## Kernel Methods

## Jean-Philippe Vert

Jean-Philippe.Vert@ensmp.fr<br>Mines ParisTech and Institut Curie

Master Course, 2013.

## Outline

(9) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS)
- Smoothness functional

Kernels Methods

- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression

Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines


## Outline

(1) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS)
- Smoothness functional
(2) Kernels Methods
- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression

Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines


## Outline

(1) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS)
- Smoothness functional
(2) Kernels Methods
- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression
(3) Pattern recognition
- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines


## Outline

4. Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications


## Outline

(4) Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
(5) Kernels for biological sequences
- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection
- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications


## Outline

(4) Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
(5) Kernels for biological sequences
- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels
- Applications


## Outline

(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels
- Construction by regularization
- The diffusion kernel
- Harmonic analysis on graphs
- Applications


## Part 1

## Kernels and RKHS

## Overview

## Motivations

- Develop versatile algorithms to process and analyze data
- No hypothesis made regarding the type of data (vectors, strings, graphs, images, ...)


## The approach

- Develop methods based on pairwise comparisons.
- By imposing constraints on the pairwise comparison function (positive definite kernels), we obtain a general framework for learning from data (optimization in RKHS).


## Outline

(1) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS) - Smoothness functional
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Representation by pairwise comparisons



## Idea

- Define a "comparison function": $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.
- Represent a set of $n$ data points $\mathcal{S}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ by the $n \times n$ matrix:

$$
[K]_{i j}:=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

## Representation by pairwise comparisons

## Remarks

- Always a $n \times n$ matrix, whatever the nature of data: the same algorithm will work for any type of data (vectors, strings, ...).
- Total modularity between the choice of $K$ and the choice of the algorithm.
- Poor scalability w.r.t to the dataset size $\left(n^{2}\right)$
- We will restrict ourselves to a particular class of pairwise comparison functions.


## Positive Definite (p.d.) Kernels

## Definition

A positive definite (p.d.) kernel on the set $\mathcal{X}$ is a function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ symmetric:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)
$$

and which satisfies, for all $N \in \mathbb{N},\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \mathcal{X}^{N}$ et $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$ :

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

## Similarity matrices of p.d. kernels

## Remarks

- Equivalently, a kernel $K$ is p.d. if and only if, for any $N \in \mathbb{N}$ and any set of points $\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \mathcal{X}^{N}$, the similarity matrix $[K]_{i j}:=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is positive semidefinite.
- Kernel methods are algorithm that take such matrices as input.


## The simplest p.d. kernel

## Lemma

Let $\mathcal{X}=\mathbb{R}^{d}$. The function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$ defined by:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle_{\mathbb{R}^{d}}
$$

is p.d. (it is often called the linear kernel).

## Proof

## The simplest p.d. kernel

## Lemma

Let $\mathcal{X}=\mathbb{R}^{d}$. The function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$ defined by:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle_{\mathbb{R}^{d}}
$$

is p.d. (it is often called the linear kernel).

## Proof

- $\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle_{\mathbb{R}^{d}}=\left\langle\mathbf{x}^{\prime}, \mathbf{x}\right\rangle_{\mathbb{R}^{d}}$,
- $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle_{\mathbb{R}^{d}}=\left\|\sum_{i=1}^{N} a_{i} \mathbf{x}_{i}\right\|_{\mathbb{R}^{d}}^{2} \geq 0$


## A more ambitious p.d. kernel



## Lemma

Let $\mathcal{X}$ be any set, and $\Phi: \mathcal{X} \mapsto \mathbb{R}^{d}$. Then the function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$ defined as follows is p.d.:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}
$$

## Proof

- $\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}=\left\langle\Phi\left(\mathbf{x}^{\prime}\right), \Phi(\mathbf{x})_{\mathbb{R}^{d}}\right\rangle$
- $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j}\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathbb{R}^{d}}=\left\|\sum_{i=1}^{N} a_{i} \phi\left(\mathbf{x}_{i}\right)\right\|_{\mathbb{R}^{d}}^{2} \geq 0$


## A more ambitious p.d. kernel



## Lemma

Let $\mathcal{X}$ be any set, and $\phi: \mathcal{X} \mapsto \mathbb{R}^{d}$. Then the function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$ defined as follows is p.d.:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}} .
$$

## Proof

- $\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathbb{R}^{d}}=\left\langle\Phi\left(\mathbf{x}^{\prime}\right), \Phi(\mathbf{x})_{\mathbb{R}^{d}}\right\rangle$,
- $\sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j}\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathbb{R}^{d}}=\left\|\sum_{i=1}^{N} a_{i} \Phi\left(\mathbf{x}_{i}\right)\right\|_{\mathbb{R}^{d}}^{2} \geq 0$.


## Conversely: Kernels as Inner Products

## Theorem (Aronszajn, 1950)

$K$ is a p.d. kernel on the set $\mathcal{X}$ if and only if there exists a Hilbert space $\mathcal{H}$ and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H}
$$

such that, for any $\mathbf{x}, \mathbf{x}^{\prime}$ in $\mathcal{X}$ :

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$



## In case of ...

## Definitions

- An inner product on an $\mathbb{R}$-vector space $\mathcal{H}$ is a mapping $(f, g) \mapsto\langle f, g\rangle_{\mathcal{H}}$ from $\mathcal{H}^{2}$ to $\mathbb{R}$ that is bilinear, symmetric and such that $\langle f, f\rangle>0$ for all $f \in \mathcal{H} \backslash\{0\}$.
- A vector space endowed with an inner product is called pre-Hilbert. It is endowed with a norm defined by the inner product as $\|f\|_{\mathcal{H}}=\langle f, f\rangle_{\mathcal{H}}^{\frac{1}{2}}$.
- A Hilbert space is a pre-Hilbert space complete for the norm defined by the inner product.


## Proof: finite case

## Proof

- Suppose $\mathcal{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}$ is finite of size $N$.
- Any p.d. kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is entirely defined by the $N \times N$ symmetric positive semidefinite matrix $[K]_{i j}:=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- It can therefore be diagonalized on an orthonormal basis of eigenvectors $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$, with non-negative eigenvalues $0 \leq \lambda_{1} \leq \ldots \leq \lambda_{N}$, i.e.,

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left[\sum_{l=1}^{N} \lambda_{l} u_{l} u_{l}^{\top}\right]_{i j}=\sum_{l=1}^{N} \lambda_{l} u_{l}(i) u_{l}(j)=\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathbb{R}^{N}}
$$

with

$$
\Phi\left(\mathbf{x}_{i}\right)=\left(\begin{array}{c}
\sqrt{\lambda_{1}} u_{1}(i) \\
\vdots \\
\sqrt{\lambda_{N}} u_{N}(i)
\end{array}\right)
$$



## Proof: general case

- Mercer (1909) for $\mathcal{X}=[a, b] \subset \mathbb{R}$ (more generally $\mathcal{X}$ compact) and K continuous.
- Kolmogorov (1941) for $\mathcal{X}$ countable.
- Aronszajn $(1944,1950)$ for the general case.


## Outline

(9) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS)
- Smoothness functional
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## RKHS Definition

## Definition

Let $\mathcal{X}$ be a set and $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be a class of functions forming a (real) Hilbert space with inner product $\langle., .\rangle_{\mathcal{H}}$. The function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$ is called a reproducing kernel (r.k.) of $\mathcal{H}$ if
(1) $\mathcal{H}$ contains all functions of the form

$$
\forall \mathbf{x} \in \mathcal{X}, \quad K_{\mathbf{x}}: \mathbf{t} \mapsto K(\mathbf{x}, \mathbf{t})
$$

(2) For every $\mathbf{x} \in \mathcal{X}$ and $f \in \mathcal{H}$ the reproducing property holds:

$$
f(\mathbf{x})=\left\langle f, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}
$$

If a r.k. exists, then $\mathcal{H}$ is called a reproducing kernel Hilbert space (RKHS).

## An equivalent definition of RKHS

## Theorem

The Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ is a RKHS if and only if for any $\mathbf{x} \in \mathcal{X}$, the mapping:

$$
\begin{aligned}
F: \mathcal{H} & \rightarrow \mathbb{R} \\
f & \mapsto f(\mathbf{x})
\end{aligned}
$$

is continuous.

## Corollary <br> Convergence in a RKHS implies pointwise convergence, i.e., if $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to $f$ in $\mathcal{H}$, then $\left(f_{n}(\mathbf{x})\right)_{n \in \mathbb{N}}$ converges to $f(\mathbf{x})$ for any $\mathbf{x} \in \mathcal{X}$.

## An equivalent definition of RKHS

## Theorem

The Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ is a RKHS if and only if for any $\mathbf{x} \in \mathcal{X}$, the mapping:

$$
\begin{aligned}
F: \mathcal{H} & \rightarrow \mathbb{R} \\
f & \mapsto f(\mathbf{x})
\end{aligned}
$$

is continuous.

## Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to $f$ in $\mathcal{H}$, then $\left(f_{n}(\mathbf{x})\right)_{n \in \mathbb{N}}$ converges to $f(\mathbf{x})$ for any $\mathbf{x} \in \mathcal{X}$.

## Proof

## If $\mathcal{H}$ is a RKHS then $f \mapsto f(\mathbf{x})$ is continuous

If a r.k. $K$ exists, then for any $(\mathbf{x}, f) \in \mathcal{X} \times \mathcal{H}$ :

$$
\begin{aligned}
|f(\mathbf{x})| & =\left|\left\langle f, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}\right| \\
& \leq\|f\|_{\mathcal{H}} \cdot\left\|K_{\mathbf{x}}\right\|_{\mathcal{H}} \text { (Cauchy-Schwarz) } \\
& \leq\|f\|_{\mathcal{H}} \cdot K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}},
\end{aligned}
$$

because $\left\|K_{\mathbf{x}}\right\|_{\mathcal{H}}^{2}=\left\langle K_{\mathbf{x}}, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}=K(\mathbf{x}, \mathbf{x})$. Therefore $f \in \mathcal{H} \mapsto f(\mathbf{x}) \in \mathbb{R}$ is a continuous linear mapping. $\square$

## Proof (Converse)

## If $f \mapsto f(\mathbf{x})$ is continuous then $\mathcal{H}$ is a RKHS

Conversely, let us assume that for any $\mathbf{x} \in \mathcal{X}$ the linear form $f \in \mathcal{H} \mapsto f(\mathbf{x})$ is continuous.
Then by Riesz representation theorem there (general property of Hilbert spaces) there exists a unique $g_{\mathbf{x}} \in \mathcal{H}$ such that:

$$
f(\mathbf{x})=\left\langle f, g_{\mathbf{x}}\right\rangle_{\mathcal{H}}
$$

The function $K(\mathbf{x}, \mathbf{y})=g_{\mathbf{x}}(\mathbf{y})$ is then a r.k. for $\mathcal{H}$.

## Unicity of r.k. and RKHS

## Theorem

- If $\mathcal{H}$ is a RKHS, then it has a unique r.k.
- Conversely, a function $K$ can be the r.k. of at most one RKHS.


## Consequence

This shows that we can talk of "the" kernel of a RKHS, or "the" RKHS of a kernel.

## Unicity of r.k. and RKHS

## Theorem

- If $\mathcal{H}$ is a RKHS, then it has a unique r.k.
- Conversely, a function $K$ can be the r.k. of at most one RKHS.


## Consequence

This shows that we can talk of "the" kernel of a RKHS, or "the" RKHS of a kernel.

## Proof

## If a r.k. exists then it is unique

Let $K$ and $K^{\prime}$ be two r.k. of a RKHS $\mathcal{H}$. Then for any $\mathbf{x} \in \mathcal{X}$ :

$$
\begin{aligned}
\left\|K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}\right\|_{\mathcal{H}}^{2} & =\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}\right\rangle_{\mathcal{H}} \\
& =\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}-\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}^{\prime}\right\rangle_{\mathcal{H}} \\
& =K_{\mathbf{x}}(\mathbf{x})-K_{\mathbf{x}}^{\prime}(\mathbf{x})-K_{\mathbf{x}}(\mathbf{x})+K_{\mathbf{x}}^{\prime}(\mathbf{x}) \\
& =0
\end{aligned}
$$

This shows that $K_{\mathbf{x}}=K_{\mathbf{x}}^{\prime}$ as functions, i.e., $K_{\mathbf{x}}(\mathbf{y})=K_{\mathbf{x}}^{\prime}(\mathbf{y})$ for any $\mathbf{y} \in \mathcal{X}$. In other words, $\mathrm{K}=\mathrm{K}^{\prime}$. $\square$

## The RKHS of a r.k. K is unique

## Left as exercice.

## Proof

## If a r.k. exists then it is unique

Let $K$ and $K^{\prime}$ be two r.k. of a RKHS $\mathcal{H}$. Then for any $\mathbf{x} \in \mathcal{X}$ :

$$
\begin{aligned}
\left\|K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}\right\|_{\mathcal{H}}^{2} & =\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}\right\rangle_{\mathcal{H}} \\
& =\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}-\left\langle K_{\mathbf{x}}-K_{\mathbf{x}}^{\prime}, K_{\mathbf{x}}^{\prime}\right\rangle_{\mathcal{H}} \\
& =K_{\mathbf{x}}(\mathbf{x})-K_{\mathbf{x}}^{\prime}(\mathbf{x})-K_{\mathbf{x}}(\mathbf{x})+K_{\mathbf{x}}^{\prime}(\mathbf{x}) \\
& =0
\end{aligned}
$$

This shows that $K_{\mathbf{x}}=K_{\mathbf{x}}^{\prime}$ as functions, i.e., $K_{\mathbf{x}}(\mathbf{y})=K_{\mathbf{x}}^{\prime}(\mathbf{y})$ for any $\mathbf{y} \in \mathcal{X}$. In other words, $\mathrm{K}=\mathrm{K}^{\prime}$. $\square$

## The RKHS of a r.k. K is unique

Left as exercice.

## An important result

## Theorem

A function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is p.d. if and only if it is a r.k.

## Proof

## A r.k. is p.d.

(1) A r.k. is symmetric because, for any $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^{2}$ :

$$
K(\mathbf{x}, \mathbf{y})=\left\langle K_{\mathbf{x}}, K_{\mathbf{y}}\right\rangle_{\mathcal{H}}=\left\langle K_{\mathbf{y}}, K_{\mathbf{x}}\right\rangle_{\mathcal{H}}=K(\mathbf{y}, \mathbf{x}) .
$$

(2) It is p.d. because for any $N \in \mathbb{N},\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right) \in \mathcal{X}^{N}$, and $\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{R}^{N}$ :

$$
\begin{aligned}
\sum_{i, j=1}^{N} a_{i} a_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i, j=1}^{N} a_{i} a_{j}\left\langle K_{\mathbf{x}_{i}}, K_{\mathbf{x}_{j}}\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{N} a_{i} K_{\mathbf{x}_{i}}\right\|_{\mathcal{H}}^{2} \\
& \geq 0 .
\end{aligned}
$$

## Proof

## A p.d. kernel is a r.k. (1/4)

- Let $\mathcal{H}_{0}$ be the vector subspace of $\mathbb{R}^{\mathcal{X}}$ spanned by the functions $\left\{K_{\mathbf{x}}\right\}_{\mathbf{x} \in \mathcal{X}}$.
- For any $f, g \in \mathcal{H}_{0}$, given by:

$$
f=\sum_{i=1}^{m} a_{i} K_{\mathbf{x}_{i}}, \quad g=\sum_{j=1}^{n} b_{j} K_{\mathbf{y}_{j}}
$$

let:

$$
\langle f, g\rangle_{\mathcal{H}_{0}}:=\sum_{i, j} a_{i} b_{j} K\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right)
$$

## Proof

## A p.d. kernel is a r.k. (2/4)

- $\langle f, g\rangle_{\mathcal{H}_{0}}$ does not depend on the expansion of $f$ and $g$ because:

$$
\langle f, g\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{m} a_{i} g\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{n} b_{j} f\left(\mathbf{y}_{j}\right) .
$$

- This also shows that $\langle., .\rangle_{\mathcal{H}_{0}}$ is a symmetric bilinear form.
- This also shows that for any $\mathbf{x} \in \mathcal{X}$ and $f \in \mathcal{H}_{0}$ :

$$
\left\langle f, K_{\mathbf{x}}\right\rangle_{\mathcal{H}_{0}}=f(\mathbf{x}) .
$$

## Proof

## A p.d. kernel is a r.k. (3/4)

- $K$ is assumed to be p.d., therefore:

$$
\|f\|_{\mathcal{H}_{0}}^{2}=\sum_{i, j=1}^{m} a_{i} a_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

In particular Cauchy-Schwarz is valid with $\langle., .,\rangle_{\mathcal{H}_{0}}$.

- By Cauchy-Schwarz we deduce that $\forall \mathbf{x} \in \mathcal{X}$ :

$$
|f(\mathbf{x})|=\left|\left\langle f, K_{\mathbf{x}}\right\rangle_{\mathcal{H}_{0}}\right| \leq\|f\|_{\mathcal{H}_{0}} \cdot K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}}
$$

therefore $\|f\|_{\mathcal{H}_{0}}=0 \Longrightarrow f=0$.

- $\mathcal{H}_{0}$ is therefore a pre-Hilbert space endowed with the inner product $\langle., .\rangle_{\mathcal{H}_{0}}$.


## Proof

## A p.d. kernel is a r.k. (4/4)

- For any Cauchy sequence $\left(f_{n}\right)_{n \geq 0}$ in $\left(\mathcal{H}_{0},\langle., .\rangle_{\mathcal{H}_{0}}\right)$, we note that:

$$
\forall(\mathbf{x}, m, n) \in \mathcal{X} \times \mathbb{N}^{2}, \quad\left|f_{m}(\mathbf{x})-f_{n}(\mathbf{x})\right| \leq\left\|f_{m}-f_{n}\right\|_{\mathcal{H}_{0}} . K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}}
$$

Therefore for any $\mathbf{x}$ the sequence $\left(f_{n}(\mathbf{x})\right)_{n \geq 0}$ is Cauchy in $\mathbb{R}$ and has therefore a limit.

- If we add to $\mathcal{H}_{0}$ the functions defined as the pointwise limits of Cauchy sequences, then the space becomes complete and is therefore a Hilbert space, with $K$ as r.k. (up to a few technicalities, left as exercice).


## Application: back to Aronzsajn's theorem

## Theorem (Aronszajn, 1950)

$K$ is a p.d. kernel on the set $\mathcal{X}$ if and only if there exists a Hilbert space $\mathcal{H}$ and a mapping

$$
\Phi: \mathcal{X} \mapsto \mathcal{H},
$$

such that, for any $\mathbf{x}, \mathbf{x}^{\prime}$ in $\mathcal{X}$ :

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$



## Proof of Aronzsajn's theorem

## Proof

- If $K$ is p.d. over a set $\mathcal{X}$ then it is the r.k. of a Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$.
- Let the mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ defined by:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad \Phi(\mathbf{x})=K_{\mathbf{x}}
$$

- By the reproducing property we have:

$$
\forall(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^{2}, \quad\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{H}}=\left\langle K_{\mathbf{x}}, K_{\mathbf{y}}\right\rangle_{\mathcal{H}}=K(\mathbf{x}, \mathbf{y})
$$

$\square$


## Outline

(9) Kernels and RKHS

- Kernels
- Reproducing Kernel Hilbert Spaces (RKHS)
- Smoothness functional
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## RKHS of the linear kernel

## Explicit characterization

- Let $\mathcal{X}=\mathbb{R}^{d}$ and $K(\mathbf{x}, \mathbf{y})=\langle\mathbf{x}, \mathbf{y}\rangle_{\mathbb{R}^{d}}$ be the linear kernel
- The corresponding RKHS consists of functions:

$$
\mathbf{x} \in \mathbb{R}^{d} \mapsto f(\mathbf{x})=\sum_{i} a_{i}\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle_{\mathbb{R}^{d}}=\langle\mathbf{w}, \mathbf{x}\rangle_{\mathbb{R}^{d}}
$$

with $\mathbf{w}=\sum_{i} a_{i} \mathbf{x}_{i}$.

