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Abstract

We consider the problem of approximate infer-
ence in the context of Bayesian decision theory.
Traditional approaches focus on approximat-
ing general properties of the posterior, ignor-
ing the decision task – and associated losses
– for which the posterior could be used. We
argue that this can be suboptimal and pro-
pose instead to loss-calibrate the approximate
inference methods with respect to the decision
task at hand. We present a general framework
rooted in Bayesian decision theory to analyze
approximate inference from the perspective
of losses, opening up several research direc-
tions. As a first loss-calibrated approximate
inference attempt, we propose an EM-like al-
gorithm on the Bayesian posterior risk and
show how it can improve a standard approach
to Gaussian process classification when losses
are asymmetric.

1 INTRODUCTION

Bayesian methods have enjoyed a surge of popular-
ity in machine learning over the last decade. Even
though it is sometimes overlooked, the main theoretical
motivations for the Bayesian paradigm are rooted in
Bayesian decision theory (Berger, 1985), which pro-
vides a well-defined theoretical framework for rational
decision making under uncertainty about a hidden pa-
rameter θ. The ingredients of Bayesian decision theory
are an observation model p(D|θ), a prior distribution
p(θ), and a loss L(θ, a) for an action a ∈ A. In this
framework, the optimal action is chosen by minimizing
its expected loss over the posterior p(θ|D). The inde-
pendence of the posterior from the loss motivates the
common practice of breaking decision making into two
independent sub-problems: inference, whereby the pos-
terior p(θ|D) is computed irrespectively of the loss; and
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then decision, whereby an action is chosen to minimize
its expected loss over our posterior belief.

In practically interesting Bayesian models, however,
the posterior is often computationally intractable and
therefore one has to resort to approximate inference
techniques, such as variational methods or Markov
chain Monte Carlo. Most approaches to approximate
inference ignore the decision theoretic loss and try to
approximate the posterior based on its general features,
such as matching its mode or higher order moments.
While this is probably a reasonable approach for the
simple losses usually considered or when the loss is
unknown, they might fail to work well with asymmetric,
non-trivial losses that appear in modern applications
in machine learning.

The main message of the present paper is that when
inference is carried out only approximately, treating
(approximate) inference and decision making indepen-
dently can lead to suboptimal decisions for a fixed loss
under consideration. We thus investigate whether one
can “calibrate” the approximate inference algorithm to
a fixed loss, and propose an analysis framework to an-
alyze this situation. We note that a related philosophy
has already been applied in the frequentist discrimina-
tive machine learning literature, as for example with
the use of surrogate loss functions (Bartlett et al., 2006;
Steinwart and Christmann, 2008). In contrast, we fo-
cus in this paper on the pure subjectivist Bayesian
viewpoint as we are not yet aware of the existence of
such an investigation in this case. The contributions
of the present paper can be summarized as follows:

1. In Sec. 2, we propose a general approximate infer-
ence framework based on Bayesian decision theory
to guide our analysis. The framework naturally
gives rise to a divergence between distributions
that can be seen as a loss-calibrated generaliza-
tion of the Kullback-Leibler divergence for general
losses. We focus in this paper on the application
of the framework to the predictive setting that is
relevant to supervised machine learning.

2. In Sec. 3, we present an algorithmic template to
derive loss-calibrated approximate inference algo-
rithms for different losses by applying the varia-
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tional Expectation-Maximization algorithm on the
Bayesian posterior risk.

3. In Sec. 4, we investigate our approximation frame-
work on the concrete setup of supervised learning.
We apply the loss-calibrated EM algorithm to a
Gaussian process classification model and analyze
its performance in terms of the loss-calibrated
framework. Our proof-of-concept experiments in-
dicate that it improves over a loss-insensitive ap-
proximate inference alternative and that the ad-
vantage of loss-calibration is more prominent when
misclassification losses are asymmetric.

2 BAYESIAN DECISION THEORY

We use Bayesian statistical decision theory as the basis
of our analysis (see Ch. 2 of Robert (2001) or Ch. 1
of Berger (1985) for example). We review here its main
ingredients:

• a (statistical) loss L(θ, a) which gives the cost of
taking action a ∈ A when the world state is θ ∈ Θ;

• an observation model p(D|θ) which gives the prob-
ability of observing D ∈ O assuming that the
world state is θ;

• a prior belief p(θ) over world states.

The loss L describes the decision task that we are
interested in, whereas the observation model and the
prior represent our beliefs about the world. Given these,
the Bayesian evaluation metric for a possible action a
after observing D is the expected posterior loss (also
called the posterior risk (Schervish, 1995)): RpD (a)

.
=∫

Θ
L(θ, a) p(θ|D)dθ, and so the (Bayes) optimal action

apD is the one that minimizes RpD .

