Lecture 16 - FW

Thursday, March 12, 2020 13:35

Away-step FW

Comment:\(\alpha_k = \sum_u \frac{d_j}{\|d_u\|^2} s_u \)

\[x_{kn} = (1-\delta_k) x_k + \delta_k s_k \]

\[= \sum_u (1-\delta_k) s_u + \delta_k s_k \]

FW step moves most uniformly away from active set

unless step size \(\delta_k = 1 \), FW never removes a corner from its expansion

Zig-zag phenomenon close to boundary

\[- \nabla f(x_k) > 0 \Rightarrow \frac{\|d_k\|}{\|\nabla f(x_k)\|} \rightarrow 0 \Rightarrow \frac{\delta_k}{\|d_k\|} \rightarrow 0 \]

Slow rate

Away-step FW fix: (solves Zig-Zagging problem)

in addition to compute:\(s_k = \arg \max_{s} \langle \nabla f(x_k), s \rangle \)

also compute: \(\lambda_k = \arg \min_{\lambda} \langle \nabla f(x_k), \lambda \rangle \)

Sublevel set of a strongly convex

when \(\lambda_k \) in the relative interior of \(\Lambda \)

Strongly convex

\[O(\lambda_k^{-p}) \]

For strongly convex, \(p \)

IFT6132 Page 1
\[V_e = \arg \max_{v \in \text{achieved}(x_e)} \langle d(y), s \rangle \]

\[\text{AFW} = S_e - x_e \]
\[d_A = x_e - v_e \]

* AFW picks the direction with best inner product.

\[\text{AFW} = \arg \max \langle d_A, d_f(x_e) \rangle > \langle d_{FW}, d_f(x_e) \rangle \]

\[\text{AFW} \]

\[\text{can be seen when } d_f(x_e) \text{ is a } i \text{-to-achieve } \]

* If use \(d_A \), let \(x_f = \arg \min_{\gamma \in [0, \gamma_{\max}]} \)

\[x_f = \frac{d_A}{\gamma} \]

\[x_{f+1} = x_e + \gamma (x_e - x_e) \]

\[= \frac{(1 + \gamma_e) \alpha u \gamma_e}{\gamma} - \gamma e V_e \]

\[\lambda \text{ or be coefficient of } \gamma_e \]

\[(1 + \gamma_{\max}) \gamma_e - \gamma_{\max} = 0 \]

\[\Rightarrow \gamma_{\max} = \frac{\alpha}{1 - \alpha} \]

* When \(\gamma_e = \gamma_{\max} \)

"Drop step" \rightarrow remove \(v_e \) from expansion

* When run AFW:

either you maintain some expansion of \(x_e = \frac{\alpha}{\gamma_{\max}} u \)

or

you have a feasibility oracle + away-step oracle

[See NIPS 2016 paper]

By Mosh
Carlen

\[\text{assumption to prove convergence} \]

\[x_e \]
AFW has linear convergence rate on polytopes when f is strongly convex.

\[\text{Convex combination of Fw, SDA} \rightarrow \text{pairwise Fw} \]

\[c_{\text{Convex}} + c_A = \frac{1}{2} z - \frac{1}{2} z_t - v_t = \frac{1}{2} z - v_0 \]

\[\langle -D(f(x)), g_D \rangle = g_{\text{Fw}} + g_A \]

Optimizing Fw: $\theta_0 = \frac{1}{2} D(f(x)), \theta_0 \geq \max \{ e_{\text{Fw}}, g_A \}$

\[\theta_0 \geq \theta_{\text{Fw}} \]

Note: if $M = \text{conv}(A)$ where A is some finite set (called "atoms")

\[\text{LMO}(r) : \min \langle s, r \rangle = \max \langle a, r \rangle \quad \text{s.t.} \quad A \subseteq M \]

\[\text{LMO} \rightarrow \text{min cost network flow} \]

e.g. $A \rightarrow$ integer flows $\text{conv}(A) \rightarrow$ flow polytope

$a \rightarrow$ clique assignment in graph $\text{conv}(A) \rightarrow$ matching polytope

More properties of Fw:

2) Convergence for non-convex f:

Aside: necessary first order condition for constrained opt.

\[\min_{x \in M} f(x) \quad x^* \text{ is a local min} \]

\[\Rightarrow \langle D(f(x^*)), s - x^* \rangle > 0 \quad \forall s \in M \]
min \{ f(x) \mid x \in M \}

\[x^* \text{ is a local min} \]

\[\Rightarrow < Df(x^*), 1 - x^* > \geq 0 \quad \forall s \in M \]

\[\Leftarrow \min_{s \in M} < Df(x^*), s - x^* > \geq 0 \]

\[\Leftrightarrow \max_{s \in M} < -Df(x^*), s - x^* > \leq 0 \]

\[\text{FW-gap}(x^*) \]

\[\text{quantify the "non-stationarity"!} \]

\[\text{see L.J. 2016 and iv} \]

\[\min_{s \in M} \text{gap}(rs) \leq O\left(\frac{1}{\sqrt{t}} \right) \]

\[\text{for FW with the same set} \]

\[\text{"non-convex" FW} \]

\[f \text{ is } \text{L-smooth and bounded} \]

\[M \text{ is bounded (convex) but } f \text{ is not necessarily convex} \]

4) affine covariance of FW

let \(\tilde{M} \) be a new domain s.t. \(\tilde{M} \rightarrow M \) i.e. \(M = A\tilde{M} \)

\[\tilde{f}(\tilde{x}) := f(A\tilde{x}) \]

\[\min_{\tilde{x} \in \tilde{M}} \tilde{f}(\tilde{x}) = \min_{x \in M} f(Ax) = \min_{x \in M} f(x) \]

affine covariance of FW:

- If run FW on \(\tilde{f} \) it \(\tilde{x}_t \) to get \(\tilde{x}_t \) it\(\tilde{a}_{t} \)

- Then \(x_t := A\tilde{x}_t \) corresponds to running FW on \(f \) in \(M \)

\[\text{modulo tie-breaking} \]

why? inner product is affine invariant

\[< D_{\tilde{x}} \tilde{f}(\tilde{x}), \tilde{z} > = < D_{x} f(Ax), Ax \cdot \tilde{z} > \]

\[\tilde{x}_t = \text{argmin}_{\tilde{x} \in \tilde{M}} < \tilde{z}, D_{\tilde{x}} \tilde{f}(\tilde{x}) > \quad \tilde{x}_t \in A\tilde{x}_t \]

\[< \tilde{z}, A^T D_{x} f(x) > \]

\[\tilde{x}_t = \text{argmin}_{\tilde{x} \in \tilde{M}} < \tilde{z}, D_{\tilde{x}} \tilde{f}(\tilde{x}) > \quad \tilde{x}_t \in A\tilde{x}_t \]

\[s_t = \text{argmin}_{s \in \mathbb{R}^d} < s, D_{x} f(x) > \quad s_t \in A\tilde{s}_t \]

\[s_t \rightarrow A\tilde{s}_t \quad (\text{modulo tie-breaking}) \]
\[\Rightarrow \text{we want affine invariant metrics} \Rightarrow C_\gamma \leq L_{\text{aff}} \text{dist}_B(\gamma)^2 \]