- The RKHS is therefore the set of linear forms endowed with the following inner product:

$$
\langle f, g\rangle_{\mathcal{H}_{K}}=\langle\mathbf{w}, \mathbf{v}\rangle_{\mathbb{R}^{d}}
$$

when $f(\mathbf{x})=\mathbf{w} . \mathbf{x}$ and $g(\mathbf{x})=\mathbf{v} . \mathbf{x}$.

## RKHS of the linear kernel (cont.)

$$
\begin{cases}K_{\text {lin }}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\mathbf{x}^{\top} \mathbf{x}^{\prime} \\ f(\mathbf{x}) & =w^{\top} \mathbf{x} \\ \|f\|_{\mathcal{H}} & =\|w\|_{2}\end{cases}
$$



## Smoothness functional

A simple inequality

- By Cauchy-Schwarz we have, for any function $f \in \mathcal{H}$ and any two points $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$ :

$$
\begin{aligned}
\left|f(\mathbf{x})-f\left(\mathbf{x}^{\prime}\right)\right| & =\left|\left\langle f, K_{\mathbf{x}}-K_{\mathbf{x}^{\prime}}\right\rangle_{\mathcal{H}}\right| \\
& \leq\|f\|_{\mathcal{H}} \times\left\|K_{\mathbf{x}}-K_{\mathbf{x}^{\prime}}\right\|_{\mathcal{H}} \\
& =\|f\|_{\mathcal{H}} \times d_{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

- The norm of a function in the RKHS controls how fast the function varies over $\mathcal{X}$ with respect to the geometry defined by the kernel (Lipschitz with constant $\|f\|_{\mathcal{H}}$ ).


## Important message

## Small norm $\Longrightarrow$ slow variations.

## Kernels and RKHS : Summary

- P.d. kernels can be thought of as inner product after embedding the data space $\mathcal{X}$ in some Hilbert space. As such a p.d. kernel defines a metric on $\mathcal{X}$.
- A realization of this embedding is the RKHS, valid without restriction on the space $\mathcal{X}$ nor on the kernel.
- The RKHS is a space of functions over $\mathcal{X}$. The norm of a function in the RKHS is related to its degree of smoothness w.r.t. the metric defined by the kernel on $\mathcal{X}$.
- We will now see some applications of kernels and RKHS in statistics, before coming back to the problem of choosing (and eventually designing) the kernel.


## Part 2

## Kernels Methods

## Motivations

Two theoretical results underpin a family of powerful algorithms for data analysis using positive definite kernels, collectively known as kernel methods:

- The kernel trick, based on the representation of p.d. kernels as inner products,
- the representer theorem, based on some properties of the regularization functional defined by the RKHS norm.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods

- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Motivations

- Choosing a p.d. kernel $K$ on a set $\mathcal{X}$ amounts to embedding the data in a Hilbert space: there exists a Hilbert space $\mathcal{H}$ and a mapping $\Phi: \mathcal{X} \mapsto \mathcal{H}$ such that, for all $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$,

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

- However this mapping might not be explicitly given, nor convenient to work with in practice (e.g., large or even infinite dimensions).
- A solution is to work implicitly in the feature space!


## The kernel trick

## Kernel trick

Any algorithm to process finite-dimensional vectors that can be expressed only in terms of pairwise inner products can be applied to potentially infinite-dimensional vectors in the feature space of a p.d. kernel by replacing each inner product evaluation by a kernel evaluation.

## Remark

- The proof of this proposition is trivial, because the kernel is exactly the inner product in the feature space.
- This trick has huge practical applications.
- Vectors in the feature space are only manipulated implicitly, through pairwise inner products.


## Example 1: computing distances in the feature space



$$
\begin{aligned}
d_{K}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{2} & =\left\|\Phi\left(\mathbf{x}_{1}\right)-\Phi\left(\mathbf{x}_{2}\right)\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\Phi\left(\mathbf{x}_{1}\right)-\Phi\left(\mathbf{x}_{2}\right), \Phi\left(\mathbf{x}_{1}\right)-\Phi\left(\mathbf{x}_{2}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle\Phi\left(\mathbf{x}_{1}\right), \Phi\left(\mathbf{x}_{1}\right)\right\rangle_{\mathcal{H}}+\left\langle\Phi\left(\mathbf{x}_{2}\right), \Phi\left(\mathbf{x}_{2}\right)\right\rangle_{\mathcal{H}}-2\left\langle\Phi\left(\mathbf{x}_{1}\right), \Phi\left(\mathbf{x}_{2}\right)\right\rangle_{\mathcal{F}} \\
d_{K}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{2} & =K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)+K\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)-2 K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)
\end{aligned}
$$

## Distance for the Gaussian kernel

- The Gaussian kernel with bandwidth $\sigma$ on $\mathbb{R}^{d}$ is:

$$
K(\mathbf{x}, \mathbf{y})=e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 \sigma^{2}}}
$$

- $K(\mathbf{x}, \mathbf{x})=1=\|\Phi(\mathbf{x})\|_{\mathcal{H}}^{2}$, so all points are on the unit sphere in the feature space.
- The distance between the images of two points $\mathbf{x}$ and $\mathbf{y}$ in the feature space is given by:

$$
d_{K}(\mathbf{x}, \mathbf{y})=\sqrt{2\left[1-e^{-\frac{\|\mathbf{x}-\mathbf{y}\|^{2}}{2 \sigma^{2}}}\right]}
$$



## Example 2: distance between a point and a set

## Problem

- Let $\mathcal{S}=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$ be a finite set of points in $\mathcal{X}$.
- How to define and compute the similarity between any point $\mathbf{x}$ in $\mathcal{X}$ and the set $\mathcal{S}$ ?

A solution

- Map all points to the feature space
- Summarize $\mathcal{S}$ by the barycenter of the points:
- Define the distance between $\mathbf{x}$ and $\mathcal{S}$ by:


## Example 2: distance between a point and a set

## Problem

- Let $\mathcal{S}=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$ be a finite set of points in $\mathcal{X}$.
- How to define and compute the similarity between any point $\mathbf{x}$ in $\mathcal{X}$ and the set $\mathcal{S}$ ?


## A solution

- Map all points to the feature space
- Summarize $\mathcal{S}$ by the barycenter of the points:

$$
m:=\frac{1}{n} \sum_{i=1}^{n} \Phi\left(\mathbf{x}_{i}\right)
$$

- Define the distance between $\mathbf{x}$ and $\mathcal{S}$ by:

$$
d_{K}(\mathbf{x}, \mathcal{S}):=\|\Phi(\mathbf{x})-m\|_{\mathcal{H}} .
$$

## Computation



## Kernel trick

$$
\begin{aligned}
d_{K}(\mathbf{x}, \mathcal{S}) & =\left\|\Phi(\mathbf{x})-\frac{1}{n} \sum_{i=1}^{n} \Phi\left(\mathbf{x}_{i}\right)\right\|_{\mathcal{H}} \\
& =\sqrt{K(\mathbf{x}, \mathbf{x})-\frac{2}{n} \sum_{i=1}^{n} K\left(\mathbf{x}, \mathbf{x}_{i}\right)+\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)} .
\end{aligned}
$$

## Remarks

## Remarks

- The barycentre $m$ only exists in the feature space in general: it does not necessarily have a pre-image $\mathbf{x}_{m}$ such that $\Phi\left(\mathbf{x}_{m}\right)=m$.
- The distance obtained is a Hilbert metric (e.g., Pythagoras theorem holds etc..)


## 1D illustration

- $\mathcal{S}=\{2,3\}$
- Plot $f(x)=d(x, \mathcal{S})$


$$
k(\mathbf{x}, \mathbf{y})=\mathbf{x y} .
$$

(linear)

$k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\boldsymbol{y})^{2}}{2 \sigma^{2}}}$. with $\sigma=1$.

$k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}}$.
with $\sigma=0.2$.

## 2D illustration

- $\mathcal{S}=\left\{(1,1)^{\prime},(1,2)^{\prime},(2,2)^{\prime}\right\}$
- Plot $f(x)=d(x, \mathcal{S})$


$$
k(\mathbf{x}, \mathbf{y})=\mathbf{x y} .
$$

(linear)


$$
k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}} .
$$ with $\sigma=1$.


$k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}}$.
with $\sigma=0.2$.

## Application in discrimination

- $\mathcal{S}_{1}=\left\{(1,1)^{\prime},(1,2)^{\prime}\right\}$ and $\mathcal{S}_{2}=\left\{(1,3)^{\prime},(2,2)^{\prime}\right\}$
- Plot $f(x)=d\left(\mathbf{x}, \mathcal{S}_{1}\right)^{2}-d\left(\mathbf{x}, \mathcal{S}_{2}\right)^{2}$

$k(\mathbf{x}, \mathbf{y})=\mathbf{x y}$.
(linear)


$$
k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}} .
$$

$$
\text { with } \sigma=1
$$



$$
k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}} .
$$

$k(\mathbf{x}, \mathbf{y})=e^{-\frac{(\mathbf{x}-\mathbf{y})^{2}}{2 \sigma^{2}}}$.
with $\sigma=0.2$.

## Example 3: Centering data in the feature space

## Problem

- Let $\mathcal{S}=\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right)$ be a finite set of points in $\mathcal{X}$ endowed with a p.d. kernel $K$. Let $G$ be their $n \times n$ Gram matrix: $G_{i, j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- Let $m=1 / n \sum_{i=1}^{n} \Phi\left(\mathbf{x}_{i}\right)$ their barycenter, and $u_{i}=\Phi\left(\mathbf{x}_{i}\right)-m$ for $i=1, \ldots, n$ be centered data in $\mathcal{H}$.
- How to compute the centered Gram matrix $G_{i, j}^{c}=\left\langle u_{i}, u_{j}\right\rangle_{\mathcal{H}}$ ?



## Computation

## Kernel trick

- A direct computation gives, for $0 \leq i, j \leq n$ :

$$
\begin{aligned}
G_{i, j}^{c} & =\left\langle\Phi\left(\mathbf{x}_{i}\right)-m, \Phi\left(\mathbf{x}_{j}\right)-m\right\rangle_{\mathcal{H}} \\
& =\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathcal{H}}-\left\langle m, \Phi\left(\mathbf{x}_{i}\right)+\Phi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathcal{H}}+\langle m, m\rangle_{\mathcal{H}} \\
& =G_{i, j}-\frac{1}{n} \sum_{k=1}^{n}\left(G_{i, k}+G_{j, k}\right)+\frac{1}{n^{2}} \sum_{k, l=1}^{n} G_{k, l}
\end{aligned}
$$

- This can be rewritten in matricial form:

$$
G^{C}=G-U G-G U+U G U=(I-U) G(I-U)
$$

where $U_{i, j}=1 / n$ for $1 \leq i, j \leq n$.

## Kernel trick Summary

## Summary

- The kernel trick is a trivial statement with important applications.
- It can be used to obtain nonlinear versions of well-known linear algorithms, e.g., by replacing the classical inner product by a Gaussian kernel.
- It can be used to apply classical algorithms to non vectorial data (e.g., strings, graphs) by again replacing the classical inner product by a valid kernel for the data.
- It allows in some cases to embed the initial space to a larger feature space and involve points in the feature space with no pre-image (e.g., barycenter).


## Outline

(9) Kernels and RKHS
(2) Kernels Methods

- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## The Theorem

## Representer Theorem

- Let $\mathcal{X}$ be a set endowed with a p.d. kernel $K, \mathcal{H}_{K}$ the corresponding RKHS, and $\mathcal{S}=\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \subset \mathcal{X}$ a finite set of points in $\mathcal{X}$.
- Let $\Psi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a function of $n+1$ variables, strictly increasing with respect to the last variable.
- Then, any solution to the optimization problem:

$$
\begin{equation*}
\min _{f \in \mathcal{H}_{K}} \Psi\left(f\left(\mathbf{x}_{1}\right), \cdots, f\left(\mathbf{x}_{n}\right),\|f\|_{\mathcal{H}_{K}}\right) \tag{1}
\end{equation*}
$$

admits a representation of the form:

$$
\begin{equation*}
\forall \mathbf{x} \in \mathcal{X}, \quad f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right) \tag{2}
\end{equation*}
$$

## Proof (1/2)

- Let $\xi(f, \mathcal{S})$ be the functional that is minimized in the statement of the representer theorem, and $\mathcal{H}_{K}^{\mathcal{S}}$ the linear span in $\mathcal{H}_{K}$ of the vectors $K_{x_{i}}$, i.e.,

$$
\mathcal{H}_{K}^{\mathcal{S}}=\left\{f \in \mathcal{H}_{K}: f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right),\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathbb{R}^{n}\right\}
$$

- $\mathcal{H}_{K}^{\mathcal{S}}$ finite-dimensional subspace, therefore any function $f \in \mathcal{H}_{K}$ can be uniquely decomposed as:

$$
f=f_{\mathcal{S}}+f_{\perp},
$$

with $f_{\mathcal{S}} \in \mathcal{H}_{K}^{\mathcal{S}}$ and $f_{\perp} \perp \mathcal{H}_{K}^{\mathcal{S}}$ (by orthogonal projection).

## Proof (2/2)

- $\mathcal{H}_{K}$ being a RKHS it holds that:

$$
\forall i=1, \cdots, n, \quad f_{\perp}\left(\mathbf{x}_{i}\right)=\left\langle f_{\perp}, K\left(\mathbf{x}_{i}, .\right)\right\rangle_{\mathcal{H}_{K}}=0
$$

because $K\left(\mathbf{x}_{i},.\right) \in \mathcal{H}_{K}$, therefore:

$$
\forall i=1, \cdots, n, \quad f\left(\mathbf{x}_{i}\right)=f_{\mathcal{S}}\left(\mathbf{x}_{i}\right)
$$

- Pythagoras' theorem in $\mathcal{H}_{K}$ then shows that:

$$
\|f\|_{\mathcal{H}_{K}}^{2}=\left\|f_{\mathcal{S}}\right\|_{\mathcal{H}_{K}}^{2}+\left\|f_{\perp}\right\|_{\mathcal{H}_{K}}^{2} .
$$

- As a consequence, $\xi(f, \mathcal{S}) \geq \xi\left(f_{\mathcal{S}}, \mathcal{S}\right)$, with equality if and only if $\left\|f_{\perp}\right\|_{\mathcal{H}_{K}}=0$. The minimum of $\psi$ is therefore necessarily in $\mathcal{H}_{K}^{\mathcal{S}}$.


## Remarks

## Practical and theoretical consequences

Often the function $\Psi$ has the form:

$$
\psi\left(f\left(\mathbf{x}_{1}\right), \cdots, f\left(\mathbf{x}_{n}\right),\|f\|_{\mathcal{H}_{K}}\right)=c\left(f\left(\mathbf{x}_{1}\right), \cdots, f\left(\mathbf{x}_{n}\right)\right)+\lambda \Omega\left(\|f\|_{\mathcal{H}_{K}}\right)
$$

where $c($.$) measures the "fit" of f$ to a given problem (regression, classification, dimension reduction, ...) and $\Omega$ is strictly increasing. This formulation has two important consequences:

- Theoretically, the minimization will enforce the norm $\|f\|_{\mathcal{H}_{K}}$ to be "small", which can be beneficial by ensuring a sufficient level of smoothness for the solution (regularization effect).
- Practically, we know by the representer theorem that the solution lives in a subspace of dimension $n$, which can lead to efficient algorithms although the RKHS itself can be of infinite dimension.


## Remarks

## Dual interpretations of kernel methods

Most kernel methods have two complementary interpretations:

- A geometric interpretation in the feature space, thanks to the kernel trick. Even when the feature space is "large", most kernel methods work in the linear span of the embeddings of the points available.
- A functional interpretation, often as an optimization problem over (subsets of) the RKHS associated to the kernel.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods

- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Principal Component Analysis (PCA)

## Classical setting

- Let $\mathcal{S}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a set of vectors $\left(\mathbf{x}_{i} \in \mathbb{R}^{d}\right)$
- PCA is a classical algorithm in multivariate statistics to define a set of orthogonal directions that capture the maximum variance
- Applications: low-dimensional representation of high-dimensional points, visualization



## Principal Component Analysis (PCA)

## Formalization

- Assume that the data are centered (otherwise center them as preprocessing), i.e.:

$$
\sum_{i=1}^{n} \mathbf{x}_{i}=0
$$

- The orthogonal projection onto a direction $\mathbf{w} \in \mathbb{R}^{d}$ is the function $h_{\mathbf{w}}: \mathcal{X} \rightarrow \mathbb{R}$ defined by:

$$
h_{\mathbf{w}}(\mathbf{x})=\mathbf{x}^{\top} \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

## Principal Component Analysis (PCA)

## Formalization

- The empirical variance captured by $h_{\mathrm{w}}$ is:

$$
\operatorname{vâr}\left(h_{\mathbf{w}}\right):=\frac{1}{n} \sum_{i=1}^{n} h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}}{\|\mathbf{w}\|^{2}} .
$$

- The $i$-th principal direction $w_{i}(i=1, \ldots, d)$ defined by:

$$
\mathbf{w}_{i}=\underset{\mathbf{w} \perp\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{i-1}\right\}}{\arg \max } \operatorname{vâ}\left(h_{\mathbf{w}}\right)
$$

## Principal Component Analysis (PCA)

## Solution

- Let $X$ be the $n \times d$ data matrix whose rows are the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. We can then write:

$$
\operatorname{vâr}\left(h_{\mathbf{w}}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}}{\|\mathbf{w}\|^{2}}=\frac{1}{n} \frac{\mathbf{w}^{\top} X^{\top} X \mathbf{w}}{\mathbf{w}^{\top} \mathbf{w}}
$$

- The solutions of:

$$
\mathbf{w}_{i}=\underset{\mathbf{w} \perp\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{i-1}\right\}}{\arg \max } \frac{1}{n} \frac{\mathbf{w}^{\top} X^{\top} X \mathbf{w}}{\mathbf{w}^{\top} \mathbf{w}}
$$

are the successive eigenvectors of $C=X^{\top} X$, ranked by decreasing eigenvalues.

## Functional point of view

- Let $K(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{y}$ be the linear kernel.
- The associated RKHS $\mathcal{H}$ is the set of linear functions:

$$
f_{\mathbf{w}}(\mathbf{x})=\mathbf{w}^{\top} \mathbf{x}
$$

endowed with the norm $\left\|f_{\mathbf{w}}\right\|_{\mathcal{H}}=\|\mathbf{w}\|_{\mathbb{R}^{d}}$.