2.1 Supervised learning

We now relate this abstract decision theory setup to
the typical supervised learning applications of machine
learning. For a prediction task, the goal is to estimate
a function h : X → Y where the output space Y can
be discrete (classification) or continuous (regression).
We suppose that we are given a fixed cost function
`(y, y′) which gives the cost of predicting y′ when the
true output was y. We can cast this problem in the
standard statistical decision theory setting by defining a
suitable prediction loss for our action a = h, namely the
standard generalization error from machine learning:

L(θ, h)
.
= E(x,y)∼p(x,y|θ) [` (y, h(x))] . (1)

For the observation model, we will assume that we are
given a training set D = {(xi, yi)Ni=1} of labeled obser-
vations generated i.i.d. from p(x, y|θ). The goal of the
learning algorithm is then to output a function h cho-
sen from a set of (possibly non-parametric) hypotheses

H after looking at the (training) data D. From the
pure Bayesian point of view, the best hypothesis hpD
is clear: it is the one that minimizes the posterior risk,
i.e. hpD

.
= arg minh∈HRpD (h).

2.2 General approximation framework

The quantity central to the Bayesian methodology is
the posterior pD(θ)

.
= p(θ|D) which summarizes our

uncertainty about the world. On the other hand, it
is rarely computable in a tractable form, and so it is
usually approximated with a tractable approximate dis-
tribution q(θ) ∈ Q. Popular approaches to this problem
include sampling, variational inference – which mini-
mizes KL(q‖pD), and expectation propagation – which
minimizes KL(pD‖q) (Minka, 2001). Most approxi-
mate inference approaches stop at q, though in the
context of decision theory, we still need to act. In
practice, one usually treats the approximate q as if
it was the true posterior and chooses the action that
minimizes what we will call the q-risk :

Rq(h)
.
=

∫
Θ

q(θ)L(θ, h)dθ, (2)

obtaining a q-optimal action hq:

hq
.
= arg min

h∈H
Rq(h). (3)

In this paper, we will assume that computing exactly
the q-optimal action hq for q ∈ Q is tractable, and focus
on the problem of choosing a suitable q to approximate
the posterior pD in order to yield a decision hq with
low posterior risk RpD(hq), mimicking the standard
methodology but crystallizing the decision theoretic
goal. Given this approach, a (usually non-unique) op-
timal q ∈ Q is clearly:

qopt = arg min
q∈Q

RpD (hq), (4)

though a practical algorithm might only be able to find
an approximate minimizer to this quantity. In the case
where pD ∈ Q, pD is obviously optimal according to
this criterion.

We could interpret the above criterion as minimiz-
ing the following asymmetric non-negative discrepancy
measure between distributions:

dL(p‖q) .
= Rp(hq)−Rp(hp). (5)

Interestingly, the Kullback-Leibler divergence KL(p‖q)
can be interpreted as a special case of dL for the task
of posterior density estimation over Θ. In this task, an
action h is a density over Θ and the standard density
estimation statistical loss is L(θ, h) = − log h(θ). The
q-risk Rq(h) then becomes the cross-entropy H(q, h) =
−
∫

Θ
q(θ) log(h(θ))dθ, and so hq = q assuming that
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Figure 1: Top: Real bimodal posterior (blue) and
three Gaussian approximations obtained by minimizing
KL(q‖p) (q1, dotted), KL(p‖q) (q2, dashed) or dL(p‖q)
(q3, dash-dotted) in the power plant example. Bottom:
Cumulative distribution functions for the posterior and
the three approximate distributions.

q ∈ H. Under these assumptions, we obtain that
KL(p‖q) = dL(p‖q) and so as was already known in
statistics, KL(pD‖·) appears “loss-calibrated” for the
task of posterior density estimation in our approxima-
tion framework. But this begs the natural question of
whether minimizing dL for a particular loss L provides
optimal performance under other losses. We will show
in Sec. 4.1 that even in the simple Gaussian linear re-
gression setting, minimizing the KL divergence can be
suboptimal in the squared loss sense, thus motivating
us to seek loss-calibrated alternatives.

To illustrate the difference between traditional ap-
proaches to approximate inference and the loss-
calibrated framework, consider the following simple
problem. Suppose that we control a nuclear power-
plant which has an unknown temperature θ that we
model with Bayesian inference based on some mea-
surements D. The plant is in danger of over-heating,
and as the operator, we can take two actions: either
shut it down or keep it running. Keeping it running
while the temperature is above a critical threshold Tcrit

will cause a nuclear meltdown, incurring a large loss
L(θ > Tcrit, ’on’). On the other hand, shutting down
the power plant incurs a moderate loss L(’off’), irre-
spective of the temperature. Suppose that our current
observations yielded a complicated multi-modal poste-
rior pD(θ) (Fig. 1, solid curve) and that we thus chose
to approximate it with a Gaussian. Now consider how
various approaches would perform in terms of their
Bayesian posterior risk. Minimizing KL(q‖pD) yields

candidate q1 which concentrates around the largest
mode, ignoring entirely the second small mode around
the critical temperature (Fig. 1, dotted curve). Mini-
mizing KL(pD‖q) gives a more global approximation:
q2 matches moments of the posterior, but still underes-
timates the probability of the temperature being above
Tcrit, thereby leading to a suboptimal decision (Fig. 1,
dashed curve). q3 is one of the minimizers of dL(pD‖q)
in this setting, resulting in the same decision as pD
(Fig. 1, dash-dotted curve). Note that q3 does not
model all aspects of the posterior, but it estimates
the Bayes-decision well. Because there are only two
possible actions in this setup, the set Q is split in only
two halves by the function dL(pD, q) and so there are
infinitely many qopt’s that are equivalent in terms of
their risk. In contrast, in the predictive setting of sec-
tion 2.1 where in addition we assume X and p(x) to be
continuous, we could obtain a finer resolution dL(pD‖q)
which can potentially yield a unique optimizer.

