away-steps converge linearly on a polytope. For
each “good step” we have:

fF(xer1) = F(x") < (1= p)(F(xe) = F(x7)), p>0
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26/33



Theory for Adaptive Step-size variants

Pairwise and Away-steps converge linearly on a polytope. For
each “good step” we have:

fF(xer1) = F(x") < (1= p)(F(xe) = F(x7)), p>0

For all FW variants, f(x;) — f(x*) < O(1/t)

For all FW variants, maxsep(V£(xt), x: — s) < O(1/1/1)

Same rate as with exact line search
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Experiments




Experiments RCV1

Problem: /;-constrained logistic regression

arg min — ng a; x,b;) with ¢ = logistic loss.

lIx[[1<e 5T
Dataset  dimension  density ‘ Zt/L
RCV1 47236 10-3 ‘ 1.3x 1072
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3
S 0 [ = i U SR I
EWO T 100 & S 100 e e
o it SEFCE
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€10 1074 104
g
510° 107 107
2
. -8 -8
o10% 700 200 300 4000 0 200 400 600 8009 0 250 500 750 1000
Time (in seconds) Time (in seconds) Time (in seconds)
AdaFw AdaPFW AdaAFW FW PFW AFW - D-FW
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Experiments Madelon

Problem: /;-constrained logistic regression

arg min — ng a; x,b;) with ¢ = logistic loss.

lIx[[1<e 5T

Dataset dimension  density ‘ L/L

Madelon 500 1. ‘ 3.3x 1073
c £; ball radius =13 £4 ball radius = 20 {1 ball radius = 30
£ 1072 remma 10°2f== 102}
N R e Bt R N Nt ST I PO —m
?10’4 107 10
€
210° 10°° 10
51
pR
o, 8 -8 -8
o10 2 4 %00 25 50 75 70d° 5 10 15 20

Time (in seconds) Time (in seconds) Time (in seconds)
AdaFW AdaPFW AdaAFW FW PFW AFW -4 D-FW
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Experiments MovieLens 1M

Problem: trace-norm constrained robust matrix completion

N :
arg min —- Z h(Xij, Aij) with h = Huber loss.
”XH*SOC | ‘ (iJ)EB

Dataset dimension  density ‘ Zt/L

MovieLens 1M 22,393,987 0.04 ‘ 1.1 x 1072

c trace ball radius = 300 trace ball radius = 350 trace ball radius = 400
3 -
£ 0
£ 0
g 1" \\ 10 100
o
s
2107 107 1072
£
210 107 107
o]
BN
5107 1076 1076
0 200 400 600 800~ 0O 1000 2000 0 2000 4000
Time (in seconds) Time (in seconds) Time (in seconds)
Adaptive FW FW  —— D-FW
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Perspectives




Stochastic optimization

arg min — Z fi(x

xcRd

Main challenge: How to evaluate Armijo condition
f(xer1) < f(xt) — v||p.]|? without access to f?
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Experiments stochastic line search

Heuristic from (Schmidt et al. 2017)? to estimate L:

1 1
fi(xt — Zfo(Xt)) < fi(xt) — ZHVf,-(xt)Hz

with / random index sampled at iter t.

URL dataset

10
Tirne (in

*Mark Schmidt, Nicolas Le Roux, and Francis Bach (2017). “Minimizing finite
sums with the stochastic average gradient”. In: Mathematical Programming.
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Experiments stochastic line search

Heuristic from (Schmidt et al. 2017)? to estimate L:

1 1
fi(xt — Zfo(Xt)) < fi(xt) — ZHVf,-(xt)Hz

with / random index sampled at iter t.

URL dataset

10
Tirne (in

Can we prove convergence of this (or similar) method?

*Mark Schmidt, Nicolas Le Roux, and Francis Bach (2017). “Minimizing finite
sums with the stochastic average gradient”. In: Mathematical Programming.
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Recent developments

e (Shang et al., 2018) Adaptive step-size for SVRG. Condition
is costly to evaluate.
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concept of reliable/unreliable estimate.
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Recent developments

e (Shang et al., 2018) Adaptive step-size for SVRG. Condition
is costly to evaluate.

e (Paquette and Scheinberg, 2018) Evaluates a stochastic
version of the Armijo condition. Accepts step-size based on
concept of reliable/unreliable estimate.

(step-size tends to be really small)
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Conclusion

e Applicability of sufficient decrease beyond classical framework.
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Conclusion

e Applicability of sufficient decrease beyond classical framework.

e Sufficient decrease condition to set step-size in TOS and FW
and variants.

e Faster
e (Mostly) Hyperparameter-free.
e Perspectives in stochastic optimization.

Thanks for your attention
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