- Therefore we can write:

$$
\operatorname{vâ} r\left(h_{\mathbf{w}}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(\mathbf{x}_{i}^{\top} \mathbf{w}\right)^{2}}{\|\mathbf{w}\|^{2}}=\frac{1}{n\left\|f_{\mathbf{w}}\right\|^{2}} \sum_{i=1}^{n} f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)^{2}
$$

- Moreover, $\mathbf{w} \perp \mathbf{w}^{\prime} \Leftrightarrow f_{\mathbf{w}} \perp f_{\mathbf{w}^{\prime}}$.


## Functional point of view

- In other words, PCA solves, for $i=1, \ldots, d$ :

$$
f_{i}=\underset{f \perp\left\{t_{1}, \ldots, t_{i-1}\right\}}{\arg \max } \frac{1}{n\|f\|^{2}} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}\right)^{2} .
$$

- We can apply the representer theorem (exercice: check that is is also valid in a linear subspace): for $i=1, \ldots, d$, we have:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad f_{i}(\mathbf{x})=\sum_{j=1}^{n} \alpha_{i, j} K\left(\mathbf{x}_{j}, \mathbf{x}\right)
$$

with $\boldsymbol{\alpha}_{i}=\left(\alpha_{i, 1}, \ldots, \alpha_{i, n}\right)^{\top} \in \mathbb{R}^{n}$.

## Functional point of view

- Therefore we have:

$$
\left\|f_{i}\right\|_{\mathcal{H}}^{2}=\sum_{k, l=1}^{d} \alpha_{i, k} \alpha_{i, l} k\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right)=\boldsymbol{\alpha}_{i}^{\top} K \boldsymbol{\alpha}_{i}
$$

- Similarly:

$$
\sum_{k=1}^{n} f_{i}\left(\mathbf{x}_{k}\right)^{2}=\boldsymbol{\alpha}_{i}^{\top} K^{2} \boldsymbol{\alpha}_{i}
$$

## Functional point of view

PCA maximizes in $\alpha$ the function:

$$
\alpha_{i}=\underset{\alpha}{\arg \max } \frac{\boldsymbol{\alpha}^{\top} K^{2} \alpha}{n \alpha^{\top} K \alpha},
$$

under the constraints:

$$
\alpha_{i}^{\top} K \alpha_{j}=0 \quad \text { for } j=1, \ldots, i-1 .
$$

## Solution

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal basis of eigenvectors of $K$ with eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$.
- Let $\boldsymbol{\alpha}_{i}=\sum_{j=1}^{n} \beta_{i j} e_{j}$, then

$$
\frac{\boldsymbol{\alpha}_{i}^{\top} K^{2} \boldsymbol{\alpha}_{i}}{n \boldsymbol{\alpha}_{i}^{\top} K \boldsymbol{\alpha}_{i}}=\frac{\sum_{j=1}^{n} \beta_{i j}^{2} \lambda_{j}^{2}}{n \sum_{j=1}^{n} \beta_{i j}^{2} \lambda_{j}},
$$

which is maximized at $\alpha_{1}=\beta_{11} e_{1}, \alpha_{2}=\beta_{22} e_{2}$, etc...

## Normalization

- For $\boldsymbol{\alpha}_{i}=\beta_{i i} \boldsymbol{e}_{i}$, we want:

$$
1=\left\|f_{i}\right\|_{\mathcal{H}}^{2}=\boldsymbol{\alpha}_{i}^{\top} K \boldsymbol{\alpha}_{i}=\beta_{i i}^{2} \lambda_{i}
$$

- Therefore:

$$
\alpha_{i}=\frac{1}{\sqrt{\lambda_{i}}} e_{i} .
$$

## Kernel PCA: summary

(1) Center the Gram matrix
(2) Compute the first eigenvectors $\left(e_{i}, \lambda_{i}\right)$
(3) Normalize the eigenvectors $\alpha_{i}=e_{i} / \sqrt{\lambda_{i}}$
(9) The projections of the points onto the $i$-th eigenvector is given by $K \alpha_{i}$

## Kernel PCA: remarks

- In this formulation, we must diagonalize the centered kernel Gram matrix, instead of the covariance matrix in the classical setting
- Exercice: check that $X^{\top} X$ and $X X^{\top}$ have the same spectrum (up to 0 eigenvalues) and that the eigenvectors are related by a simple relationship.
- This formulation remains valid for any p.d. kernel: this is kernel PCA
- Applications: nonlinear PCA with nonlinear kernels for vectors, PCA of non-vector objects (strings, graphs..) with specific kernels...


## Example



A set of 74 human tRNA sequences is analyzed using a kernel for sequences (the second-order marginalized kernel based on SCFG). This set of tRNAs contains three classes, called Ala-AGC (white circles), Asn-GTT (black circles) and Cys-GCA (plus symbols) (from Tsuda et al., 2003).

## Outline

(9) Kernels and RKHS
(2) Kernels Methods

- The kernel trick
- The representer theorem
- Kernel PCA
- Kernel ridge regression
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Regression

## Setup

- Let $\mathcal{S}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \in \mathcal{X}^{n}$ be a set of points
- Let $\left\{y_{1}, \ldots, y_{n}\right\} \in \mathbb{R}^{n}$ be real numbers attached to the points
- Regression $=$ find a function $f: \mathcal{X} \rightarrow \mathbb{R}$ to predict $y$ by $f(\mathbf{x})$



## Least-square regression

- Let us quantify the error if $f$ predicts $f(\mathbf{x})$ instead of $y$ by:

$$
V(f(\mathbf{x}), y)=(y-f(\mathbf{x}))^{2}
$$

- Fix a set of functions $\mathcal{H}$
- Least-square regression amounts to solve:

$$
\hat{f}=\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Issues: unstable (especially in large dimensions), overfitting if $\mathcal{H}$ is too "large"


## Regularized least-square

- Let us take $\mathcal{H}=\mathcal{H}_{k}$, the RKHS associated to a p.d. kernel $k$ on $\mathcal{X}$
- Let us regularize the functional to be minimized by:

$$
\hat{f}=\underset{f \in \mathcal{H}_{k}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}_{k}}^{2} .
$$

- 1st effect = prevent overfitting by penalizing the non-smooth functions


## Representation of the solution

- By the representer theorem, any solution of:

$$
\hat{f}=\underset{f \in \mathcal{H}_{k}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}_{k}}^{2} .
$$

can be expanded as:

$$
\hat{f}=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- $2 n d$ effect $=$ simplify the solution


## Dual formulation

- Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top} \in \mathbb{R}^{n}$,
- Let $K$ be the $n \times n$ Gram matrix: $K_{i, j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
- We can then write:

$$
\left(\hat{f}\left(\mathbf{x}_{1}\right), \ldots, \hat{f}\left(\mathbf{x}_{n}\right)\right)^{\top}=K \boldsymbol{\alpha}
$$

- The following holds as usual:

$$
\|\hat{f}\|_{\mathcal{H}_{k}}^{2}=\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
$$

## Dual formulation

- The problem is therefore equivalent to:

$$
\underset{\boldsymbol{\alpha} \in \mathbb{R}^{n}}{\arg \min } \frac{1}{n}(K \boldsymbol{\alpha}-y)^{\top}(K \boldsymbol{\alpha}-y)+\lambda \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
$$

- This is a convex and differentiable function of $\alpha$. Its minimum can therefore be found by setting the gradient in $\alpha$ to zero:

$$
\begin{aligned}
0 & =\frac{2}{n} K(K \alpha-y)+2 \lambda K \alpha \\
& =K[(K+\lambda n l) \alpha-y]
\end{aligned}
$$

## Dual formulation

- $K$ being a symmetric matrix, it can be diagonalized in an orthonormal basis and $\operatorname{Ker}(K) \perp \operatorname{Im}(K)$.
- In this basis we see that $(K+\lambda n l)^{-1}$ leaves $\operatorname{Im}(K)$ and $\operatorname{Ker}(K)$ invariant.
- The problem is therefore equivalent to:

$$
\begin{aligned}
& (K+\lambda n l) \boldsymbol{\alpha}-y \in \operatorname{Ker}(K) \\
\Leftrightarrow & \boldsymbol{\alpha}-(K+\lambda n I)^{-1} y \in \operatorname{Ker}(K) \\
\Leftrightarrow & \boldsymbol{\alpha}=(K+\lambda n I)^{-1} y+\epsilon, \text { with } K \epsilon=0 .
\end{aligned}
$$

## Kernel ridge regression

- However, if $\boldsymbol{\alpha}^{\prime}=\boldsymbol{\alpha}+\epsilon$ with $K \epsilon=0$, then:

$$
\left\|f-f^{\prime}\right\|_{\mathcal{H}_{K}}^{2}=\left(\boldsymbol{\alpha}-\boldsymbol{\alpha}^{\prime}\right)^{\top} K\left(\boldsymbol{\alpha}-\boldsymbol{\alpha}^{\prime}\right)=0
$$

therefore $f=f^{\prime}$.

- One solution to the initial problem is therefore:

$$
\hat{f}=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

with

$$
\boldsymbol{\alpha}=(K+\lambda n l)^{-1} y .
$$

## Remarks

- The matrix $(K+n \lambda /)^{-1}$ is invertible when $\lambda>0$.
- When $\lambda \rightarrow 0$, the method converges towards the solution of the classical unregularized least-square solution. When $\lambda \rightarrow \infty$, the solution converges to $f=0$.
- In practice the symmetric matrix $K+n \lambda I$ is inverted with specific algorithms (e.g., Cholevsky decomposition).
- This method becomes difficult to use when the number of points becomes large.


## Example



## Kernel methods: Summary

- The kernel trick allows to extend many linear algorithms to non-linear settings and to general data (even non-vectorial).
- The representer theorem shows that that functional optimization over (subsets of) the RKHS is feasible in practice.
- We will see next a particularly successful applications of kernel methods, pattern recognition.


## Part 3

## Pattern recognition

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines

4 Kernel examples
(5) Kernels for biological sequences
(6) Kernels for graphs

## Pattern recognition



## APPLE

$1 / 2$
APPLE


APPLE


- Input variables $\mathbf{x} \in \mathcal{X}$
- Output $\mathbf{y} \in\{-1,1\}$.
- Training set $\mathcal{S}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{y}_{n}\right)\right\}$.


## Formalization

## Risk

- $P$ an (unknown) distribution on $\mathcal{X} \times \mathcal{Y}$.
- Observation: $\mathcal{S}_{n}=\left(X_{i}, Y_{i}\right)_{i=1, \ldots, n}$ i.i.d. random variables according to $P$.
- Loss function $I(f(\mathbf{x}), \mathbf{y}) \in \mathbb{R}$ small when $f(\mathbf{x})$ is a good predictor for $y$
- Risk: $R(f)=\mathbf{E} /(f(X), Y)$.
- Estimator $\hat{f}_{n}: \mathcal{X} \rightarrow \mathcal{Y}$.
- Goal: small risk $R\left(\hat{f}_{n}\right)$.


## Large-margin classifiers

## Margin

- For pattern recognition $\mathcal{Y}=\{-1,1\}$
- Estimate a function $f: \mathcal{X} \rightarrow \mathbb{R}$.
- The margin of the function $f$ for a pair $(\mathbf{x}, \mathbf{y})$ is:

$$
\mathbf{y} f(\mathbf{x})
$$

## Large margin classifiers

- Focusing on large margins ensures that $f(\mathbf{x})$ has the same sign as $\mathbf{y}$ and a large absolute value (confidence).
- Suggests a loss function $I(f(\mathbf{x}), \mathbf{y})=\phi(\mathbf{y} f(\mathbf{x}))$, where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is non-increasing.
- Goal: small $\phi$-risk $R_{\phi}(f)=\mathbf{E} \phi(Y f(X))$


## Empirical risk minimization (ERM)

## ERM estimator

- The empirical $\phi$-risk is:

$$
R_{\phi}^{n}(f)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(Y_{i} f\left(X_{i}\right)\right)
$$

- The ERM estimator on the functional class $\mathcal{F}$ is the solution (when it exists) of:

$$
\hat{f}_{n}=\underset{f \in \mathcal{F}}{\arg \min } R_{\phi}^{n}(f)
$$

## Class capacity

## Motivations

- The ERM principle gives a good solution if $R_{\phi}^{n}\left(\hat{f}_{n}\right)$ is similar to $R_{\phi}(f)$.
- This can be ensured if $\mathcal{F}$ is not "too large".
- We need a measure of the "capacity" of $\mathcal{F}$.


## Definition: Rademacher complexity

The Rademacher complexity of a class of functions $\mathcal{F}$ is:

$$
\operatorname{Rad}_{n}(\mathcal{F})=\mathbf{E}_{X, \sigma}\left[\sup _{f \in \mathcal{F}}\left|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right|\right],
$$

where the expectation is over $\left(X_{i}\right)_{i=1, \ldots, n}$ and the independent uniform $\{ \pm 1\}$-valued (Rademacher) random variables $\left(\sigma_{i}\right)_{i=1, \ldots, n}$.

## Basic learning bounds

- Suppose $\phi$ is Lipschitz with constant $L_{\phi}$ :

$$
\forall u, u^{\prime} \in \mathbb{R}, \quad\left|\phi(u)-\phi\left(u^{\prime}\right)\right| \leq L_{\phi}\left|u-u^{\prime}\right|
$$

- Then on average over the training set (and with high probability) the $\phi$-risk of the ERM estimator is closed to the empirical one:

$$
\mathbf{E}_{\mathcal{S}}\left[R_{\phi}\left(\hat{f}_{n}\right)-R_{\phi}^{n}\left(\hat{f}_{n}\right)\right] \leq 2 L_{\phi} \operatorname{Rad}_{n}(\mathcal{F})
$$

- The $\phi$-risk of the ERM estimator is also close to the smallest achievable on $\mathcal{F}$ (on average and with large probability):

$$
\mathbf{E}_{\mathcal{S}} R_{\phi}\left(\hat{f}_{n}\right) \leq \inf _{f \in \mathcal{F}} R_{\phi}(f)+4 L_{\phi} \operatorname{Rad}_{n}(\mathcal{F})
$$

## ERM in RKHS balls

## Principle

- Suppose $\mathcal{X}$ is endowed with a p.d. kernel
- We consider the ball of radius $B$ in the RKHS as function class for the ERM:

$$
\mathcal{F}_{B}=\left\{f \in \mathcal{H}:\|f\|_{\mathcal{H}} \leq B\right\}
$$

Theorem (capacity control of RKHS balls)

$$
\operatorname{Rad}_{n}\left(\mathcal{F}_{B}\right) \leq \frac{2 B \sqrt{E K(X, X)}}{\sqrt{n}} .
$$

## Proof (1/2)

$$
\begin{aligned}
\operatorname{Rad}_{n}\left(\mathcal{F}_{B}\right) & =\mathbf{E}_{X, \sigma}\left[\sup _{f \in \mathcal{F}_{B}}\left|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f\left(X_{i}\right)\right|\right] \\
& =\mathbf{E}_{X, \sigma}\left[\sup _{f \in \mathcal{F}_{B}}\left|\left\langle f, \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} K_{X_{i}}\right\rangle\right|\right] \quad \text { (RKHS) } \\
& =\mathbf{E}_{X, \sigma}\left[B\left\|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} K_{X_{i}}\right\|_{\mathcal{H}}\right] \quad \text { (Cauchy-Schwarz) } \\
& =\frac{2 B}{n} \mathbf{E}_{X, \sigma}\left[\sqrt{\left.\left\|\sum_{i=1}^{n} \sigma_{i} K_{X_{i}}\right\|_{\mathcal{H}}^{2}\right]}\right. \\
& \leq \frac{2 B}{n} \sqrt{\mathbf{E}_{X, \sigma}\left[\sum_{i, j=1}^{n} \sigma_{i} \sigma_{j} K\left(X_{i}, X_{j}\right)\right]} \text { (Jensen) }
\end{aligned}
$$

## Proof (2/2)

But $\mathbf{E}_{\sigma}\left[\sigma_{i} \sigma_{j}\right]$ is 1 if $i=j, 0$ otherwise. Therefore:

$$
\begin{aligned}
\operatorname{Rad}_{n}\left(\mathcal{F}_{B}\right) & \leq \frac{2 B}{n} \sqrt{\mathbf{E}_{X}\left[\sum_{i, j=1}^{n} \mathbf{E}_{\sigma}\left[\sigma_{i} \sigma_{j}\right] K\left(X_{i}, X_{j}\right)\right]} \\
& \leq \frac{2 B}{n} \sqrt{\mathbf{E}_{X} \sum_{i=1}^{n} K\left(X_{i}, X_{i}\right)} \\
& =\frac{2 B \sqrt{\mathbf{E}_{X} K(X, X)}}{\sqrt{n}} .
\end{aligned}
$$

## Basic learning bounds in RKHS balls

## Corollary

- Suppose $K(X, X) \leq \kappa^{2}$ a.s. (e.g., Gaussian kernel and $\kappa=1$ ).
- Let the minimum possibe $\phi$-risk:

$$
R_{\phi}^{*}=\inf _{f \text { measurable }} R_{\phi}(f) .
$$

- Then we directly get for the ERM estimator in $\mathcal{F}_{B}$ :

$$
E R_{\phi}\left(\hat{f}_{n}\right)-R_{\phi}^{*} \leq \frac{8 L_{\phi} \kappa B}{\sqrt{n}}+\left[\inf _{f \in \mathcal{F}_{B}} R_{\phi}(f)-R_{\phi}^{*}\right] .
$$

## Choice of B by structural risk minimization

## Remark

- The estimation error upper bound $8 L_{\phi} \kappa B / \sqrt{n}$ increases (linearly) with $B$.
- The approximation error $\left[\inf _{f \in \mathcal{F}_{B}} R_{\phi}(f)-R_{\phi}^{*}\right]$ decreases with $B$.
- Ideally the choice of $B$ should find a trade-off that minimizes the upper bound.
- This is achieved when

$$
\frac{\partial \inf _{f \in \mathcal{F}_{B}} R_{\phi}(f)}{\partial B}=-\frac{8 L_{\phi} \kappa}{\sqrt{n}} .
$$

## ERM in practice

## Reformulation as penalized minimization

- We must solve the constrained minimization problem:

$$
\left\{\begin{array}{l}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \phi\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right) \\
\text { subject to }\|f\|_{\mathcal{H}} \leq B .
\end{array}\right.
$$

- This is a constrained optimization problem.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Optimization problems

## Setting

- We consider an equality and inequality constrained optimization problem over a variable $x \in \mathcal{X}$ :

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i=1, \ldots, m \\
& g_{j}(x) \leq 0, \quad j=1, \ldots, r
\end{aligned}
$$

making no assumption of $f, g$ and $h$.

- Let us denote by $f^{*}$ the optimal value of the decision function under the constraints, i.e., $f^{*}=f\left(x^{*}\right)$ if the minimum is reached at a global minimum $x^{*}$.