3 LOSS-CALIBRATED EM

In the previous section, we argued that minimizing
dL should guide our choice of approximate posterior,
though in practice this optimization also needs to be
approximated. In this section, we propose a variational
algorithm as a first general loss-calibrated alternative.
In order to motivate it, recall that our general goal
is to find an action hpD that minimizes the Bayesian
posterior risk RpD :

hpD = arg min
h∈H

∫
Θ

p(θ|D)L(θ, h)dθ. (6)

This problem combines integration and optimization,
which creates a chicken and egg problem of approximat-
ing the integration vs. the optimization. One way to
solve this chicken and egg problem is to employ a strat-
egy used by the well-known Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) which is nor-
mally applied to maximize the marginal likelihood, a
similar integral over latent variables. EM can be de-
rived from Jensen’s inequality and doing coordinate
ascent on a lower bound of the log-likelihood. In order
to re-use this strategy here, we need to move from
minimization to maximization to obtain inequalities in
the correct direction. Assuming from now on that our
loss function is bounded, we thus define the following
utility function:

UM (θ, h)
.
= M − L(θ, h), (7)

where M is a fixed finite constant chosen so that M >
supθ∈Θ,h∈H L(θ, h), hence UM (θ, h) > 0. In analogy
with the q-risk Rq, we define the q-gain Gq:

Gq(h)
.
=

∫
Θ

q(θ)UM (θ, h)dθ. (8)
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(E-step) qt+1 = arg min
q∈Q

KL

(
q ‖ pD(·)UM (·, ht)

GpD (ht)

)

(M-step) ht+1 = arg max
h∈H

∫
Θ

qt+1(θ) logUM (θ, h)dθ

Table 1: Loss-EM updates

Minimizing the q-risk is equivalent to maximizing the
q-gain, as well as the log of the q-gain. So we have:

hpD = arg max
h∈H

log

(∫
Θ

pD(θ)UM (θ, h)dθ

)
, (9)

which is the optimization problem that we will approx-
imate with (variational) EM.

3.1 Variational EM derivation

Assuming that q(θ) = 0 ⇒ pD(θ) = 0, we obtain the
following lower bound from Jensen’s inequality:

log (GpD (h)) = log

(∫
Θ

q(θ)
pD(θ)UM (θ, h)

q(θ)
dθ

)
(10)

≥
∫

Θ

q(θ) log

(
pD(θ)UM (θ, h)

q(θ)

)
dθ

.
= L(q, h).

EM amounts to maximizing the lower bound func-
tional L(q, h) by coordinate ascent on q and h: the
E-step computes qt+1 = arg maxq∈Q L(q, ht), while the
M-step computes ht+1 = arg maxh∈H L(qt+1, h). More-
over, the difference between the quantity that we want
to maximize and the lower bound is log (GpD (h)) −
L(q, h) = KL(q‖p̃h), where

p̃h(θ)
.
=
pD(θ)UM (θ, h)

GpD (h)
, (11)

and so the E-step is equivalently minimizing KL(q‖p̃h)
as h is fixed. We summarize the obtained updates in
Table 1 for what we will call the loss-EM algorithm.
If p̃ht ∈ Q, then qt+1 = p̃ht and the E-step makes the
lower bound tight, as in standard EM, guaranteeing
that the original objective improves after each full
iteration. On the other hand, we also allow Q to
be a restricted family of tractable distributions, in
which case we are using the variational version of EM
which only optimizes a lower bound but which has still
been applied successfully in the past (Ghahramani and
Jordan, 1997; Jordan et al., 1999).

3.2 Linearized loss-EM

Although loss-EM produces a decision h that has good
risk, this h is not guaranteed to minimize the q-risk for a

(E-step) qt+1 = arg min
q∈Q

KL (q‖pD) +
Rq(ht)
M

(M-step) ht+1 = arg min
h∈H

Rqt+1(h)

