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A narrow view of machine learning

the study of prediction from examples

o |

f

X Y

Estimate f from observations
(X1 Y1), (X2 2), o (XN YN)

Hope that this also works on new examples.




Old ML Conventional Wisdom

+ Good prediction balances bias and variance.

* You should not perfectly fit your training data as some in-
sample errors can reduce out-of-sample error.

* High capacity models don't generalize.

+ Optimizing to high precision harms generalization.

* Nonconvex optimization Is hard in machine learning.

None of these are true.
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k=10
What happens when | turn off the regularizers?

Train Test
Model parameters p/n loss  error
CudaConvNet 145,578 2.9 0 23%
CudaConvNet | 45,578 2.9 0.34 | 8%
(with regularization)
Microlnception 1,649,402 33 0 | 4%
ResNet 2,401,440 43 0 | 3%
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n=50,000
Neural Nets on CIFAR10 d=3,072
k=10
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Cherry picked deep models for Imagenet
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n=16,000
Boosting on UCI Letter data set. d=16
k=26
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Pertormance on Nettlix Prize

RMSE
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. n=60,000
MNIST: Cosine random features 4=7g4
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n=50,000
Neural Nets on CIFAR10 d=3,072
k=10
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2009
2009
201 |
2012
2014
2015
2016
2017

CIFAR-10 State of the Art

Model Test accuracy
Raw pixels 37.3%
RBM 64.8%
Random features 79.6%
AlexNet 88.5%
VGG 92.8%
ResNet 93.5%
Wide ResNet 95.9%
Shake Shake 97.1%

|s this overfitting?

Can match this
with “shallow’
learning.

Deeeeep networks




Building a New Jest Set

CIFAR-10 1s a subset of the Tiny Images dataset
e Collected by [ lorralba, Fergus, Freeman’08]

e 30 million images

* Organized into /5,000 keywords (VWordNet)

e Collected via quemes to Image search engines
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Can we get an 11.d. resampling?




Near-Duplicates in CIFAR-10

At least 8% of the original CIFAR-10 test set has a near-duplicate
In the training set.
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VGGI6:  93.6% (original) = 85.3% (new)

® VGG16
-« |deal reproducibility
-+ Confidence Interval
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2014
2015
2016
2017

CIFAR-10 State of the Art

Model
Raw pixels
RBM
Random features
AlexNet
VGG
ResNet
Wide ResNet
Shake Shake

Test accuracy
37.3%
64.8%
79.6%
88.5%
92.8%
93.5%
95.9%
97.1%

Deeeeep networks



New Test Accuracy

® Deep Models
O Random Features
Y Shake-Shake
-« |deal reproducibility
—— | inear Fit
Linear Fit 95% Prediction Interval
Linear Fit 95% Confidence Interval
-+ Model Confidence Interval
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82 84 86 88 90 92 94 96
Original Test Accuracy

VGG 6 93.6% (original) = 85.3% (new) 8% drop
Random Features: 85.6% (original) = /3.19% (new) [2% drop
Shake-Shake: 97.1% (original) = 93.0% (new) 4% drop



o Introduced I [Deng Dong Socher Li, Li, Fel-Fer09]
o organized according to the “WordNet hierarchy”
o [.2 million training images, 50k validation images

o RGB color images with around 500 x 400 pixels
o |,000 classes (about |50 dog breeds)

Can we get an 11.d. resampling of imagenet too!



http://wordnet.princeton.edu/
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VWhat we have always seen

» Interpolating your training data is fine.
» Training on your test set s fine.
»+ Making models huge doesn’t hurt.

»+ Making models huge doesn't help much.

Maybe we're just running ERM on the test set and the
hypothesis space Is ERM-ish solutions on the train set!

We have to reorient how we talk about ML before we
flsure out a better way forward.

* Diminishing returns means wasting resources.

» Distribution shift Is real and dangerous.
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AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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Distribution Shift 1s Dangerous




VWhat we have always seen

» Interpolating your training data is fine.

raining on your test set Is fine.
+ Making models huge doesn't hurt.

+ Making models huge doesn't help much.

We have to reorient how we talk about ML before

we Tigure out a better way forward.

 Diminishing returns means wasting resources.

» Distribution shift Is real and dangerous.
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