## Lagrangian and dual function

## Lagrangian

The Lagrangian of this problem is the function $L: \mathcal{X} \times \mathbb{R}^{m} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ defined by:

$$
L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)
$$

## Lagrangian dual function

The Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ is:

$$
\begin{aligned}
q(\lambda, \mu) & =\inf _{x \in \mathcal{X}} L(x, \lambda, \mu) \\
& =\inf _{x \in \mathcal{X}}\left(f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)\right) .
\end{aligned}
$$

## Properties of the dual function

- $q$ is concave in $(\lambda, \mu)$, even if the original problem is not convex.
- The dual function yields lower bounds on the optimal value $f^{*}$ of the original problem when $\mu$ is nonnegative:

$$
q(\lambda, \mu) \leq f^{*}, \quad \forall \lambda \in \mathbb{R}^{m}, \forall \mu \in \mathbb{R}^{r}, \mu \geq 0
$$

## Proofs

- For each $x$, the function $(\lambda, \mu) \mapsto L(x, \lambda, \mu)$ is linear, and therefore both convex and concave in $(\lambda, \mu)$. The pointwise minimum of concave functions is concave, therefore $q$ is concave.
- Let $\bar{x}$ be any feasible point, i.e., $h(\bar{x})=0$ and $g(\bar{x}) \leq 0$. Then we have, for any $\lambda$ and $\mu \geq 0$ :

$$
\begin{gathered}
\sum_{i=1}^{m} \lambda_{i} h_{i}(\bar{x})+\sum_{i=1}^{r} \mu_{i} g_{i}(\bar{x}) \leq 0 \\
\Longrightarrow \quad L(\bar{x}, \lambda, \mu)=f(\bar{x})+\sum_{i=1}^{m} \lambda_{i} h_{i}(\bar{x})+\sum_{i=1}^{r} \mu_{i} g_{i}(\bar{x}) \leq f(\bar{x}), \\
\Longrightarrow \quad q(\lambda, \mu)=\inf _{x} L(x, \lambda, \mu) \leq L(\bar{x}, \lambda, \mu) \leq f(\bar{x}), \quad \forall \bar{x} .
\end{gathered}
$$

## Dual problem

## Definition

For the (primal) problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0, \quad g(x) \leq 0
\end{aligned}
$$

the Lagrange dual problem is:

$$
\begin{array}{ll}
\text { maximize } & q(\lambda, \mu) \\
\text { subject to } & \mu \geq 0
\end{array}
$$

where $q$ is the (concave) Lagrange dual function and $\lambda$ and $\mu$ are the Lagrange multipliers associated to the constraints $h(x)=0$ and $g(x) \leq 0$.

## Weak duality

- Let $d^{*}$ the optimal value of the Lagrange dual problem. Each $q(\lambda, \mu)$ is an lower bound for $f^{*}$ and by definition $d^{*}$ is the best lower bound that is obtained. The following weak duality inequality therefore always hold:

$$
d^{*} \leq f^{*}
$$

- This inequality holds when $d^{*}$ or $f^{*}$ are infinite. The difference $d^{*}-f^{*}$ is called the optimal duality gap of the original problem.


## Strong duality

- We say that strong duality holds if the optimal duality gap is zero, i.e.:

$$
d^{*}=f^{*}
$$

- If strong duality holds, then the best lower bound that can be obtained from the Lagrange dual function is tight
- Strong duality does not hold for general nonlinear problems.
- It usually holds for convex problems.
- Conditions that ensure strong duality for convex problems are called constraint qualification.


## Slater's constraint qualification

Strong duality holds for a convex problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{j}(x) \leq 0, \quad j=1, \ldots, r \\
& A x=b
\end{aligned}
$$

if it is strictly feasible, i.e., there exists at least one feasible point that satisfies:

$$
g_{j}(x)<0, \quad j=1, \ldots, r, \quad A x=b
$$

## Remarks

- Slater's conditions also ensure that the maximum $d^{*}$ (if $>-\infty$ ) is attained, i.e., there exists a point $\left(\lambda^{*}, \mu^{*}\right)$ with

$$
q\left(\lambda^{*}, \mu^{*}\right)=d^{*}=f^{*}
$$

- They can be sharpened. For example, strict feasibility is not required for affine constraints.
- There exist many other types of constraint qualifications


## Dual optimal pairs

Suppose that strong duality holds, $x^{*}$ is primal optimal, $\left(\lambda^{*}, \mu^{*}\right)$ is dual optimal. Then we have:

$$
\begin{aligned}
f\left(x^{*}\right) & =q\left(\lambda^{*}, \mu^{*}\right) \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i}^{*} h_{i}(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\} \\
& \leq f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} h_{i}\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}\left(x^{*}\right) \\
& \leq f\left(x^{*}\right)
\end{aligned}
$$

Hence both inequalities are in fact equalities.

## Complimentary slackness

The first equality shows that:

$$
L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\inf _{x \in \mathbb{R}^{n}} L\left(x, \lambda^{*}, \mu^{*}\right)
$$

showing that $x^{*}$ minimizes the Lagrangian at $\left(\lambda^{*}, \mu^{*}\right)$. The second equality shows that:

$$
\mu_{j} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r
$$

This property is called complementary slackness: the ith optimal Lagrange multiplier is zero unless the ith constraint is active at the optimum.

## Outline

(1) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines

4 Kernel examples
(5) Kernels for biological sequences
(6) Kernels for graphs

## ERM in practice

## Reformulation as penalized minimization

- We must solve the constrained minimization problem:

$$
\left\{\begin{array}{l}
\min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \phi\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right) \\
\text { subject to }\|f\|_{\mathcal{H}} \leq B .
\end{array}\right.
$$

- To make this practical we assume that $\phi$ is convex.
- The problem is then a convex problem in $f$ for which strong duality holds. In particular $f$ solves the problem if and only if it solves for some dual parameter $\lambda$ the unconstrained problem:

$$
\min _{f \in \mathcal{H}}\left\{\frac{1}{n} \sum_{i=1}^{n} \phi\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}\right\}
$$

and complimentary slackness holds $\left(\lambda=0\right.$ or $\left.\|f\|_{\mathcal{H}}=B\right)$.

## Optimization in RKHS

- By the representer theorem, the solution of the unconstrained problem can be expanded as:

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- Plugging into the original problem we obtain the following unconstrained and convex optimization problem in $\mathbb{R}^{n}$ :

$$
\min _{\alpha \in \mathbb{R}^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \phi\left(\mathbf{y}_{i} \sum_{j=1}^{n} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)+\lambda \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}
$$

- This can be implemented using general packages for convex optimization or specific algorithms (e.g., for SVM).


## Loss function examples



| Method | $\phi(u)$ |
| :---: | :---: |
| Kernel logistic regression | $\log \left(1+e^{-u}\right)$ |
| Support vector machine (1-SVM) | $\max (1-u, 0)$ |
| Support vector machine (2-SVM) | $\max (1-u, 0)^{2}$ |
| Boosting | $e^{-u}$ |

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

- Pattern recognition
- Fundamentals of constrained optimization
- Large-margin pattern recognition algorithms
- Support vector machines

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

## Motivations

## Support vector machines (SVM)

- Historically the first "kernel method" for pattern recognition, still the most popular.
- Often stat-of-the-art in performance.
- One particular choice of loss function (hinge loss).
- Leads to a sparse solution, i.e., not all points are involved in the decomposition (compression).
- Particular algorithm for fast optimization (decomposition by chunking methods).


## Definitions



- The loss function is the hinge loss:

$$
\phi_{\text {hinge }}(u)=\max (1-u, 0)= \begin{cases}0 & \text { if } u \geq 1 \\ 1-u & \text { otherwise }\end{cases}
$$

- SVM solve the problem:

$$
\min _{f \in \mathcal{H}}\left\{\frac{1}{n} \sum_{i=1}^{n} \phi_{\text {hinge }}\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2}\right\} .
$$

## Problem reformulation (1/3)

## Slack variables

- This is a convex optimization problem
- However the objective function in not differentiable, so we reformulate the problem with additional slack variables $\xi_{1}, \ldots, \xi_{n} \in \mathbb{R}$ :

$$
\min _{f \in \mathcal{H}, \boldsymbol{\xi} \in \mathbb{R}^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda\|f\|_{\mathcal{H}}^{2}\right\}
$$

subject to:

$$
\xi_{i} \geq \phi_{\text {hinge }}\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right)
$$

## Problem reformulation (2/3)

The objective function is now differentiable in $f$ and $\xi_{i}$, and we can rewrite the constraints as a conjunction of linear constraints:

$$
\min _{f \in \mathcal{H}, \boldsymbol{\xi} \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda\|f\|_{\mathcal{H}}^{2},
$$

subject to:

$$
\begin{cases}\xi_{i} \geq 1-\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right), & \text { for } i=1, \ldots, n \\ \xi_{i} \geq 0, & \text { for } i=1, \ldots, n\end{cases}
$$

## Problem reformulation (3/3)

## Finite-dimensional expansion

Replacing $\hat{f}$ by

$$
\hat{f}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right),
$$

the problem can be rewritten as an optimization problem in $\alpha$ and $\xi$ :

$$
\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}, \boldsymbol{\xi} \in \mathbb{R}^{n}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha},
$$

subject to:

$$
\begin{cases}\mathbf{y}_{i} \sum_{j=1}^{n} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\xi_{i}-1 \geq 0, & \text { for } i=1, \ldots, n \\ \xi_{i} \geq 0, & \text { for } i=1, \ldots, n\end{cases}
$$

## Solving the problem

## Remarks

- This is a classical quadratic program (minimization of a convex quadratic function with linear constraints) for which any out-of-the-box optimization package can be used.
- The dimension of the problem and the number of constraints, however, are $2 n$ where $n$ is the number of points. General-purpose QP solvers will have difficulties when $n$ exceeds a few thousands.
- Solving the dual of this problem (also a QP) will be more convenient and lead to faster algorithms (due to the sparsity of the final solution).


## Lagrangian

- Let us introduce the Lagrange multipliers $\boldsymbol{\mu} \in \mathbb{R}^{n}$ and $\nu \in \mathbb{R}^{n}$.
- The Lagrangian of the problem is:

$$
\begin{aligned}
L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu})= & \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha} \\
& -\sum_{i=1}^{n} \mu_{i}\left[\mathbf{y}_{i} \sum_{j=1}^{n} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\xi_{i}-1\right]-\sum_{i=1}^{n} \nu_{i} \xi_{i}
\end{aligned}
$$

## Minimizing $L(\alpha, \xi, \mu, \nu)$ w.r.t. $\alpha$

- $L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu})$ is a convex quadratic function in $\boldsymbol{\alpha}$. It is minimized when its gradient is null:

$$
\nabla_{\boldsymbol{\alpha}} L=2 \lambda K \boldsymbol{\alpha}-K Y \boldsymbol{\mu}=K(2 \lambda \boldsymbol{\alpha}-Y \boldsymbol{\mu})
$$

where $Y$ is the diagonal matrix with entries $Y_{i, i}=\mathbf{y}_{i}$.

- Solving $\nabla_{\boldsymbol{\alpha}} L=0$ leads to

$$
\boldsymbol{\alpha}=\frac{Y \boldsymbol{\mu}}{2 \lambda}+\epsilon
$$

with $K \epsilon=0$. But $\epsilon$ does not change $f$ (same as kernel ridge regression), so we can choose for example $\epsilon=0$ and:

$$
\alpha_{i}^{*}(\boldsymbol{\mu}, \boldsymbol{\nu})=\frac{\mathbf{y}_{i} \mu_{i}}{2 \lambda}, \quad \text { for } i=1, \ldots, n
$$

## Minimizing $L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu})$ w.r.t. $\boldsymbol{\xi}$

- $L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu})$ is a linear function in $\boldsymbol{\xi}$.
- Its minimum is $-\infty$ except when $\nabla_{\xi} L=0$, i.e.:

$$
\frac{\partial L}{\partial \xi_{i}}=\frac{1}{n}-\mu_{i}-\nu_{i}=0
$$

## Dual function

- We therefore obtain the Lagrange dual function:

$$
\begin{aligned}
& q(\boldsymbol{\mu}, \boldsymbol{\nu})=\inf _{\boldsymbol{\alpha} \in \mathbb{R}^{n}, \boldsymbol{\xi} \in \mathbb{R}^{n}} L(\boldsymbol{\alpha}, \boldsymbol{\xi}, \boldsymbol{\mu}, \boldsymbol{\nu}) \\
= & \begin{cases}\sum_{i=1}^{n} \mu_{i}-\frac{1}{4 \lambda} \sum_{i, j=1}^{n} y_{i} y_{j} \mu_{i} \mu_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \text { if } \mu_{i}+\nu_{i}=\frac{1}{n} \text { for all } i, \\
-\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

- The dual problem is:

$$
\begin{array}{ll}
\operatorname{maximize} & q(\boldsymbol{\mu}, \boldsymbol{\nu}) \\
\text { subject to } & \boldsymbol{\mu} \geq 0, \boldsymbol{\nu} \geq 0
\end{array}
$$

## Dual problem

- If $\mu_{i}>1 / n$ for some $i$, then there is no $\nu_{i} \geq 0$ such that $\mu_{i}+\nu_{i}=1 / n$, hence $q(\mu, \nu)=-\infty$.
- If $0 \leq \mu_{i} \leq 1 / n$ for all $i$, then the dual function takes finite values that depend only on $\mu$ by taking $\nu_{i}=1 / n-\mu_{i}$.
- The dual problem is therefore equivalent to:

$$
\max _{0 \leq \boldsymbol{\mu} \leq 1 / n} \sum_{i=1}^{n} \mu_{i}-\frac{1}{4 \lambda} \sum_{i, j=1}^{n} \mathbf{y}_{i} \mathbf{y}_{j} \mu_{i} \mu_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

## Back to the primal

- Once the dual problem is solved in $\mu$ we get a solution of the primal problem by $\alpha=Y \mu / 2 \lambda$.
- We can therefore directly plug this into the dual problem to obtain the QP that $\alpha$ must solve:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{d}} 2 \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}-\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=2 \boldsymbol{\alpha}^{\top} \mathbf{y}-\boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha}
$$

subject to:

$$
0 \leq y_{i} \alpha_{i} \leq \frac{1}{2 \lambda n}, \quad \text { for } i=1, \ldots, n
$$

## Karush-Kuhn-Tucker (KKT) conditions

- The KKT optimality conditions are, for $i=1, \ldots, n$ :

$$
\left\{\begin{array}{l}
\mu_{i}\left[\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)+\xi_{i}-1\right]=0 \\
\nu_{i} \xi_{i}=0
\end{array}\right.
$$

- In terms of $\alpha$ this can be rewritten as:

$$
\left\{\begin{array}{l}
\alpha_{i}\left[y_{i} f\left(\mathbf{x}_{i}\right)+\xi_{i}-1\right]=0, \\
\left(\alpha_{i}-\frac{y_{i}}{2 \lambda n}\right) \xi_{i}=0
\end{array}\right.
$$

## Analysis of KKT conditions

$$
\left\{\begin{array}{l}
\alpha_{i}\left[y_{i} f\left(\mathbf{x}_{i}\right)+\xi_{i}-1\right]=0, \\
\left(\alpha_{i}-\frac{y_{i}}{2 \lambda n}\right) \xi_{i}=0 .
\end{array}\right.
$$

- If $\alpha_{i}=0$, then the second constraint is active: $\xi_{i}=0$. This implies $y_{i} f\left(\mathbf{x}_{i}\right) \geq 1$.
- If $0<\mathbf{y}_{i} \alpha_{i}<\frac{1}{2 \lambda n}$, then both constraints are active: $\xi_{i}=0$ et $y_{i} f\left(\mathbf{x}_{i}\right)+\xi_{i}-1=0$. This implies $y_{i} f\left(\mathbf{x}_{i}\right)=1$.
- If $\alpha_{i}=\frac{y_{i}}{2 \lambda n}$, then the second constraint is not active ( $\left.\xi_{i} \geq 0\right)$ while the first one is active: $y_{i} f\left(\mathbf{x}_{i}\right)+\xi_{i}=1$. This implies $y_{i} f\left(\mathbf{x}_{i}\right) \leq 1$


## Geometric interpretation



## Geometric interpretation



## Geometric interpretation



## Support vectors

## Consequence of KKT conditions

- The training points with $\alpha_{i} \neq 0$ are called support vectors.
- Only support vectors are important for the classification of new points:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)=\sum_{i \in S V} \alpha_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right),
$$

where $S V$ is the set of support vectors.

## Consequences

- The solution is sparse in $\alpha$, leading to fast algorithms for training (use of decomposition methods).
- The classification of a new point only involves kernel evaluations with support vectors (fast).


## Remark: C-SVM

- Often the SVM optimization problem is written in terms of a regularization parameter $C$ instead of $\lambda$ as follows:

$$
\underset{f \in \mathcal{H}}{\arg \min } \frac{1}{2}\|f\|_{\mathcal{H}}^{2}+C \sum_{i=1}^{n} V_{\text {hinge }}\left(f\left(\mathbf{x}_{i}\right), y_{i}\right)
$$

- This is equivalent to our formulation with $C=\frac{1}{2 n \lambda}$.
- The SVM optimization problem is then:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{d}} 2 \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}-\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

subject to:

$$
0 \leq y_{i} \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n .
$$

- This formulation is often called C-SVM.


## Remark: 2-SVM

- A variant of the SVM, sometimes called 2-SVM, is obtained by replacing the hinge loss by the square hinge loss:

$$
\min _{f \in \mathcal{H}}\left\{\frac{1}{n} \sum_{i=1}^{n} \phi_{\text {hinge }}\left(\mathbf{y}_{i} f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|f\|_{\mathcal{H}}^{2}\right\} .
$$

- After some computation (left as exercice) we find that the dual problem of the 2-SVM is:

$$
\max _{\boldsymbol{\alpha} \in \mathbb{R}^{d}} 2 \boldsymbol{\alpha}^{\top} \mathbf{y}-\boldsymbol{\alpha}^{\top}(K+n \lambda /) \boldsymbol{\alpha}
$$

subject to:

$$
0 \leq y_{i} \alpha_{i}, \quad \text { for } i=1, \ldots, n .
$$

- This is therefore equivalent to the previous SVM with the kernel $K+n \lambda /$ and $C=+\infty$


## Kernel methods: Summary

- The kernel trick allows to extend many linear algorithms to non-linear settings and to general data (even non-vectorial).
- The representer theorem shows that that functional optimization over (subsets of) the RKHS is feasible in practice.
- The norm in the RKHS can be used as regularization for empirical risk minimization. This is theoretically justified and leads to efficient algorithms (often finite-dimensional convex problem).

Part 4

## Kernel examples

## Introduction

- The kernel plays a critical role in the performance of kernel methods.
- Kernel is the place where prior knowledge about the problem can be inserted, in particular by controlling the norm of functions in the RKHS.
- In this part we provide some intuition about the link between kernels and smoothness functional through several examples.
- Subsequent parts will focus on the design of kernels for particular types of data.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
(5) Kernels for biological sequences

6 Kernels for graphs

## Mercer kernels

## Definition

A kernel $K$ on a set $\mathcal{X}$ is called a Mercer kernel if:
(1) $\mathcal{X}$ is a compact metric space (typically, a closed bounded subset of $\mathbb{R}^{d}$ ).
(2) $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a continuous p.d. kernel (w.r.t. the Borel topology)

## Motivations

- We can exhibit an explicit and intuitive feature space for a large class of p.d. kernels
- Historically, provided the first proof that a p.d. kernel is an inner product for non-finite sets $\mathcal{X}$ (Mercer, 1905).
- Can be thought of as the natural generalization of the factorization of positive semidefinite matrices over infinite spaces.