Table 2: Linearized loss-EM updates

particular q, and as such the algorithm does not directly
provide us with a loss-calibrated approximate distri-
bution q, as in Sec. 2.2. Also, the objective function
in the M-step can be hard to compute and minimize.
To address both of these issues, we suggest another
approximation. In particular, using the fact that for
M � L, log(1− L/M) = −L/M +O(L2/M2), we can
linearize the logUM term in the loss-EM updates to
obtain the linearized loss-EM updates given in Table 2.
Recall that M was a constant chosen by us: it does not
change the optimal action hpD , still it influences the
behavior of the loss-EM algorithm. As M → ∞, the
linearized and the loss-EM algorithms become basically
equivalent as the linearization becomes perfect. On
the other hand, we can also see that as M →∞, both
algorithms reduce to the standard variational inference
algorithm that minimizes KL(q‖pD), as the second
term in the E-step of Table 2 vanishes. Thus, we can
see the constant M as a parameter for the linearized
loss-EM algorithm which allows us to interpolate be-
tween the standard KL approach for large M and a
more principled coordinate ascent approach on the
Bayesian posterior risk for medium M . It will usually
be the case that linearized loss-EM has more tractable
updates than loss-EM, but this is at the cost of not
corresponding to a valid coordinate ascent algorithm
on a lower bound of the posterior risk for medium M .

4 SUPERVISED LEARNING

In this section, we make our framework more concrete
by investigating it in the predictive setting presented
in Sec. 2.1. We recall that in order to apply our frame-
work, we need to specify the loss, the action space, the
Bayesian observation model and a tractable family Q
of approximate distributions over the latent variable
θ. In the predictive setting, an action is a prediction
function h : X → Y . We let the action space H be the
set of all possible such functions here – we are thus
in the non-parametric prediction regime where we are
free to make arbitrary pointwise decision on X . This
gives us rich predictive possibilities as well as actually
enables us to analytically compute hq, as we will see
in the next paragraph. For the observation model, we
consider Bayesian non-parametric probabilistic models
based on Gaussian processes (GPs), which have been
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successfully applied to model a wide variety of phenom-
ena in the past (Rasmussen and Williams, 2006). In
Sec. 4.1, we first look at Gaussian process regression.
In this case, we can obtain an analytic form for pD and
RpD (hq) which gives us some insights about the approx-
imation framework as well as when minimizing the KL
divergence can be suboptimal. Because the quadratic
cost function is not bounded (and so M = ∞), we
cannot directly apply our loss-EM algorithm for re-
gression, but we can nevertheless get useful insights
which suggest future research directions for regression
with sparse GPs. In section 4.2, we consider Gaussian
process classification (GPC) which will provide a test
bed for the loss-EM algorithm. In both cases, we use a
GP as our prior over parameters and let Q also be a
family of GPs.

For both regression and classification, we will look at
the discriminative regime inasmuch we are not mod-
elling the marginal distribution of x: we assume that
we are given a fixed test distribution p(x) which enters
in the generalization error L(θ, h) given by (1), but
not for the generation of the training inputs xi. In
other words, we assume that D = {(xi, yi)Ni=1} with
yi generated independently from p(y|xi, θ) for each xi,
but we do not assume that xi is generated from p(x) –
for example the training inputs could even be chosen
deterministically or have different support than p(x).
We could think of the test input distribution p(x) as
coming from a large unlabeled corpus of examples or
from the transductive setting which specifies where
we want to make predictions. In this discriminative
predictive setup, the loss (1) separates pointwise over
X :

L(θ, h) =

∫
X
p(x)

(∫
Y
p(y|x, θ) ` (y, h(x)) dy

)
dx,

(12)
and the q-risk also takes the pointwise form (by pushing
the marginalization over θ inside):

Rq(h) = EX∼p(x)

[∫
Y
pq(y|X) ` (y, h(X)) dy

]
︸ ︷︷ ︸

.
=Rq(h(X)|X)

, (13)

where the q-conditional-risk Rq(h(X)|X) was defined
in terms of the q-marginalized predictive likelihood
that we denote by pq(y|x):

pq(y|x)
.
=

∫
Θ

q(θ)p(y|x, θ)dθ. (14)

In the case of non-parametric h, the q-optimal action
hq can thus be analytically obtained as the pointwise
minimum of the q-conditional-risk:

hq(x) = arg min
y∈Y

Rq(y|x). (15)

4.1 Gaussian process regression

We now describe the Gaussian process regression setup,
which actually requires a small redefinition from the
standard approach in order to analyze our framework
in a simple fashion. The standard approach to GP re-
gression would be to use a Gaussian observation model
p(y|x, f) = N (y|f(x), σ2) with observation noise hy-
perparameter σ2 and where the latent parameter for
the observation model is actually a function f : X → R.
The prior over this parameter would be a Gaussian
process (basically an infinite dimensional multivari-
ate normal): p(f) = GP (f |0,K), where K(·, ·) is the
covariance kernel for the GP. In order to avoid the tech-
nical complications of looking at the KL divergence
between infinite dimensional distributions1, we make
the following subtle but important observation about
our framework: because our analysis is conditioned on
the data (in terms of posterior risk optimization), it
turns out that we can equivalently redefine our prob-
abilistic observation model using a finite parameter
vector θ of size N . We provide more details for this
in Appendix 7.1. We stress that this is possible because
we are only interested in the problem of finding an h
that approximately minimizes the posterior risk; we are
not considering for example the problem of updating
the posterior with incoming observations. We are thus
free to define a probabilistic model which actually de-
pends on D for the purpose of analyzing the quantities
arising in the framework of Sec. 2.2.

The equivalent probabilistic model that we can use is
the following finite dimensional model:

p(θ) = N (θ|0,K−1
DD) (16)

p(y|x, θ) = N (y|µx(θ), σ2
x), (17)

where KDD is the N × N matrix with (i, j) entry
K(xi, xj). We also define similarly KxD as the 1×N
row vector with ith entry K(x, xi) as well as its trans-
pose KDx to write the conditional mean and variance
of the observation model as follows:

µx(θ)
.
= KxDθ

σ2
x
.
= σ2 +Kxx −KxDK

−1
DDKDx.

(18)

These expressions can be derived from the standard
GP model by doing the change of variable θ = K−1

DDfD,
where fD

.
= (f(x1), . . . , f(xN ))>. This change of vari-

ables has the advantage of yielding a hq which does
not require the expensive inversion of KDD.

With our Bayesian observation model fully specified, we
are now ready to analyze the q-risk for GP regression.
Following the standard convention for regression, we

1See Csató (2002) for one way to define the KL diver-
gence between GPs.
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consider the quadratic cost function `(y, y′) = (y−y′)2.
The q-conditional-risk in (15) takes the simple form:

Rq(y′|x) = Varq[Y |x] + (Eq[Y |x]− y′)2, (19)

where Eq[Y |x] and Varq[Y |x] are the conditional mean
and variance of pq(y|x) respectively. If we assume
that q is a Gaussian with mean µq and covariance Σq,
we get that the q-optimal action has the simple form
hq(x) = Eq[Y |x] = KxDµq. Note that in this case
hq does not depend on Σq and so we do not need to
specify Σq for this application – the Bayesian posterior
risk of hq is agnostic to it. Because of our Gaussian
observation model, the posterior pD is also a Gaussian
N (µpD ,ΣpD ) which thus lies in Q. We can now obtain
an explicit expression for the excess posterior risk of
hq compared to the Bayes decision hpD :

dL(pD‖q) = (µq − µpD )>Λ(µq − µpD ), (20)

where
Λ
.
=

∫
X
p(x)KDxKxDdx (21)

is a loss-sensitive term (i.e. is sensitive to where the test
set distribution p(x) lies). It is interesting to compare
dL with the KL divergence between two Gaussians:

KL(q‖pD) = c(Σq) +
1

2
(µq − µpD )>Σ−1

pD (µq − µpD )

(22)
where c(Σq) is constant with respect to µq. Both
are quadratic forms in (µq − µpD), but with different
Hessians (we give an explicit formula for Σ−1

pD in Ap-
pendix 7.2). So the first interesting observation is that
unless our family Q contains the true posterior mean
(i.e. ∃q ∈ Q s.t. µq = µpD), the minimum KL solu-
tion will not necessarily minimize dL – i.e. KL is not
loss-calibrated.

We also make the following high-level observations for
which we provide more details in Appendix 7.2. For
GP regression, µpD has an explicit formula but takes
O(N3) to compute due to the inversion of the kernel
matrix. For computational efficiency, some proposals
have been made in the GP literature to use a sparse
µq instead (Quińonero-Candela and Rasmussen, 2005).
We can thus consider Q to be a set of Gaussians with
sparse mean with support on only a fixed subset of D
of size k. It actually turns out that we can compute the
sparse mean µqKL

sp
that minimizes the KL (22) over Q in

O(k3) due to fortuitous cancellations2. Unfortunately,
the minimizer µqopt

sp
of dL (20) with sparse constraints

does not yield similar cancellations and still requires
O(N3) time to compute. It thus leaves open how to
obtain efficiently an approximate sparse solution with
lower Bayesian risk than µqKL

sp
. Equations (20) and (21)

2See also section 2.3.6 in Snelson (2007) for the interpre-
tation of sparse GPs as KL minimizers.

make it clear though that the sparse approximations
to the GP should take the test distribution p(x) in
consideration, especially if p(x) is quite different of the
training input distribution in D. We see this question
as an interesting open problem.

4.2 Gaussian process classification

After having looked at an example for which we could
compute the posterior analytically, we now consider
one where the posterior is intractable and on which we
can apply the loss-EM algorithm. We look at Gaus-
sian process binary classification ( Y = {−1,+1}). We
allow for an asymmetric binary cost function: the
cost `(y, y′) is zero for y = y′ and has false posi-
tive value `(−1,+1) = c+ and false negative value
`(+1,−1) = c−. We use the probit likelihood model
p(y|x, f) = Φ(yf(x)) =

∫
z≤yf(x)

N(z|0, 1)dz, i.e. Φ is

the cumulative distribution function of a univariate
normal, and we use a GP prior on f . Using the same
trick as mentioned at the beginning of Sec. 4.1, we
use a finite parametrization θ = K−1

DDfD and redefine
the equivalent (in terms of posterior risk) probabilistic
model:

p(θ) = N(θ|0,K−1
DD) (23)

p(y|x, θ) = Φ

(
y
KxDθ

σx

)
, (24)

where σ2
x is as in (18), but with σ2 = 1. We also assume

the transductive scenario where we are given a test set
S of S points {xs}Ss=1, i.e. p(x) = 1

S

∑
s δxs

.