## Sketch of the proof

(1) The kernel matrix when $\mathcal{X}$ is finite becomes a linear operator when $\mathcal{X}$ is a metric space.
(2) The matrix was positive semidefinite in the finite case, the linear operator is self-adjoint and positive in the metric case.
(3) The spectral theorem states that any compact linear operator admits a complete orthonormal basis of eigenfunctions, with non-negative eigenvalues (just like positive semidefinite matrices can be diagonalized with nonnegative eigenvalues).
(4) The kernel function can then be expanded over basis of eigenfunctions as:

$$
K(\mathbf{x}, \mathbf{t})=\sum_{k=1}^{\infty} \lambda_{k} \psi_{k}(\mathbf{x}) \psi_{k}(\mathbf{t})
$$

where $\lambda_{i} \geq 0$ are the non-negative eigenvalues.

## In case of...

## Definition

Let $\mathcal{H}$ be a Hilbert space

- A linear operator is a continuous linear mapping from $\mathcal{H}$ to itself.
- A linear operator $L$ is called compact if, for any bounded sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$, the sequence $\left\{L f_{n}\right\}_{n=1}^{\infty}$ has a subsequence that converges.
- $L$ is called self-adjoint if, for any $f, g \in \mathcal{H}$ :

$$
\langle f, L g\rangle=\langle L f, g\rangle
$$

- $L$ is called positif if it is self-adjoint and, for any $f \in \mathcal{H}$ :

$$
\langle f, L f\rangle \geq 0
$$

## An important lemma

## The linear operator

- Let $\nu$ be any Borel measure on $\mathcal{X}$, and $L_{2}^{\nu}(\mathcal{X})$ the Hilbert space of square integrable functions on $\mathcal{X}$.
- For any function $K: \mathcal{X}^{2} \mapsto \mathbb{R}$, let the transform:

$$
\forall f \in L_{2}^{\nu}(\mathcal{X}), \quad\left(L_{K} f\right)(\mathbf{x})=\int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d \nu(\mathbf{t})
$$

## Lemma

If $K$ is a Mercer kernel, then $L_{K}$ is a compact and bounded linear operator over $L_{2}^{\nu}(\mathcal{X})$, self-adjoint and positif.

## Proof (1/6)

## $L_{K}$ is a mapping from $L_{2}^{\nu}(\mathcal{X})$ to $L_{2}^{\nu}(\mathcal{X})$

For any $f \in L_{2}^{\nu}(\mathcal{X})$ and $\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) \in \mathcal{X}^{2}$ :

$$
\begin{aligned}
&\left|L_{K} f\left(\mathbf{x}_{1}\right)-L_{K} f\left(\mathbf{x}_{2}\right)\right|=\left|\int\left(K\left(\mathbf{x}_{1}, \mathbf{t}\right)-K\left(\mathbf{x}_{2}, \mathbf{t}\right)\right) f(\mathbf{t}) d \nu(\mathbf{t})\right| \\
& \leq\left\|K\left(\mathbf{x}_{1}, \cdot\right)-K\left(\mathbf{x}_{2}, \cdot\right)\right\|\|f\| \\
& \quad \text { (Cauchy-Schwarz) } \\
& \leq \sqrt{\nu(\mathcal{X})} \max _{\mathbf{t} \in \mathcal{X}}\left|K\left(\mathbf{x}_{1}, \mathbf{t}\right)-K\left(\mathbf{x}_{2}, \mathbf{t}\right)\right|\|f\| .
\end{aligned}
$$

$K$ being continuous and $\mathcal{X}$ compact, $K$ is uniformly continuous, therefore $L_{K} f$ is continuous. In particular, $L_{K} f \in L_{2}^{\nu}(\mathcal{X})$ (with the slight abuse of notation $\left.\mathcal{C}(\mathcal{X}) \subset L_{2}^{\nu}(\mathcal{X})\right)$.

## Proof (2/6)

## $L_{K}$ is linear and continuous

- Linearity is obvious (by definition of $L_{K}$ and linearity of the integral).
- For continuity, we observe that for all $f \in L_{2}^{\nu}(\mathcal{X})$ and $\mathbf{x} \in \mathcal{X}$ :

$$
\begin{aligned}
\left|\left(L_{K} f\right)(\mathbf{x})\right| & =\left|\int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d \nu(\mathbf{t})\right| \\
& \leq \sqrt{\nu(\mathcal{X})} \max _{\mathbf{t} \in \mathcal{X}}|K(\mathbf{x}, \mathbf{t})|\|f\| \\
& \leq \sqrt{\nu(\mathcal{X})} C_{K}\|f\| .
\end{aligned}
$$

with $C_{K}=\max _{\mathbf{x}, \mathbf{t} \in \mathcal{X}}|K(\mathbf{x}, \mathbf{t})|$. Therefore:

$$
\left\|L_{K} f\right\|=\left(\int L_{K} f(\mathbf{t})^{2} d \nu(\mathbf{t})\right)^{\frac{1}{2}} \leq \nu(\mathcal{X}) C_{K}\|f\|
$$

## Proof (3/6)

## Criterion for compacity

In order to prove the compacity of $L_{K}$ we need the following criterion. Let $C(\mathcal{X})$ denote the set of continuous functions on $\mathcal{X}$ endowed with infinite norm $\|f\|_{\infty}=\max _{\mathbf{x} \in \mathcal{X}}|f(\mathbf{x})|$.
A set of functions $G \subset C(\mathcal{X})$ is called equicontinuous if:

$$
\begin{aligned}
& \forall \epsilon>0, \exists \delta>0, \forall(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^{2} \\
&\|\mathbf{x}-\mathbf{y}\|<\delta \Longrightarrow \forall g \in G,|g(\mathbf{x})-g(\mathbf{y})|<\epsilon
\end{aligned}
$$

## Ascoli Theorem

A part $H \subset C(\mathcal{X})$ is relatively compact (i.e., its closure is compact) if and only if it is uniformly bounded and equicontinuous.

## Proof (4/6)

## $L_{K}$ is compact

Let $\left(f_{n}\right)_{n \geq 0}$ be a bounded sequence of $L_{2}^{\nu}(\mathcal{X})\left(\left\|f_{n}\right\|<M\right.$ for all $\left.n\right)$. The sequence $\left(L_{K} f_{n}\right)_{n \geq 0}$ is a sequence of continuous functions, uniformly bounded because:

$$
\left\|L_{K} f\right\|_{\infty} \leq \sqrt{\nu(\mathcal{X})} C_{K}\|f\| \leq \sqrt{\nu(\mathcal{X})} C_{K} M .
$$

It is equicontinuous because:

$$
\left|L_{K} f_{n}\left(\mathbf{x}_{1}\right)-L_{K} f_{n}\left(\mathbf{x}_{2}\right)\right| \leq \sqrt{\nu(\mathcal{X})} \max _{\mathbf{t} \in \mathcal{X}}\left|K\left(\mathbf{x}_{1}, \mathbf{t}\right)-K\left(\mathbf{x}_{2}, \mathbf{t}\right)\right| M .
$$

By Ascoli theorem, we can extract a sequence uniformly convergent in $C(\mathcal{X})$, and therefore in $L_{2}^{\nu}(\mathcal{X})$.

## Proof (5/6)

## $L_{K}$ is self-adjoint

$K$ being symmetric, we have for all $f, g \in \mathcal{H}$ :

$$
\begin{aligned}
\langle f, L g\rangle & =\int f(\mathbf{x})(L g)(\mathbf{x}) \nu(d \mathbf{x}) \\
& =\iint f(\mathbf{x}) g(\mathbf{t}) K(\mathbf{x}, \mathbf{t}) \nu(d \mathbf{x}) \nu(d \mathbf{t}) \text { (Fubini) } \\
& =\langle L f, g\rangle .
\end{aligned}
$$

## Proof (6/6)

## $L_{K}$ is positif

We can approximate the integral by finite sums:

$$
\begin{aligned}
\langle f, L f\rangle & =\iint f(\mathbf{x}) f(\mathbf{t}) K(\mathbf{x}, \mathbf{t}) \nu(d \mathbf{x}) \nu(d \mathbf{t}) \\
& =\lim _{k \rightarrow \infty} \frac{\nu(\mathcal{X})}{k^{2}} \sum_{i, j=1}^{k} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right) \\
& \geq 0
\end{aligned}
$$

because $K$ is positive definite. $\quad \square$

## Diagonalization of the operator

We need the following general result:

## Spectral theorem

Let $L$ be a compact linear operator on a Hilbert space $\mathcal{H}$. Then there exists in $\mathcal{H}$ a complete orthonormal system $\left(\psi_{1}, \psi_{2}, \ldots\right)$ of eigenvectors of $L$. The eigenvalues $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ are real if $L$ is self-adjoint, and non-negative if $L$ is positive.

## Remark

This theorem can be applied to $L_{K}$. In that case the eigenfunctions $\phi_{k}$ associated to the eigenfunctions $\lambda_{k} \neq 0$ can be considered as continuous functions, because:

$$
\psi_{k}=\frac{1}{\lambda_{k}} L \psi_{k}
$$

## Main result

## Mercer Theorem

Let $\mathcal{X}$ be a compact metric space, $\nu$ a Borel measure on $\mathcal{X}$, and $K$ a continuous p.d. kernel. Let $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ denote the nonnegative eigenvalues of $L_{K}$ and $\left(\psi_{1}, \psi_{2}, \ldots\right)$ the corresponding eigenfunctions. Then all $\psi_{k}$ are continuous functions, and for any $\mathbf{x}, \mathbf{t} \in \mathcal{X}$ :

$$
K(\mathbf{x}, \mathbf{t})=\sum_{k=1}^{\infty} \lambda_{k} \psi_{k}(\mathbf{x}) \psi_{k}(\mathbf{t}),
$$

where the convergence is absolute for each $\mathbf{x}, \mathbf{t} \in \mathcal{X}$, and uniform on $\mathcal{X} \times \mathcal{X}$.

## Mercer kernels as inner products

## Corollary

The mapping

$$
\begin{aligned}
\Phi: \mathcal{X} & \mapsto I^{2} \\
\mathbf{x} & \mapsto\left(\sqrt{\lambda_{k}} \psi_{k}(\mathbf{x})\right)_{k \in \mathbb{N}}
\end{aligned}
$$

is well defined, continuous, and satisfies

$$
K(\mathbf{x}, \mathbf{t})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{t})\rangle_{\rho^{2}} .
$$

## Proof of the corollary

## Proof

By Mercer theorem we see that for all $\mathbf{x} \in \mathcal{X}, \sum \lambda_{k} \psi_{k}^{2}(\mathbf{x})$ converges to $K(\mathbf{x}, \mathbf{x})<\infty$, therefore $\Phi(\mathbf{x}) \in I^{2}$.
The continuity of $\Phi$ results from:

$$
\begin{aligned}
\|\Phi(\mathbf{x})-\Phi(\mathbf{t})\|_{l}^{2} & =\sum_{k=1}^{\infty} \lambda_{k}\left(\psi_{k}(\mathbf{x})-\psi_{k}(\mathbf{t})\right)^{2} \\
& =K(\mathbf{x}, \mathbf{x})+K(\mathbf{t}, \mathbf{t})-2 K(\mathbf{x}, \mathbf{t})
\end{aligned}
$$

## Summary

- This proof extends the proof valid when $\mathcal{X}$ is finite.
- This is a constructive proof, developed by Mercer (1905).
- Compacity and continuity are required.


## RKHS of Mercer kernels

- Let $\mathcal{X}$ be a compact metric space, and $K$ a Mercer kernel on $\mathcal{X}$ (symmetric, continuous and positive definite).
- We have expressed a decomposition of the kernel in terms of the eigenfunctions of the linear convolution operator.
- In some cases this provides an intuitive feature space.
- The kernel also has a RKHS, like any p.d. kernel.
- Can we get an intuition of the RKHS norm in terms of the eigenfunctions and eigenvalues of the convolution operator?


## Reminder: expansion of Mercer kernel

## Theorem

Denote by $L_{K}$ the linear operator of $L_{2}^{\nu}(\mathcal{X})$ defined by:

$$
\forall f \in L_{2}^{\nu}(\mathcal{X}),\left(L_{K} f\right)(\mathbf{x})=\int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d \nu(\mathbf{t}) .
$$

Let $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ denote the eigenvalues of $L_{K}$ in decreasing order, and $\left(\psi_{1}, \psi_{2}, \ldots\right)$ the corresponding eigenfunctions. Then it holds that for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ :

$$
K(\mathbf{x}, \mathbf{y})=\sum_{k=1}^{\infty} \lambda_{k} \psi_{k}(\mathbf{x}) \psi_{k}(\mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{R}},
$$

with $\Phi: \mathcal{X} \mapsto I^{2}$ defined par $\Phi(\mathbf{x})=\left(\sqrt{\lambda_{k}} \psi_{k}(\mathbf{x})\right)_{k \in \mathbb{N}}$.

## RKHS construction

## Theorem

Assuming that all eigenvalues are positive, the RKHS is the Hilbert space:

$$
H_{K}=\left\{f \in L_{2}^{\nu}(\mathcal{X}): f=\sum_{i=1}^{\infty} a_{i} \psi_{i}, \quad \text { with } \sum_{k=1}^{\infty} \frac{a_{k}^{2}}{\lambda_{k}}<\infty\right\}
$$

endowed with the inner product:

$$
\langle f, g\rangle_{K}=\sum_{k=1}^{\infty} \frac{a_{k} b_{k}}{\lambda_{k}}, \quad \text { for } f=\sum_{k} a_{k} \psi_{k}, g=\sum_{k} b_{k} \psi_{k}
$$

## Remark

If some eigenvalues are equal to zero, then the result and the proof remain valid on the subspace spanned by the eigenfunctions with positive eigenvalues.

## Proof (1/6)

## Sketch

In order to show that $H_{K}$ is the RKHS of the kernel $K$ we need to show that:
(1) it is a Hilbert space of functions from $\mathcal{X}$ to $\mathbb{R}$,
(2) for any $\mathbf{x} \in \mathcal{X}, K_{x} \in H_{K}$,
(3) for any $\mathbf{x} \in \mathcal{X}$ and $f \in H_{K}, f(\mathbf{x})=\left\langle f, K_{X}\right\rangle_{H_{K}}$.

## Proof (2/6)

## $H_{K}$ is a Hilbert space

Indeed the function:

$$
\begin{aligned}
L_{K}^{\frac{1}{2}}: L_{2}^{\nu}(\mathcal{X}) & \rightarrow H_{K} \\
\quad \sum_{i=1}^{\infty} a_{i} \psi_{i} & \mapsto \sum_{i=1}^{\infty} a_{i} \sqrt{\lambda_{i}} \psi_{i}
\end{aligned}
$$

is an isomorphism, therefore $H_{K}$ is a Hilbert space, like $L_{2}^{\nu}(\mathcal{X})$.

## Proof (3/6)

## $H_{K}$ is a space of continuous functions

For any $f=\sum_{i=1}^{\infty} a_{i} \psi_{i} \in H_{K}$, and $\mathbf{x} \in \mathcal{X}$, we have (if $f(x)$ makes sense):

$$
\begin{aligned}
|f(\mathbf{x})| & =\left|\sum_{i=1}^{\infty} a_{i} \psi_{i}(\mathbf{x})\right|=\left|\sum_{i=1}^{\infty} \frac{a_{i}}{\sqrt{\lambda_{i}}} \sqrt{\lambda_{i}} \psi_{i}(\mathbf{x})\right| \\
& \leq\left(\sum_{i=1}^{\infty} \frac{a_{i}^{2}}{\lambda_{i}}\right)^{\frac{1}{2}} \cdot\left(\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(\mathbf{x})^{2}\right)^{\frac{1}{2}} \\
& =\|f\|_{H_{K}} K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}} \\
& =\|f\|_{H_{K}} \sqrt{C_{K}}
\end{aligned}
$$

Therefore convergence in $\|.\|_{H_{K}}$ implies uniform convergence for functions.

## Proof (4/6)

## $H_{K}$ is a space of continuous functions (cont.)

Let now $f_{n}=\sum_{i=1}^{n} a_{i} \psi_{i} \in H_{K}$. The functions $\psi_{i}$ are continuous functions, therefore $f_{n}$ is also continuous, for all $n$. The $f_{n}$ 's are convergent in $H_{K}$, therefore also in the (complete) space of continuous functions endowed with the uniform norm.
Let $f_{c}$ the continuous limit function. Then $f_{c} \in L_{2}^{\nu}(\mathcal{X})$ and

$$
\left\|f_{n}-f_{c}\right\|_{L_{2}^{\nu}(\mathcal{X})}^{\rightarrow} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

On the other hand,

$$
\left\|f-f_{n}\right\|_{L_{2}^{\nu}(\mathcal{X})} \leq \lambda_{1}\left\|f-f_{n}\right\|_{H_{K}} \underset{n \rightarrow \infty}{\rightarrow} 0
$$

therefore $f=f_{c}$. $\square$

## Proof (5/6)

## $K_{x} \in H_{K}$

For any $\mathbf{x} \in \mathcal{X}$ let, for all $i, a_{i}=\lambda_{i} \psi_{i}(\mathbf{x})$. We have:

$$
\sum_{i=1}^{\infty} \frac{a_{i}^{2}}{\lambda_{i}}=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(\mathbf{x})^{2}=K(\mathbf{x}, \mathbf{x})<\infty
$$

therefore $\phi_{X}:=\sum_{i=1}^{\infty} a_{i} \psi_{i} \in H_{K}$. As seen earlier the convergence in $H_{K}$ implies pointwise convergence, therefore for any $\mathbf{t} \in \mathcal{X}$ :

$$
\phi_{X}(\mathbf{t})=\sum_{i=1}^{\infty} \mathrm{a}_{i} \psi_{i}(\mathbf{t})=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(\mathbf{x}) \psi_{i}(\mathbf{t})=K(\mathbf{x}, \mathbf{t})
$$

therefore $\phi_{x}=K_{x} \in H_{K}$. $\square$

## Proof (6/6)

$f(\mathbf{x})=\left\langle f, K_{x}\right\rangle_{H_{K}}$
Let $f=\sum_{i=1}^{\infty} a_{i} \psi_{i} \in H_{K}$, et $\mathbf{x} \in \mathcal{X}$. We have seen that:

$$
K_{x}=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(\mathbf{x}) \psi_{i},
$$

therefore:

$$
\left\langle f, K_{x}\right\rangle_{H_{K}}=\sum_{i=1}^{\infty} \frac{\lambda_{i} \psi_{i}(\mathbf{x}) a_{i}}{\lambda_{i}}=\sum_{i=1}^{\infty} a_{i} \psi_{i}(\mathbf{x})=f(\mathbf{x}),
$$

which concludes the proof. $\quad \square$

## Remarks

- Although $H_{K}$ was built from the eigenfunctions of $L_{K}$, which depend on the choice of the measure $\nu(\mathbf{x})$, we know by unicity of the RKHS that $H_{K}$ is independant of $\nu$ and $L_{K}$.
- Mercer theorem provides a concrete way to build the RKHS, by taking linear combinations of the eigenfunctions of $L_{K}$ (with adequately chosen weights).
- The eigenfunctions $\left(\psi_{i}\right)_{i \in \mathbb{N}}$ form an orthogonal basis of the RKHS:

$$
\left\langle\psi_{i}, \psi_{j}\right\rangle_{H_{K}}=0 \quad \text { si } i \neq j, \quad\left\|\psi_{i}\right\|_{H_{K}}=\frac{1}{\sqrt{\lambda_{i}}}
$$

The RKHS is a well-defined ellipsoid with axes given by the eigenfunctions.