We use again a Gaussian approximate posterior q =
N (µq,Σq) which enable us to get a closed form for the
marginalized predictive likelihood (14):

pq(y|x) = Φ

(
y
KxDµq
σq(x)

)
, (25)

where σ2
q (x)

.
= σ2

x +KxDΣqKDx (and so unlike in the
regression case, we see here that Σq can influence the
decision boundary in the case of asymmetric cost func-
tion). The q-optimal action with general formula (15)
has then the following analytic form:

hq(x) = sign{KxDµq − σq(x)bc}, (26)

where bc is a threshold depending on the amount of cost
asymmetry bc

.
= Φ−1 (c+/(c− + c+)) (see Appendix 7.3

for details). In the E-step of loss-EM, we need to min-
imize −

∫
Θ
q(θ) log p̃ht(θ)dθ −H(q) with respect to q,

where p̃ht is defined in (11) and corresponds to a loss-
sensitive weighting of the posterior distribution. By
analogy to a standard methodology for GP classifica-
tion, we use a Laplace approximation of the intractable
p̃ht (which corresponds to a second order Taylor expan-

sion of log p̃ht(θ) around the mode θ̂ of p̃ht). This yields
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1: Initialize h0 to a random function.
2: for t = 0 to T do
3: (Laplace E-step) Maximize log p̃ht using conju-

gate gradient to get θ̂.
4: Set µqt+1 = θ̂ and Σ−1

qt+1 = −∇∇ log p̃ht(θ̂).

5: (Linearized M-step)
Set ht+1(xs) = hqt+1(xs) as per (26) ∀xs ∈ S.

6: if ht+1 = ht then return ht+1.
7: end for

Table 3: Laplace Linearized Loss-EM for GPC

a Gaussian approximation p̃ht(θ) ' N (θ|µqt+1 ,Σqt+1).
Hence minimizing the KL with this approximation will
yield back the same Gaussian for q assuming it is un-
restricted. We present the full algorithm in Table 3.
We use the conjugate gradient algorithm to find a local
maximum of log p̃ht(θ). We present its gradient here
as it provides interesting insights on the loss-sensitivity
of the algorithm:

∂

∂θ
log p̃ht(θ) = −KDDθ +

∑
xi∈D

axi

yi
p(yi|xi, θ)

KDxi

+
1

S

∑
xs∈S

axs

ht(xs)` (−ht(xs), ht(xs))
UM (θ, ht)

KDxs
, (27)

where ax
.
= σ−1

x N(KxDθ/σx|0, 1). The first term
of (27) comes from the prior; the second from the
likelihood and the third from the loss. By comparing
the third term with the second, we see that the effect
of the loss term on the gradient is to push the gradient
in the directions of the previous decision ht(xs) and
proportional to the cost of a false prediction. Unsurpris-
ingly, if the cost is symmetric, we expect the effect to
be smaller, as we will see in our synthetic experiments.

5 EXPERIMENTS

As a proof-of-concept, we conducted the following syn-
thetic experiments testing the performance of our lin-
earized loss-EM algorithm for GP classification (Ta-
ble 3). We generated 100 synthetic datasets, each with
15 univariate training inputs sampled from a uniform
distribution on [0, 1], denoted by U(0, 1). For each
dataset, a fixed random function was drawn from the
GPC prior and used to generate at random the binary
labels yi according to the GPC observation model.

To investigate the effect of the test distribution p(x) on
our method, we generated three different transductive
test sets of size 1000, with inputs sampled from U(0, 1),
U(0.2, 1.2) and U(0.5, 1.5) respectively (columns of Ta-
ble 4), and repeated these experiments 10 times to get
significance results. We used five different loss matrices:
the loss for false negatives was constant at c− = 1, the
loss for false positives c+ was varied so that the decision
threshold pthresh = c+

c−+c+
changed linearly between

0.5 and 0.05 (rows of Table 4).

For each dataset, we compared three methods for ap-
proximate inference: Laplace approximation, expecta-
tion propagation (EP) and loss-EM (run separately for
each loss and test set combination). Both Laplace and
EP are standard approaches to GP classification (Ras-
mussen and Williams, 2006). To evaluate the perfor-
mance of the methods, we used the following criterion
based on the posterior risk:

R̃(q) =
RpD (hq)−RpD (hpD )

RpD (−hpD )−RpD (hpD )
. (28)

where −hpD is the classifier that always makes the
opposite prediction to the optimal classifier – thus
RpD (−hpD ) provides an upper bound on the posterior

risk of any classifier. R̃(q) is thus normalized to take
values between 0 (posterior-optimal) and 1 (maximum
risk), enabling us to aggregate performance measures
over trials of different difficulty. We estimated RpD (hq)
by sampling a large number of θ(i) ∼ pD(θ) with hybrid
Monte Carlo sampling (Neal, 2010), and averaging the
corresponding values of L(θ(i), hq) (12). The numbers

reported in Table 4 are the mean R̃ values, excluding
the “easy” scenarios for which R̃(q) were zero for all
methods. We note that EM usually converged in less
than 5 iterations for M set to the maximum loss.