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
(5) Kernels for biological sequences

6 Kernels for graphs

## Motivations

- The RKHS norm is related to the smoothness of functions.
- Smoothness of a function is naturally quantified by Sobolev norms (in particular $L_{2}$ norms of derivatives).
- In this section we make a general link between RKHS and Green functions defined by differential operators.


## A simple example

## Explicit choice of smoothness

Let
$\mathcal{H}=\left\{f:[0,1] \mapsto \mathbb{R}\right.$, cont., dérivable p.p., $\left.f^{\prime} \in L^{2}([0,1]), f(0)=0\right\}$.
This is a Hilbert space, endowed with the inner product:

$$
\forall(f, g) \in \mathcal{F}^{2}\langle f, g\rangle_{\mathcal{H}}=\int_{0}^{1} f^{\prime}(u) g^{\prime}(u) d u .
$$

The norm $\|f\|_{\mathcal{H}}$ measures the smoothness of $f$ :

$$
\|f\|_{\mathcal{H}}=\left(\int_{0}^{1} f^{\prime}(u)^{2} d u\right)^{\frac{1}{2}}=\left\|f^{\prime}\right\|_{L^{2}([0,1])} .
$$

## The RKHs point of view

## Theorem

$\mathcal{H}$ is a RKHS with r.k. given by:

$$
\forall(x, y) \in \mathcal{X}^{2}, \quad K(x, y)=\min (x, y)
$$

## Remark

Therefore, $\|f\|_{\mathcal{H}}=\left\|f^{\prime}\right\|_{L^{2}}$ : the RKHS norm is precisely the smoothness functional defined in the simple example.

## Proof (1/3)

## Sketch

We need to show that

- The evaluation functionals $f \rightarrow f(x)$ are continuous,
- $\forall x \in[0,1], K_{x} \in \mathcal{H}$,
- $\forall(x, f) \in[0,1] \times \mathcal{H},\left\langle f, K_{x}\right\rangle_{\mathcal{H}}=f(x)$.


## Evaluation functionals are continuous

For any $x \in[0,1]$ and $f \in \mathcal{H}$,

## Proof (1/3)

## Sketch

We need to show that

- The evaluation functionals $f \rightarrow f(x)$ are continuous,
- $\forall x \in[0,1], K_{x} \in \mathcal{H}$,
- $\forall(x, f) \in[0,1] \times \mathcal{H},\left\langle f, K_{x}\right\rangle_{\mathcal{H}}=f(x)$.


## Evaluation functionals are continuous

For any $x \in[0,1]$ and $f \in \mathcal{H}$,

$$
f(x)=f(x)-f(0)=\int_{0}^{x} f^{\prime}(u) d u \leq \sqrt{x}\|f\|_{\mathcal{H}}
$$

## Proof (2/3)

## $\forall x \in[0,1], K_{x} \in \mathcal{H}$

Let $K_{x}(y)=K(x, y)=\min (x, y) \operatorname{sur}[0,1]^{2}$ :

$K_{x}$ is differentiable except at $s$, has a square integrable derivative, and $K_{x}(0)=0$, therefore $K_{x} \in \mathcal{H}$ for all $x \in[0,1]$.

## Proof (3/3)

## For all $x, f,\left\langle f, K_{x}\right\rangle_{\mathcal{H}}=f(x)$

For any $x \in[0,1]$ and $f \in \mathcal{H}$ we have:

$$
\left\langle f, K_{x}\right\rangle_{\mathcal{H}}=\int_{0}^{1} f^{\prime}(u) K_{x}^{\prime}(u) d u=\int_{0}^{x} f^{\prime}(u) d u=f(x),
$$

which shows that $K$ is the r.k. associated to $\mathcal{H} . \quad \square$

## Generalization

## Theorem

Let $\mathcal{X}=\mathbb{R}^{d}$ and $D$ a differential operator on a class of functions $\mathcal{H}$ such that, endowed with the inner product:

$$
\forall(f, g) \in \mathcal{H}^{2}, \quad\langle f, g\rangle_{\mathcal{H}}=\langle D f, D g\rangle_{L^{2}(\mathcal{X})},
$$

it is a Hilbert space.
Then $\mathcal{H}$ is a RKHS that admits as r.k. the Green function of the operator $D^{*} D$, where $D^{*}$ denotes the adjoint operator of $D$.

## In case of...

## Green functions

Let the differential equation on $\mathcal{H}$ :

$$
f=D g
$$

where $g$ is unknown. In order to solve it we can look for $g$ of the form:

$$
g(x)=\int_{\mathcal{X}} k(x, y) f(y) d y
$$

for some function $k: \mathcal{X}^{2} \mapsto \mathbb{R}$. $k$ must then satisfy, for all $x \in \mathcal{X}$,

$$
f(x)=D g(x)=\left\langle D k_{x}, f\right\rangle_{L^{2}(\mathcal{X})}
$$

$k$ is called the Green function of the operator D.

## Proof

Let $\mathcal{H}$ be a Hilbert space endowed with the inner product:

$$
\langle f, g\rangle_{\mathcal{X}}=\langle D f, D g\rangle_{L^{2}(\mathcal{X})}
$$

and $K$ be the Green function of the operator $D^{*} D$. For all $x \in \mathcal{X}$, $K_{x} \in \mathcal{H}$ because:

$$
\left\langle D K_{X}, D K_{X}\right\rangle_{L^{2}(\mathcal{X})}=\left\langle D^{*} D K_{X}, K_{X}\right\rangle_{L^{2}(\mathcal{X})}=K_{X}(x)<\infty
$$

Moreover, for all $f \in \mathcal{H}$ and $x \in \mathcal{X}$, we have:

$$
f(x)=\left\langle D^{*} D K_{X}, f\right\rangle_{L^{2}(\mathcal{X})}=\left\langle D K_{x}, D f\right\rangle_{L^{2}(\mathcal{X})}=\left\langle K_{X}, f\right\rangle_{\mathcal{H}},
$$

which shows that $\mathcal{H}$ is a RKHS with $K$ as r.k. $\square$

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples

- Mercer kernels
- RKHS and Green functions
- Fourier analysis and semigroup kernels
(5) Kernels for biological sequences

6 Kernels for graphs

## Motivation

- Let us suppose that $\mathcal{X}$ is not compact, for example $\mathcal{X}=\mathbb{R}^{d}$.
- In that case, the eigenvalues of:

$$
\int_{\mathcal{X}} K(\mathbf{x}, \mathbf{t}) \psi(\mathbf{t})=\lambda \psi(\mathbf{t})
$$

are not necessarily countable, Mercer theorem does not hold.

- Fourier transforms provide a convenient extension for translation invariant kernels, i.e., kernels of the form $K(\mathbf{x}, \mathbf{y})=\kappa(\mathbf{x}-\mathbf{y})$.
- Harmonic analysis also bring kernels well beyond vector spaces (e.g., groups and semigroups), a topic that we will barely touch upon in this course.


## In case of...

## Definition

Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. The Fourier transform of $f$, denoted $\hat{f}$ or $\mathcal{F}[f]$, the function defined for all $\omega \in \mathbb{R}^{d}$ by:

$$
\hat{f}(\omega)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \omega} f(x) d x .
$$

## In case of...

## Properties

- $\hat{f}$ is complex-valued, continuous, tends to 0 at infinity and $\|\hat{f}\|_{L^{\infty}} \leq\|f\|_{L^{1}}$.
- If $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$, then the inverse Fourier formula holds:

$$
\forall x \in \mathbb{R}^{d}, \quad f(x)=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i x \cdot \omega} \hat{f}(\omega) d \omega
$$

- If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is square integrable, then Parseval's formula holds:

$$
\int_{\mathbb{R}^{d}}|f(x)|^{2} d x=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}|\hat{f}(\omega)|^{2} d \omega
$$

## Translation invariant kernels

## Definition

A kernel $K: \mathbb{R}^{d} \times \mathbb{R}^{d} \mapsto \mathbb{R}$ is called translation invariant (t.i.) if it only depends on the difference between its argument, i.e.:

$$
\forall(x, y) \in \mathbb{R}^{2 d}, \quad K(x, y)=\kappa(x-y)
$$

## Intuition

If $K$ is t.i. and $\kappa \in L^{1}\left(\mathbb{R}^{d}\right)$, then

$$
\begin{aligned}
\kappa(x-y) & =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} e^{i(x-y) \cdot \omega} \hat{\kappa}(\omega) d \omega \\
& =\int_{\mathbb{R}^{d}} \frac{\hat{\kappa}(\omega)}{(2 \pi)^{d}} e^{i \omega(x)} e^{i \omega(-y)} d \omega
\end{aligned}
$$

## RKHS of translation invariant kernels

## Theorem

Let $K$ be a translation invariant p.d. kernel, such that $\kappa$ is integrable on $\mathbb{R}^{d}$ as well as its Fourier transform $\hat{\kappa}$. The subset $\mathcal{H}_{K}$ of $L_{2}\left(\mathbb{R}^{d}\right)$ that consists of integrable and continuous functions $f$ such that:

$$
\|f\|_{K}^{2}:=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{|\hat{f}(\omega)|^{2}}{\hat{\kappa}(\omega)} d \omega<+\infty,
$$

endowed with the inner product:

$$
\langle f, g\rangle:=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{\hat{f}(\omega) \hat{g}(\omega)^{*}}{\hat{\kappa}(\omega)} d \omega
$$

is a RKHS with $K$ as r.k.

## Proof

For $x \in \mathbb{R}^{d}, K_{x}(y)=K(x, y)=\kappa(x-y)$ therefore:

$$
\hat{K}_{x}(\omega)=\int e^{-i \omega \cdot u} \kappa(u-x) d u=e^{-i \omega \cdot x} \hat{\kappa}(\omega)
$$

This leads to $K_{x} \in \mathcal{H}$, because:

$$
\int_{\mathbb{R}^{d}} \frac{\left|\hat{K}_{x}(\omega)\right|^{2}}{\hat{\kappa}(\omega)} \leq \int_{\mathbb{R}^{d}}|\hat{\kappa}(\omega)|<\infty
$$

Moreover, if $f \in \mathcal{H}$ and $x \in \mathbb{R}^{d}$, we have:

$$
\left\langle f, K_{x}\right\rangle_{\mathcal{H}}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{\hat{K}_{x}(\omega) \hat{f}(\omega)^{*}}{\hat{\kappa}(\omega)} d \omega=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \hat{f}(\omega)^{*} e^{-i \omega \cdot x}=f(x)
$$

## Application: characterization of p.d. t.i. kernels

## Theorem (Bochner)

A real-valued function $\kappa(x-y)$ on $\mathbb{R}^{d}$ is positive definite if and only if it is the Fourier transform of a symmetric, positive, and finite Borel measure.

## Example

## Gaussian kernel

$$
K(x, y)=e^{-\frac{(x-y)^{2}}{2 \sigma^{2}}}
$$

corresponds to:

$$
\hat{\kappa}(\omega)=e^{-\frac{\sigma^{2} \omega^{2}}{2}}
$$

and

$$
\mathcal{H}=\left\{f: \int|\hat{f}(\omega)|^{2} e^{\frac{\sigma^{2} \omega^{2}}{2}} d \omega<\infty\right\} .
$$

In particular, all functions in $\mathcal{H}$ are infinitely differentiable with all derivatives in $L^{2}$.

## Example

## Laplace kernel

$$
K(x, y)=\frac{1}{2} e^{-\gamma|x-y|}
$$

corresponds to:

$$
\hat{\kappa}(\omega)=\frac{\gamma}{\gamma^{2}+\omega^{2}}
$$

and

$$
\mathcal{H}=\left\{f: \int|\hat{f}(\omega)|^{2} \frac{\left(\gamma^{2}+\omega^{2}\right)}{\gamma} d \omega<\infty\right\},
$$

the set of functions $L^{2}$ differentiable with derivatives in $L^{2}$ (Sobolev norm).

## Example

## Low-frequency filter

$$
K(x, y)=\frac{\sin (\Omega(x-y))}{\pi(x-y)}
$$

corresponds to:

$$
\hat{\kappa}(\omega)=U(\omega+\Omega)-U(\omega-\Omega)
$$

and

$$
\mathcal{H}=\left\{f: \int_{|\omega|>\Omega}|\hat{f}(\omega)|^{2} d \omega=0\right\}
$$

the set of functions whose spectrum is included in $[-\Omega, \Omega]$.

## Generalization to semigroups (cf Berg et al., 1983)

## Definition

- A semigroup ( $S, \circ$ ) is a nonempty set $S$ equipped with an associative composition o and a neutral element $e$.
- A semigroup with involution $(S, \circ, *)$ is a semigroup $(S, \circ)$ together with a mapping $*: S \rightarrow S$ called involution satisfying:
(1) $(s \circ t)^{*}=t^{*} \circ s^{*}$, for $s, t \in S$.
(2) $\left(s^{*}\right)^{*}=s$ for $s \in S$.


## Examples

- Any group $(G, \circ)$ is a semigroup with involution when we define $s^{*}=s^{-1}$.
- Any abelian semigroup $(S,+)$ is a semigroup with involution when we define $s^{*}=s$, the identical involution.


## Positive definite functions on semigroups

## Definition

Let $(S, \circ, *)$ be a semigroup with involution. A function $\phi: S \rightarrow \mathbb{R}$ is called positive definite if the function:

$$
\forall s, t \in S, \quad K(s, t)=\phi\left(s^{*} \circ t\right)
$$

is a p.d. kernel on $S$.

## Example: translation invariant kernels

$\left(\mathbb{R}^{d},+,-\right)$ is an abelian group with involution. A function $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is p.d. if the function

$$
K(x, y)=\phi(x-y)
$$

is p.d. on $\mathbb{R}^{d}$ (translation invariant kernels).

## Semicharacters

## Definition

A funtion $\rho: S \rightarrow \mathbb{C}$ on an abelian semigroup with involution $(S,+, *)$ is called a semicharacter if
(1) $\rho(0)=1$,
(2) $\rho(s+t)=\rho(s) \rho(t)$ for $s, t \in S$,
(3) $\rho\left(s^{*}\right)=\overline{\rho(s)}$ for $s \in S$.

The set of semicharacters on $S$ is denoted by $S^{*}$.

## Remarks

- If $*$ is the identity, a semicharacter is automatically real-valued.
- If $(S,+)$ is an abelian group and $s^{*}=-s$, a semicharacter has its values in the circle group $\{z \in \mathbb{C}||z|=1\}$ and is a group character.


## Semicharacters are p.d.

## Lemma

Every semicharacter is p.d., in the sense that:

- $K(s, t)=\overline{K(t, s)}$,
- $\sum_{i, j=1}^{n} a_{i} \overline{a_{j}} K\left(x_{i}, x_{j}\right) \geq 0$.


## Proof

Direct from definition, e.g.,

$$
\sum_{i, j=1}^{n} a_{i} \overline{a_{j}} \rho\left(x_{i}+x_{j}^{*}\right)=\sum_{i, j=1}^{n} a_{i} \overline{a_{j}} \rho\left(x_{i}\right) \overline{\rho\left(x_{j}\right)} \geq 0
$$

## Examples

- $\phi(t)=e^{\beta t}$ on $(\mathbb{R},+, I d)$.
- $\phi(t)=e^{i \omega t}$ on $(\mathbb{R},+,-)$.


## Integral representation of p.d. functions



## Theorem

Let $(S,+, *)$ an abelian semigroup with involution. A function $\phi: S \rightarrow \mathbb{R}$ is p.d. and exponentially bounded (resp. bounded) if and only if it has a representation of the form:

$$
\phi(s)=\int_{S^{*}} \rho(s) d \mu(\rho)
$$

where $\mu$ is a Radon measure with compact support on $S^{*}$ (resp. on $\hat{S}$, the set of bounded semicharacters).

## Integral representation of p.d. functions

## Definition

- An function $\alpha: S \rightarrow \mathbb{R}$ on a semigroup with involution is called an absolute value if (i) $\alpha(\boldsymbol{e})=1$, (ii) $\alpha(\boldsymbol{s} \circ \boldsymbol{t}) \leq \alpha(\boldsymbol{s}) \alpha(\boldsymbol{t})$, and (iii) $\alpha\left(\boldsymbol{s}^{*}\right)=\alpha(\boldsymbol{s})$.
- A function $f: S \rightarrow \mathbb{R}$ is called exponentially bounded if there exists an absolute value $\alpha$ and a constant $C>0$ s.t. $|f(s)| \leq C \alpha(s)$ for $s \in S$.


## Theorem

Let $(S,+, *)$ an abelian semigroup with involution. A function $\phi: S \rightarrow \mathbb{R}$ is p.d. and exponentially bounded (resp. bounded) if and only if it has a representation of the form:

$$
\phi(s)=\int_{S^{*}} \rho(s) d \mu(\rho)
$$

where $\mu$ is a Radon measure with compact support on $S^{*}$ (resp. on $\hat{S}$, the set of bounded semicharacters).

## Proof

## Sketch (details in Berg et al., 1983, Theorem 4.2.5)

- For an absolute value $\alpha$, the set $P_{1}^{\alpha}$ of $\alpha$-bounded p.d. functions that satisfy $\phi(0)=1$ is a compact convex set whose extreme points are precisely the $\alpha$-bounded semicharacters.
- If $\phi$ is p.d. and exponentially bounded then there exists an absolute value $\alpha$ such that $\phi(0)^{-1} \phi \in P_{1}^{\alpha}$.
- By the Krein-Milman theorem there exits a Radon probability measure on $P_{1}^{\alpha}$ having $\phi(0)^{-1} \phi$ as barycentre.


## Remarks

- The result is not true without the assumption of exponentially bounded semicharacters.
- In the case of abelian groups with $s^{*}=-s$ this reduces to Bochner's theorem for discrete abelian groups, cf. Rudin (1962).


## Example 1: $\left(R_{+},+, l d\right)$

## Semicharacters

- $S=\left(\mathbb{R}_{+},+, l d\right)$ is an abelian semigroup.
- P.d. functions are nonnegative, because $\phi(x)=\phi(\sqrt{x})^{2}$.
- The set of bounded semicharacters is exactly the set of functions:

$$
s \in \mathbb{R}_{+} \mapsto \rho_{a}(s)=e^{-a s}
$$

for $a \in[0,+\infty]$ (left as exercice).

- Non-bounded semicharacters are more difficult to characterize; in fact there exist nonmeasurable solutions of the equation $h(x+y)=h(x) h(y)$.


## Example 1: $\left(R_{+},+, l d\right)$ (cont.)

## P.d. functions

- By the integral representation theorem for bounded semi-characters we obtain that a function $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is p.d. and bounded if and only if it has the form:

$$
\phi(s)=\int_{0}^{\infty} e^{-a s} d \mu(a)+b \rho_{\infty}(s)
$$

where $\mu \in \mathcal{M}_{+}^{b}\left(\mathbb{R}_{+}\right)$and $b \geq 0$.

- The first term is the Laplace transform of $\mu . \phi$ is p.d., bounded and continuous iff it is the Laplace transform of a measure in $\mathcal{M}_{+}^{b}(\mathbb{R})$.


## Example 2: Semigroup kernels for finite measures (1/6)

## Setting

- We assume that data to be processed are "bags-of-points", i.e., sets of points (with repeats) of a space $\mathcal{U}$.
- Example : a finite-length string as a set of $k$-mers.
- How to define a p.d. kernel between any two bags that only depends on the union of the bags?
- See details and proofs in Cuturi et al. (2005).


## Example 2: Semigroup kernels for finite measures (2/6)

## Semigroup of bounded measures

- We can represent any bag-of-point $\mathbf{x}$ as a finite measure on $\mathcal{U}$ :

$$
\mathbf{x}=\sum_{i} a_{i} \delta_{x_{i}}
$$

where $a_{i}$ is the number of occurrences on $\mathbf{x}_{i}$ in the bag.

- The measure that represents the union of two bags is the sum of the measures that represent each individual bag.
- This suggests to look at the semigroup $\left(\mathcal{M}_{+}^{b}(\mathcal{U}),+, I d\right)$ of bounded Radon measures on $\mathcal{U}$ and to search for p.d. functions $\phi$ on this semigroup.


## Example 2: Semigroup kernels for finite measures (3/6)

## Semicharacters

- For any Borel measurable function $f: \mathcal{U} \rightarrow \mathbb{R}$ the function $\rho_{f}: \mathcal{M}_{+}^{b}(\mathcal{U}) \rightarrow \mathbb{R}$ defined by:

$$
\rho_{f}(\mu)=e^{\mu[f]}
$$

is a semicharacter on $\left(\mathcal{M}_{+}^{b}(\mathcal{U}),+\right)$.

- Conversely, $\rho$ is continuous semicharacter (for the topology of weak convergence) if and only if there exists a continuous function $f: \mathcal{U} \rightarrow \mathbb{R}$ such that $\rho=\rho_{f}$.
- No such characterization for non-continuous characters, even bounded.


## Example 2: Semigroup kernels for finite measures

 (4/6)
## Corollary

Let $\mathcal{U}$ be a Hausdorff space. For any Radon measure $\mu \in \mathcal{M}_{+}^{c}(C(\mathcal{U}))$ with compact support on the Hausdorff space of continuous real-valued functions on $\mathcal{U}$ endowed with the topology of pointwise convergence, the following function $K$ is a continuous p.d. kernel on $\mathcal{M}_{+}^{b}(\mathcal{U})$ (endowed with the topology of weak convergence):

$$
K(\mu, \nu)=\int_{C(\mathcal{X})} e^{\mu[f]+\nu[f]} d \mu(f)
$$

## Remarks

The converse is not true: there exist continuous p.d. kernels that do not have this integral representation (it might include non-continuous semicharacters)

## Example 2: Semigroup kernels for finite measures (5/6)

## Example : entropy kernel

- Let $\mathcal{X}$ be the set of probability densities (w.r.t. some reference measure) on $\mathcal{U}$ with finite entropy:

$$
h(\mathbf{x})=-\int_{\mathcal{U}} \mathbf{x} \ln \mathbf{x} .
$$

- Then the following entropy kernel is a p.d. kernel on $\mathcal{X}$ for all $\beta>0$ :

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=e^{-\beta h\left(\frac{\mathbf{x}+\mathbf{x}}{2}\right)} .
$$

- Remark: only valid for densities (e.g., for a kernel density estimator from a bag-of-parts)


## Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

- Let $\mathcal{U}=\mathbb{R}^{d}$ and $\mathcal{M}_{+}^{V}(\mathcal{U})$ be the set of finite measure $\mu$ with second order moment and non-singular variance

$$
\Sigma(\mu)=\mu\left[x x^{\top}\right]-\mu[x] \mu[x]^{\top} .
$$

- Then the following function is a p.d. kernel on $\mathcal{M}_{+}^{V}(\mathcal{U})$, called the inverse generalized variance kernel:

$$
K\left(\mu, \mu^{\prime}\right)=\frac{1}{\operatorname{det} \sum\left(\frac{\mu+\mu^{\prime}}{2}\right)} .
$$

- Generalization possible with regularization and kernel trick.


## Application of semigroup kernel


$\boldsymbol{\Sigma}_{1,1}=0.0552$
$\boldsymbol{\Sigma}_{2,2}=0.0013$

$\boldsymbol{\Sigma}_{1,1}^{\prime}=0.0441$
$\boldsymbol{\Sigma}_{2,2}^{\prime}=0.0237$

$\Sigma_{1,1}^{\prime \prime}=0.0497$
$\Sigma_{2,2}^{\prime \prime}=0.0139$

Weighted linear PCA of two different measures, with the first PC shown. Variances captured by the first and second PC are shown. The generalized variance kernel is the inverse of the product of the two values.

## Kernelization of the IGV kernel

## Motivations

- Gaussian distributions may be poor models.
- The method fails in large dimension


## Solution

(1) Regularization:

$$
K_{\lambda}\left(\mu, \mu^{\prime}\right)=\frac{1}{\operatorname{det}\left(\Sigma\left(\frac{\mu+\mu^{\prime}}{2}\right)+\lambda I_{d}\right)}
$$

(2) Kernel trick: the non-zero eigenvalues of $U U^{\top}$ and $U^{\top} U$ are the same $\Longrightarrow$ replace the covariance matrix by the centered Gram matrix (technical details in Cuturi et al., 2005).

## Illustration of kernel IGV kernel



## Semigroup kernel remarks

## Motivations

- A very general formalism to exploit an algebric structure of the data.
- Kernel IVG kernel has given good results for character recognition from a subsampled image.
- The main motivation is more generally to develop kernels for complex objects from which simple "patches" can be extracted.
- The extension to nonabelian groups (e.g., permutation in the symmetric group) might find natural applications.


## Kernel examples: Summary

- Many notions of smoothness can be translated as RKHS norms for particular kernels (eigenvalues convolution operator, Sobolev norms and Green operators, Fourier transforms...).
- There is no "uniformly best kernel", but rather a large toolbox of methods and tricks to encode prior knowledge and exploit the nature or structure of the data.
- In the following sections we focus on particular data and applications to illustrate the process of kernel design.

Part 5

## Kernels for Biological Sequences

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection


## Short history of genomics



> 1866 : Laws of heredity (Mendel) 1909 : Morgan and the drosophilists
> 1944 : DNA supports heredity (Avery)
> 1953 : Structure of DNA (Crick and Watson)
> 1966 : Genetic code (Nirenberg)
> 1960-70 : Genetic engineering
> 1977 : Method for sequencing (Sanger)
> 1982 : Creation of Genbank
> 1990 : Human genome project launched
> 2003 : Human genome project completed

## A cell



## Chromosomes



## Chromosomes and DNA



## Structure of DNA


"We wish to suggest a structure for the salt of desoxyribose nucleic acid (D.N.A.). This structure have novel features which are of considerable biological interest" (Watson and Crick, 1953)

## The double helix



## Central dogma



## Proteins



## Genetic code



The Genetic Code

|  | 2nd base in codon |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | U | C | A | G |  |
|  | U | Phe <br> Phe <br> Leu <br> Leu | $\begin{aligned} & \hline \text { Ser } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { Tyt } \\ & \text { Tyt } \\ & \text { STOP } \\ & \text { STOP } \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { Cys } \\ \text { Cys } \\ \text { STOP } \\ \text { Trp } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \\ & \hline \end{aligned}$ |
|  | C | Leu <br> Leu <br> Leu <br> Leu | $\begin{aligned} & \hline \text { Pro } \\ & P_{r o} \\ & P_{r o} \\ & P_{10} \\ & \hline \end{aligned}$ | His <br> His <br> Gln <br> Gin | Arg Arg Arg Arg | U C A G |
|  | A | $\begin{aligned} & \hline \text { Ile } \\ & \text { IIe } \\ & \text { Ile } \\ & \text { Met } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Thr } \\ & \text { Thr } \\ & \text { Thr } \\ & \text { Thr } \end{aligned}$ | $\begin{aligned} & \hline \text { Asn } \\ & \text { Asn } \\ & \text { Lys } \\ & \text { Lys } \\ & \hline \end{aligned}$ | Ser Ser Arg Arg | U C A G |
|  | G | Val <br> Val <br> Val <br> Val | Ala <br> Ala <br> Ala <br> Ala | Asp Asp Glu Glu |  | $\begin{aligned} & \mathrm{U} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{G} \\ & \hline \end{aligned}$ |

uopos uil aseq p.é

DNA $=4$ letters $(A T C G)$
.
RNA $=4$ letters (AUCG) $\downarrow$

Protein $=20$ letters (amino acids)

## 1 amino acid $=$

3 nucleotides

## Human genome project

- Goal : sequence the 3,000,000,000 bases of the human genome
- Consortium with 20 labs, 6 countries
- Cost : about 3,000,000,000 USD



## 2003: End of genomics era



## Findings

- About 25,000 genes only (representing $1.2 \%$ of the genome)
- Automatic gene finding with graphical models
- $97 \%$ of the genome is considered "junk DNA"
- Superposition of a variety of signals (many to be discovered)


## Protein sequence



| A : Alanine | $\mathrm{V}:$ Valine | $\mathrm{L}:$ Leucine |
| :--- | :--- | :--- |
| F: Phenylalanine | $\mathrm{P}:$ Proline | $\mathrm{M}:$ Méthionine |
| E: Acide glutamique | $\mathrm{K}:$ Lysine | $\mathrm{R}:$ Arginine |
| T: Threonine | $\mathrm{C}:$ Cysteine | $\mathrm{N}:$ Asparagine |
| $\mathrm{H}:$ Histidine | $\mathrm{V}:$ Thyrosine | $\mathrm{W}:$ Tryptophane |
| I: Isoleucine | $\mathrm{S}:$ Sérine | Q: Glutamine |
| D: Acide aspartique | G: Glycine |  |

## Challenges with protein sequences

- A protein sequences can be seen as a variable-length sequence over the 20-letter alphabet of amino-acids, e.g., insuline: FVNQHLCGSHLVEALYLVCGERGFFYTPKA
- These sequences are produced at a fast rate (result of the sequencing programs)
- Need for algorithms to compare, classify, analyze these sequences
- Applications: classification into functional or structural classes, prediction of cellular localization and interactions, ...


## Example: supervised sequence classification

## Data (training)

- Secreted proteins:

MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. . .
MARSSLFTFLCLAVF INGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .
...

- Non-secreted proteins:

MAPP SVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG . . .
MAHTLGLTQPNSTEP HKISFTAKEIDVIEWKGDILVVG . . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP . .

## Goal

- Build a classifier to predict whether new proteins are secreted or not.


## Supervised classification with vector embedding

## The idea

- Map each string $x \in \mathcal{X}$ to a vector $\Phi(x) \in \mathcal{F}$.
- Train a classifier for vectors on the images $\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)$ of the training set (nearest neighbor, linear perceptron, logistic regression, support vector machine...)



## Kernels for protein sequences

- Kernel methods have been widely investigated since Jaakkola et al.'s seminal paper (1998).
- What is a good kernel?
- it should be mathematically valid (symmetric, p.d. or c.p.d.)
- fast to compute
- adapted to the problem (give good performances)


## Kernel engineering for protein sequences

- Define a (possibly high-dimensional) feature space of interest
- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
- Fisher kernel
- Mutual information kernel
- Marginalized kernel
- Derive a kernel from a similarity measure
- Local alignment kernel


## Kernel engineering for protein sequences

- Define a (possibly high-dimensional) feature space of interest
- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
- Fisher kernel
- Mutual information kernel
- Marginalized kernel
- Derive a kernel from a similarity measure
- Local alignment kernel


## Kernel engineering for protein sequences

- Define a (possibly high-dimensional) feature space of interest
- Physico-chemical kernels
- Spectrum, mismatch, substring kernels
- Pairwise, motif kernels
- Derive a kernel from a generative model
- Fisher kernel
- Mutual information kernel
- Marginalized kernel
- Derive a kernel from a similarity measure
- Local alignment kernel


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection


## Vector embedding for strings

## The idea

Represent each sequence $\mathbf{x}$ by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^{n}$. How to perform this embedding?

```
Physico-chemical kernel
Extract relevant features, such as:
    - length of the sequence
    amino-acids along the sequence (e.g., polarity, hydrophobicity),
    using for example:
    - Fourier transforms (Wang et al., 2004)
    - Autocorrelation functions (Zhang et al., 2003)
```


## Vector embedding for strings

## The idea

Represent each sequence $\mathbf{x}$ by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^{n}$. How to perform this embedding?

## Physico-chemical kernel

Extract relevant features, such as:

- length of the sequence
- time series analysis of numerical physico-chemical properties of amino-acids along the sequence (e.g., polarity, hydrophobicity), using for example:
- Fourier transforms (Wang et al., 2004)
- Autocorrelation functions (Zhang et al., 2003)

$$
r_{j}=\frac{1}{n-j} \sum_{i=1}^{n-j} h_{i} h_{i+j}
$$

## Substring indexation

## The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

$$
\Phi(\mathbf{x})=\left(\Phi_{u}(\mathbf{x})\right)_{u \in \mathcal{A}^{k}}
$$

where $\Phi_{u}(\mathbf{x})$ can be:

- the number of occurrences of $u$ in $\mathbf{x}$ (without gaps) : spectrum kernel (Leslie et al., 2002)
- the number of occurrences of $u$ in $\mathbf{x}$ up to $m$ mismatches (without gaps) : mismatch kernel (Leslie et al., 2004)
- the number of occurrences of $u$ in $\mathbf{x}$ allowing gaps, with a weight decaying exponentially with the number of gaps: substring kernel (Lohdi et al., 2002)


## Example: spectrum kernel (1/2)

## Kernel definition

- The 3-spectrum of

$$
\mathbf{x}=\text { CGGSLIAMMWFGV }
$$

is:
(CGG, GGS, GSL, SLI, LIA, IAM, AMM, MMW, MWF, WFG, FGV) .

- Let $\Phi_{u}(\mathbf{x})$ denote the number of occurrences of $u$ in $\mathbf{x}$. The $k$-spectrum kernel is:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=\sum_{u \in \mathcal{A}^{k}} \Phi_{u}(\mathbf{x}) \Phi_{u}\left(\mathbf{x}^{\prime}\right)
$$

## Example: spectrum kernel (2/2)

## Implementation

- The computation of the kernel is formally a sum over $|\mathcal{A}|^{k}$ terms, but at most $|\mathbf{x}|-k+1$ terms are non-zero in $\Phi(\mathbf{x}) \Longrightarrow$ Computation in $O\left(|\mathbf{x}|+\left|\mathbf{x}^{\prime}\right|\right)$ with pre-indexation of the strings.
- Fast classification of a sequence $\mathbf{x}$ in $O(|\mathbf{x}|)$ :

$$
f(\mathbf{x})=\mathbf{w} \cdot \Phi(\mathbf{x})=\sum_{u} w_{u} \Phi_{u}(\mathbf{x})=\sum_{i=1}^{|\mathbf{x}|-k+1} w_{x_{i} \ldots x_{i+k-1}}
$$

## Remarks

- Work with any string (natural language, time series...)
- Fast and scalable, a good default method for string classification.
- Variants allow matching of $k$-mers up to $m$ mismatches.


## Example 2: Substring kernel (1/11)

## Definition

- For $1 \leq k \leq n \in \mathbb{N}$, we denote by $\mathcal{I}(k, n)$ the set of sequences of indices $\mathbf{i}=\left(i_{1}, \ldots, i_{k}\right)$, with $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.
- For a string $\mathbf{x}=x_{1} \ldots x_{n} \in \mathcal{X}$ of length $n$, for a sequence of indices $\mathbf{i} \in \mathcal{I}(k, n)$, we define a substring as:

$$
\mathbf{x}(\mathbf{i}):=x_{i_{1}} x_{i_{2}} \ldots x_{i_{k}} .
$$

- The length of the substring is:

$$
I(\mathbf{i})=i_{k}-i_{1}+1
$$

## Example 2: Substring kernel (2/11)

## Example

## ABRACADABRA

- $\mathbf{i}=(3,4,7,8,10)$
- $\mathbf{x}(\mathbf{i})=\operatorname{RADAR}$
- $I(\mathbf{i})=10-3+1=8$


## Example 2: Substring kernel (3/11)

## The kernel

- Let $k \in \mathbb{N}$ and $\lambda \in \mathbb{R}^{+}$fixed. For all $\mathbf{u} \in \mathcal{A}^{k}$, let $\Phi_{\mathbf{u}}: \mathcal{X} \rightarrow \mathbb{R}$ be defined by:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad \Phi_{\mathbf{u}}(\mathbf{x})=\sum_{\mathbf{i} \in \mathcal{I}(k,|\mathbf{x}|):} \lambda_{\mathbf{x}(\mathbf{i})=\mathbf{u}} \lambda^{\prime(\mathbf{i})}
$$

- The substring kernel is the p.d. kernel defined by:

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K_{k, \lambda}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{\mathbf{u} \in \mathcal{A}^{k}} \Phi_{\mathbf{u}}(\mathbf{x}) \Phi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right)
$$

## Example 2: Substring kernel (4/11)

## Example

| u | ca | ct | at | ba | bt | cr | ar | br |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Phi_{u}(\mathrm{cat})$ | $\lambda^{2}$ | $\lambda^{3}$ | $\lambda^{2}$ | 0 | 0 | 0 | 0 | 0 |
| $\Phi_{u}($ car $)$ | $\lambda^{2}$ | 0 | 0 | 0 | 0 | $\lambda^{3}$ | $\lambda^{2}$ | 0 |
| $\Phi_{u}(\mathrm{bat})$ | 0 | 0 | $\lambda^{2}$ | $\lambda^{2}$ | $\lambda^{3}$ | 0 | 0 | 0 |
| $\Phi_{u}(\mathrm{bar})$ | 0 | 0 | 0 | $\lambda^{2}$ | 0 | 0 | $\lambda^{2}$ | $\lambda^{3}$ |

$$
\left\{\begin{array}{l}
K(\text { cat }, \text { cat })=K(\text { car,car })=2 \lambda^{4}+\lambda^{6} \\
K(\text { cat,car })=\lambda^{4} \\
K(\text { cat, bar })=0
\end{array}\right.
$$

## Example 2: Substring kernel $(5 / 11)$

## Kernel computation

- We need to compute, for any pair $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$, the kernel:

$$
\begin{aligned}
K_{n, \lambda}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{u} \in \mathcal{A}^{k}} \Phi_{\mathbf{u}}(\mathbf{x}) \Phi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right) \\
& =\sum_{\mathbf{u} \in \mathcal{A}^{k}} \sum_{\mathrm{i}: \mathbf{x}(\mathrm{i})=\mathbf{u}} \sum_{\mathrm{i}^{\prime}: \mathbf{x}^{\prime}\left(\mathrm{i}^{\prime}\right)=\mathbf{u}} \lambda^{l(\mathrm{i})+l\left(\mathrm{i}^{\prime}\right)} .
\end{aligned}
$$

- Enumerating the substrings is too slow (of order $|\mathbf{x}|^{k}$ ).