We observed that loss-EM provided some improvement
over the direct Laplace approximation of the posterior
when the loss is asymmetric. This is in line with our
expectation that loss-calibration is more critical when
the loss is asymmetric. Another observation is that
EP dominates the other approaches on these simple
1D synthetic examples. This could be because EP is
particularly effective at approximating the posterior in
GP classification as was already known (Nickisch and
Rasmussen, 2008) and definitively superior to Laplace
approximation. We also note that EP aims at minimiz-
ing KL(pD‖q), whereas our particular EM algorithm
is closer to optimizing KL(q‖pD). These findings moti-
vate future research into algorithms that minimize dL
more directly – one possibility could be to use EP to
approximate p̃ht in step 3 of Table 3.

6 DISCUSSION

Related work. As mentioned in the introduction,
the discriminative machine learning community has
already produced several inherently “loss-calibrated”
algorithms. A common learning approach is to optimize
a regularized upper bound (called surrogate loss) of the
empirical generalization error that directly depends on
the cost function, such as in modern versions of large
margin approaches (Steinwart and Christmann, 2008).
See also the concurrently submitted work of Stoyanov
et al. (2011) which estimates the parameters in graphi-
cal models using empirical risk minimization and taking
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c+ ptresh
ptest = U(0,1) = ptrain ptest = U(0.2,1.2) ptest = U(0.5,1.5)
Lapl L-EM EP Lapl L-EM EP Lapl L-EM EP

1.00 0.5000 .0009 .0009 .0005 .0027 .0035 .0023 .0157 .0187 .0158
0.63 0.3875 .0008 .0008 .0005 .0031 .0026 .0024 .0400 .0371 .0348
0.38 0.2750 .0025 .0022 .0020 .0088 .0065 .0035 .0382 .0387 .0249
0.19 0.1625 .0099 .0084 .0011 .0207 .0196 .0031 .0360 .0370 .0098
0.05 0.0500 .1891 .1890 .0033 .1184 .1183 .0024 .0414 .0413 .0011

Table 4: Performance of Laplace approximation (Lapl), Loss-EM (L-EM) and expectation propagation (EP)
applied to GP classification on synthetic datasets as a function of the shift between the test and training
distributions (columns) and the asymmetry of loss (rows). Smaller numbers mean better performance (see text).
Numbers in bold indicate a significant difference according to the Wilcoxon signed rank test at p = 0.01 level
between Lapl and L-EM over the 10 repetitions. EP is consistently better.

approximate inference in consideration. Their objective
is somewhat different inasmuch as these approaches
are aimed at minimizing the frequentist risk – an aver-
age over possible training sets, whereas the Bayesian
approach tries to make the most of the given set of
observations by conditioning on it. We see these two
approaches as complementary, rather than conflicting,
and hope that our framework will attract more interest
in analyzing the decision theoretic basis of Bayesian
methods used in machine learning.

A closely related approach at midpoint between the
Bayesian methodology and the frequentist one is Maxi-
mum Entropy Discrimination (MED) by Jaakkola et al.
(1999). Following the more modern treatment of Jebara
(2011), MED aims at solving the following optimization
problem (using our notation):

qMED = arg min
q∈Q

KL(q(θ)||p(θ)) + C
∑
i

ξi (29)

s.t. ξi + pq(yi|xi) ≥ pq(y|xi) + `(yi, y) ∀i, y ∈ Y,

though in practice they use
∫

Θ
q(θ) log p(y|x, θ)dθ

rather than pq(y|x) for computational reasons. The
MED optimization problem can be contrasted to our lin-
earized E-step of Table 2. MED uses the data through
a hinge upper bound (Joachims et al., 2009) on the
empirical error (the ξi part), whereas we use the data
D through the likelihood term of pD. The term Rq(ht)
can be contrasted to the ξi part as being a Bayesian
loss on data labeled by ht (our previous best guess)
instead of the empirical error on D as it is for MED.

Finally, we note that Dawid (1994) has provided an
extensive analysis of the discrepancy dL that we de-
fined in (5). He analyzed its relationship to losses and
‘scoring rules’, and studied the question of which losses
would yield a unique minimizer.

Summary and future directions. Our main goal
with this paper was to emphasize that, when faced
with a particular decision task with a fixed loss, an
approximate inference method should take the loss into

consideration. We took initial steps into what we be-
lieve will become a rich field of interesting research
questions. We proposed a general decision theoretic
framework in which we identified minimization of the
loss divergence dL as an objective of loss-calibrated ap-
proximate inference. We designed a variational EM al-
gorithm and applied it in the context of non-parametric
Bayesian classification. Our synthetic experiments in-
dicated that our loss-calibrated method improved over
its loss-insensitive counterpart, i.e. Laplace approxi-
mation, but was outperformed by EP, motivating as a
line of future research the loss-calibration of EP. More-
over, the loss-calibrated framework highlights which
key ingredients need to be considered when calibrating
approximate inference to a task. Considering these
ingredients, we see the following as promising applica-
tions for our framework:

1. non-trivial `: Our experiments suggest that the
loss-calibration is more pronounced in the case of asym-
metric losses, which suggests that the approach has
most benefits for applications where complex, struc-
tured losses are used, such as in structured predic-
tion (Bakir et al., 2007).

2. parametric decision boundary: restricting H
to a parametric family – e. g. in consideration of com-
putational efficiency – induces tradeoffs in the per-
formance that different approximate q’s can achieve.
Therefore, the approximate inference algorithm needs
to be calibrated to those tradeoffs.

3. semi-supervised learning and covariate shift:
information can enter our framework through the test
distribution p(x) which can be arbitrarily different than
the empirical distribution of training inputs. We could
thus handle the covariate shift problem (Sugiyama
et al., 2007) with a set of unlabelled examples from the
test distribution.
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7 APPENDIX: derivations

7.1 Finite parametrization of GP

We describe here in more details how to get the
equivalent finite dimensional parametrization of GP
for regression (used in Sec. 4.1). We recall that
fD = (f(x1), . . . , f(xN ))>, and let frest be the values of
f on the complement of D. Because of our conditional
independence assumptions, we have that the posterior
factorizes: p(f |D) = p(frest|fD)p(fD|D). By using the
linearity of expectations and interchanging the order
of integration, the posterior risk thus becomes:

RpD (h) = (30)∫
RN

p(fD|D)

(∫
X ,Y

p(x)p̃(y|x, fD)`(y, h(x))dydx

)
dfD,

where we have defined:

p̃(y|x, fD)
.
=

∫
p(y|x, f)p(frest|fD)dfrest

= N
(
y|KxDK

−1
DDfD, σ

2
x

)
.

(31)

The Gaussian expression in (31) is from standard prop-
erties of GP (basically coming from conditional inde-
pendence and the conditioning formula for multivariate
normals); by doing the change of variable θ = K−1

DDfD,
we get the expressions that we gave in (18). We can
then use the loss L(θ, h) defined in terms of p(y|x, θ)
instead of L(f, h) defined in term of p(y|x, f) and do
an equivalent analysis.

7.2 GP regression equations

The posterior pD is a Gaussian with mean µpD =
(KDD+σ2I)−1y and covariance ΣpD = K−1

DD− (KDD+
σ2I)−1 (recall that we did the change of variable θ =
K−1
DDfD) where y is the vector of outputs (y1, . . . , yN )>.

By using the block matrix inversion lemma, we can get
that Σ−1

pD = KDD + σ−2K2
DD and so is different from

Λ from (21). Even if we use the empirical distribution
on D as the test distribution p(x), then we get Λ =
K2
DD/N , which is still missing an additive KDD to

become proportional to Σ−1
pD .

We now derive the µq which minimizes the KL expres-
sion given in (22) subject to the sparsity constraint.
We partition the set of indices of the dataset into a
fixed set S of size k for the non-zero coefficient of µq
and T for the set of coefficients that we constraint to
zero. Writing Λ̃

.
= Σ−1

pD and setting the derivative to
zero, we get that the non-zero components of µq (on
the set S) are given by:

µqKL
sp

= Λ̃−1
SSΛ̃SDµpD . (32)

Substituting Σ−1
pD = KDD + σ−2K2

DD and µpD =

(KDD + σ2I)−1y, we have that:

Λ̃SDµpD = KSD(I + σ−2KDD)(KDD + σ2I)−1y

= σ−2KSDy, (33)

which is the convenient cancellation that enables us to
avoid the inversion of the N×N matrix KDD which was
previously needed to compute µpD . Substituting (33)

into (32) and expanding Λ̃SS , we get

µqKL
sp

=
(
σ2KSS +KSDKDS

)−1
KSD y, (34)

which only requires the inversion of a k× k matrix and
so is computable in O(k3 +Nk2) time.

On the other hand, the minimizer of dL in (20) with
sparse constraints is µqoptsp

= Λ−1
SSΛSDµpD which does

not yield similar cancellations and so does not seem
efficiently computable. It is clear in this case though
that µqoptsp

6= µqKL
sp

(unless S = D) and so it leaves

open how to obtain efficiently an approximate sparse
solution with lower Bayesian risk.

7.3 Derivation of hq for GPC

We provide a derivation here for (26). The q-
conditional-risk, which we want to minimize pointwise,
takes in this case the form:

Rq(y′|x) = I{y′=+1}c+Φ

(
−KxDµq
σq(x)

)
(35)

+ I{y′=−1}c−Φ

(
KxDµq
σq(x)

)
.

So to minimize it pointwise, we want to choose y′ = +1
when:

c+Φ

(
−KxDµq
σq(x)

)
< c−Φ

(
KxDµq
σq(x)

)
.

Using the fact that Φ(−a) = 1− Φ(a) and rearranging
the terms give the choice function (26).
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