## Example 2: Substring kernel (6/11)

## Kernel computation (cont.)

- For $\mathbf{u} \in \mathcal{A}^{k}$ remember that:

$$
\Phi_{\mathbf{u}}(\mathbf{x})=\sum_{\mathbf{i}: \mathbf{x}(\mathbf{i})=\mathbf{u}} \lambda^{i_{n}-i_{1}+1}
$$

- Let now:

$$
\Psi_{\mathbf{u}}(\mathbf{x})=\sum_{\mathbf{i}: \mathbf{x}(\mathbf{i})=\mathbf{u}} \lambda^{|\mathbf{x}|-i_{1}+1}
$$

## Example 2: Substring kernel (7/11)

## Kernel computation (cont.)

Let us note $\mathbf{x}(1, j)=x_{1} \ldots x_{j}$. A simple rewriting shows that, if we note $a \in \mathcal{A}$ the last letter of $\mathbf{u}(\mathbf{u}=\mathbf{v} a)$ :

$$
\Phi_{\mathbf{v a}}(\mathbf{x})=\sum_{j \in[1,|\mathbf{x}|]: x_{j}=a} \Psi_{\mathbf{v}}(\mathbf{x}(1, j-1)) \lambda,
$$

and

$$
\Psi_{\mathbf{v a}}(\mathbf{x})=\sum_{j \in[1,|\mathbf{x}|]: x_{j}=a} \Psi_{\mathbf{v}}(\mathbf{x}(1, j-1)) \lambda^{|\mathbf{x}|-j+1}
$$

## Example 2: Substring kernel (8/11)

## Kernel computation (cont.)

Moreover we observe that if the string is of the form $\mathbf{x a}$ (i.e., the last letter is $a \in \mathcal{A}$ ), then:

- If the last letter of $\mathbf{u}$ is not $a$ :

$$
\left\{\begin{array}{l}
\Phi_{\mathbf{u}}(\mathbf{x} a)=\Phi_{\mathbf{u}}(\mathbf{x}) \\
\Psi_{\mathbf{u}}(\mathbf{x} a)=\lambda \Psi_{\mathbf{u}}(\mathbf{x})
\end{array}\right.
$$

- If the last letter of $\mathbf{u}$ is $\mathbf{a}$ (i.e., $\mathbf{u}=\mathbf{v a}$ with $\mathbf{v} \in \mathcal{A}^{n-1}$ ):

$$
\left\{\begin{array}{l}
\Phi_{\mathbf{v} a}(\mathbf{x} a)=\Phi_{\mathbf{v} a}(\mathbf{x})+\lambda \Psi_{\mathbf{v}}(\mathbf{x}) \\
\Psi_{\mathbf{v} a}(\mathbf{x} a)=\lambda \Psi_{\mathbf{v} a}(\mathbf{x})+\lambda \Psi_{\mathbf{v}}(\mathbf{x})
\end{array}\right.
$$

## Example 2: Substring kernel (9/11)

## Kernel computation (cont.)

Let us now show how the function:

$$
B_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=\sum_{\mathbf{u} \in \mathcal{A}^{n}} \Psi_{\mathbf{u}}(\mathbf{x}) \Psi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right)
$$

and the kernel:

$$
K_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=\sum_{\mathbf{u} \in \mathcal{A}^{n}} \Phi_{\mathbf{u}}(\mathbf{x}) \Phi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right)
$$

can be computed recursively. We note that:

$$
\begin{cases}B_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0 & \text { for all } \mathbf{x}, \mathbf{x}^{\prime} \\ B_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0 & \text { if } \min \left(|\mathbf{x}|,\left|\mathbf{x}^{\prime}\right|\right)<k\end{cases}
$$

## Example 2: Substring kernel (10/11)

## Recursive computation of $B_{n}$

$$
\begin{aligned}
& B_{n}\left(\mathbf{x a}, \mathbf{x}^{\prime}\right) \\
&= \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Psi_{\mathbf{u}}(\mathbf{x} a) \Psi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right) \\
&= \lambda \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Psi_{\mathbf{u}}(\mathbf{x}) \Psi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right)+\lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}}(\mathbf{x}) \Psi_{\mathbf{v a}}\left(\mathbf{x}^{\prime}\right) \\
&= \lambda B_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+ \\
& \lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}}(\mathbf{x})\left(\sum_{j \in\left[1,\left|\mathbf{x}^{\prime}\right|\right]: x_{j}^{\prime}=a} \Psi_{\mathbf{v}}\left(\mathbf{x}^{\prime}(1, j-1)\right) \lambda^{\left|\mathbf{x}^{\prime}\right|-j+1}\right) \\
&= \lambda B_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\sum_{j \in\left[1,\left|\mathbf{x}^{\prime}\right|\right]: x_{j}^{\prime}=a} B_{n-1}\left(\mathbf{x}, \mathbf{x}^{\prime}(1, j-1)\right) \lambda^{\left|\mathbf{x}^{\prime}\right|-j+2}
\end{aligned}
$$

## Example 2: Substring kernel (10/11)

## Recursive computation of $K_{n}$

$$
\begin{aligned}
& K_{n}\left(\mathbf{x} a, \mathbf{x}^{\prime}\right) \\
&= \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Phi_{\mathbf{u}}(\mathbf{x a} a) \Phi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right) \\
&= \sum_{\mathbf{u} \in \mathcal{A}^{n}} \Phi_{\mathbf{u}}(\mathbf{x}) \Phi_{\mathbf{u}}\left(\mathbf{x}^{\prime}\right)+\lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}}(\mathbf{x}) \Phi_{\mathbf{v a}}\left(\mathbf{x}^{\prime}\right) \\
&= K_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+ \\
& \lambda \sum_{\mathbf{v} \in \mathcal{A}^{n-1}} \Psi_{\mathbf{v}}(\mathbf{x})\left(\sum_{j \in\left[1,\left|\mathbf{x}^{\prime}\right|\right]: x_{j}^{\prime}=a} \Psi_{\mathbf{v}}\left(\mathbf{x}^{\prime}(1, j-1)\right) \lambda\right) \\
&= \lambda K_{n}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+\lambda^{2} \sum_{j \in\left[1,\left|\mathbf{x}^{\prime}\right|\right]: x_{j}^{\prime}=a} B_{n-1}\left(\mathbf{x}, \mathbf{x}^{\prime}(1, j-1)\right)
\end{aligned}
$$

## Summary: Substring indexation

- Implementation in $O\left(|\mathbf{x}|+\left|\mathbf{x}^{\prime}\right|\right)$ in memory and time for the spectrum and mismatch kernels (with suffix trees)
- Implementation in $O\left(|\mathbf{x}| \times\left|\mathbf{x}^{\prime}\right|\right)$ in memory and time for the substring kernels
- The feature space has high dimension $\left(|\mathcal{A}|^{k}\right)$, so learning requires regularized methods (such as SVM)


## Dictionary-based indexation

## The approach

- Chose a dictionary of sequences $\mathcal{D}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$
- Chose a measure of similarity $s\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x})=\left(s\left(\mathbf{x}, \mathbf{x}_{i}\right)\right)_{\mathbf{x}_{i} \in \mathcal{D}}$


## Examples

This includes:

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
Pairwise kernel (Liao \& Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.


## Dictionary-based indexation

## The approach

- Chose a dictionary of sequences $\mathcal{D}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right)$
- Chose a measure of similarity $s\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x})=\left(s\left(\mathbf{x}, \mathbf{x}_{i}\right)\right)_{\mathbf{x}_{i} \in \mathcal{D}}$


## Examples

This includes:

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
- Pairwise kernel (Liao \& Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection


## Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel designs. Important models include HMM for protein sequences, SCFG for RNA sequences.


Parametric model
A model is a family of distribution

$$
\left\{P_{\theta}, \theta \in \Theta \subset \mathbb{R}^{m}\right\} \subset \mathcal{M}_{1}^{+}(\mathcal{X})
$$

## Fisher kernel

## Definition

- Fix a parameter $\theta_{0} \in \Theta$ (e.g., by maximum likelihood over a training set of sequences)
- For each sequence $\mathbf{x}$, compute the Fisher score vector:

$$
\Phi_{\theta_{0}}(\mathbf{x})=\left.\nabla_{\theta} \log P_{\theta}(\mathbf{x})\right|_{\theta=\theta_{0}}
$$

- Form the kernel (Jaakkola et al., 1998):

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\Phi_{\theta_{0}}(\mathbf{x})^{\top} I\left(\theta_{0}\right)^{-1} \Phi_{\theta_{0}}\left(\mathbf{x}^{\prime}\right)
$$

where $I\left(\theta_{0}\right)=E_{\theta_{0}}\left[\Phi_{\theta_{0}}(\mathbf{x}) \Phi_{\theta_{0}}(\mathbf{x})^{\top}\right]$ is the Fisher information matrix.

## Fisher kernel properties

- The Fisher score describes how each parameter contributes to the process of generating a particular example
- The Fisher kernel is invariant under change of parametrization of the model
- A kernel classifier employing the Fisher kernel derived from a model that contains the label as a latent variable is, asymptotically, at least as good a classifier as the MAP labelling based on the model (Jaakkola and Haussler, 1998).
- A variant of the Fisher kernel (called the Tangent of Posterior kernel) can also improve over the direct posterior classification by helping to correct the effect of estimation errors in the parameter (Tsuda et al., 2002).


## Fisher kernel in practice

- $\Phi_{\theta_{0}}(\mathbf{x})$ can be computed explicitly for many models (e.g., HMMs)
- $I\left(\theta_{0}\right)$ is often replaced by the identity matrix
- Several different models (i.e., different $\theta_{0}$ ) can be trained and combined
- Feature vectors are explicitly computed


## Mutual information kernels

## Definition

- Chose a prior $w(d \theta)$ on the measurable set $\Theta$
- Form the kernel (Seeger, 2002):

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\int_{\theta \in \Theta} P_{\theta}(\mathbf{x}) P_{\theta}\left(\mathbf{x}^{\prime}\right) w(d \theta) .
$$

- No explicit computation of a finite-dimensional feature vector
- $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=<\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)>L_{L_{2}(w)}$ with

$$
\phi(\mathbf{x})=\left(P_{\theta}(\mathbf{x})\right)_{\theta \in \Theta} .
$$

## Example: coin toss

- Let $P_{\theta}(X=1)=\theta$ and $P_{\theta}(X=0)=1-\theta$ a model for random coin toss, with $\theta \in[0,1]$.
- Let $d \theta$ be the Lebesgue measure on $[0,1]$
- The mutual information kernel between $\mathbf{x}=001$ and $\mathbf{x}^{\prime}=1010$ is:

$$
\begin{gathered}
\left\{\begin{array}{l}
P_{\theta}(\mathbf{x})=\theta(1-\theta)^{2}, \\
P_{\theta}\left(\mathbf{x}^{\prime}\right)=\theta^{2}(1-\theta)^{2},
\end{array}\right. \\
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\int_{0}^{1} \theta^{3}(1-\theta)^{4} d \theta=\frac{3!4!}{8!}=\frac{1}{280} .
\end{gathered}
$$

## Context-tree model

## Definition

A context-tree model is a variable-memory Markov chain:

$$
P_{\mathcal{D}, \theta}(\mathbf{x})=P_{\mathcal{D}, \theta}\left(x_{1} \ldots x_{D}\right) \prod_{i=D+1}^{n} P_{\mathcal{D}, \theta}\left(x_{i} \mid x_{i-D} \ldots x_{i-1}\right)
$$

- $\mathcal{D}$ is a suffix tree
- $\theta \in \Sigma^{\mathcal{D}}$ is a set of conditional probabilities (multinomials)


## Context-tree model: example


$P(A A B A C B A C C)=P(A A B) \theta_{A B}(A) \theta_{A}(C) \theta_{C}(B) \theta_{A C B}(A) \theta_{A}(C) \theta_{C}(A)$.

## The context-tree kernel

## Theorem (Cuturi et al., 2004)

- For particular choices of priors, the context-tree kernel:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{\mathcal{D}} \int_{\theta \in \Sigma^{\mathcal{D}}} P_{\mathcal{D}, \theta}(\mathbf{x}) P_{\mathcal{D}, \theta}\left(\mathbf{x}^{\prime}\right) w(d \theta \mid \mathcal{D}) \pi(\mathcal{D})
$$

can be computed in $O\left(|\mathbf{x}|+\left|\mathbf{x}^{\prime}\right|\right)$ with a variant of the Context-Tree Weighting algorithm.

- This is a valid mutual information kernel.
- The similarity is related to information-theoretical measure of mutual information between strings.


## Marginalized kernels

## Definition

- For any observed data $\mathbf{x} \in \mathcal{X}$, let a latent variable $\mathbf{y} \in \mathcal{Y}$ be associated probabilistically through a conditional probability $P_{\mathbf{x}}(d \mathbf{y})$.
- Let $K_{\mathcal{Z}}$ be a kernel for the complete data $\mathbf{z}=(\mathbf{x}, \mathbf{y})$
- Then the following kernel is a valid kernel on $\mathcal{X}$, called a marginalized kernel (Kin et al., 2002):

$$
\begin{aligned}
K_{\mathcal{X}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & :=E_{P_{\mathbf{x}}(d \mathbf{y}) \times P_{\mathbf{x}^{\prime}}\left(d \mathbf{y}^{\prime}\right)} K_{\mathcal{Z}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \\
& =\iint K_{\mathcal{Z}}\left((\mathbf{x}, \mathbf{y}),\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)\right) P_{\mathbf{x}}(d \mathbf{y}) P_{\mathbf{x}^{\prime}}\left(d \mathbf{y}^{\prime}\right) .
\end{aligned}
$$

## Marginalized kernels: proof of positive definiteness

- $K_{\mathcal{Z}}$ is p.d. on $\mathcal{Z}$. Therefore there exists a Hilbert space $\mathcal{H}$ and $\Phi_{\mathcal{Z}}: \mathcal{Z} \rightarrow \mathcal{H}$ such that:

$$
K_{\mathcal{Z}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\left\langle\Phi_{\mathcal{Z}}(\mathbf{z}), \Phi_{\mathcal{Z}}\left(\mathbf{z}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

- Marginalizing therefore gives:

$$
\begin{aligned}
K_{\mathcal{X}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =E_{P_{\mathbf{x}}(d \mathbf{y}) \times P_{\mathbf{x}^{\prime}}\left(d \mathbf{y}^{\prime}\right)} K_{\mathcal{Z}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \\
& =E_{P_{\mathbf{x}}(d \mathbf{y}) \times P_{\mathbf{x}^{\prime}}\left(d \mathbf{y}^{\prime}\right)}\left\langle\Phi_{\mathcal{Z}}(\mathbf{z}), \Phi_{\mathcal{Z}}\left(\mathbf{z}^{\prime}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle E_{P_{\mathbf{x}}(d \mathbf{y})} \Phi_{\mathcal{Z}}(\mathbf{z}), E_{P_{\mathbf{x}}\left(d \mathbf{y}^{\prime}\right)} \Phi_{\mathcal{Z}}\left(\mathbf{z}^{\prime}\right)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

therefore $K_{\mathcal{X}}$ is p.d. on $\mathcal{X}$.

## Example: HMM for normal/biased coin toss



- Normal ( $N$ ) and biased ( $B$ ) coins (not observed)
- Observed output are 0/1 with probabilities:

$$
\left\{\begin{array}{l}
\pi(0 \mid N)=1-\pi(1 \mid N)=0.5 \\
\pi(0 \mid B)=1-\pi(1 \mid B)=0.8
\end{array}\right.
$$

- Example of realization (complete data):

> NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
> 1001011101111010010111001111011

## 1-spectrum kernel on complete data

- If both $\mathbf{x} \in \mathcal{A}^{*}$ and $\mathbf{y} \in \mathcal{S}^{*}$ were observed, we might rather use the 1 -spectrum kernel on the complete data $\mathbf{z}=(\mathbf{x}, \mathbf{y})$ :

$$
K_{\mathcal{Z}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right)=\sum_{(a, s) \in \mathcal{A} \times \mathcal{S}} n_{a, s}(\mathbf{z}) n_{a, s}(\mathbf{z}),
$$

where $n_{a, s}(\mathbf{x}, \mathbf{y})$ for $a=0,1$ and $s=N, B$ is the number of occurrences of $s$ in $\mathbf{y}$ which emit $a$ in $\mathbf{x}$.

- Example:

$$
\begin{aligned}
\mathbf{z} & =1001011101111010010111001111011, \\
\mathbf{z}^{\prime} & =0011010110011111011010111101100101, \\
K_{\mathcal{Z}}\left(\mathbf{z}, \mathbf{z}^{\prime}\right) & =n_{0}(\mathbf{z}) n_{0}\left(\mathbf{z}^{\prime}\right)+n_{0}(\mathbf{z}) n_{0}\left(\mathbf{z}^{\prime}\right)+n_{1}(\mathbf{z}) n_{1}\left(\mathbf{z}^{\prime}\right)+n_{1}(\mathbf{z}) n_{1}(\mathbf{z} \\
& =7 \times 15+9 \times 12+13 \times 6+2 \times 1=293 .
\end{aligned}
$$

## 1 -spectrum marginalized kernel on observed data

- The marginalized kernel for observed data is:

$$
\begin{aligned}
K_{\mathcal{X}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{y}, \mathbf{y}^{\prime} \in \mathcal{S}^{*}} K_{\mathcal{Z}}((\mathbf{x}, \mathbf{y}),(\mathbf{x}, \mathbf{y})) P(\mathbf{y} \mid \mathbf{x}) P\left(\mathbf{y}^{\prime} \mid \mathbf{x}^{\prime}\right) \\
& =\sum_{(a, s) \in \mathcal{A} \times \mathcal{S}} \Phi_{a, s}(\mathbf{x}) \Phi_{a, s}\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

with

$$
\Phi_{a, s}(\mathbf{x})=\sum_{\mathbf{y} \in \mathcal{S}^{*}} P(\mathbf{y} \mid \mathbf{x}) n_{a, s}(\mathbf{x}, \mathbf{y})
$$

## Computation of the 1 -spectrum marginalized kernel

$$
\begin{aligned}
\Phi_{a, s}(\mathbf{x}) & =\sum_{\mathbf{y} \in \mathcal{S}^{*}} P(\mathbf{y} \mid \mathbf{x}) n_{a, s}(\mathbf{x}, \mathbf{y}) \\
& =\sum_{\mathbf{y} \in \mathcal{S}^{*}} P(\mathbf{y} \mid \mathbf{x})\left\{\sum_{i=1}^{n} \delta\left(x_{i}, a\right) \delta\left(y_{i}, s\right)\right\} \\
& =\sum_{i=1}^{n} \delta\left(x_{i}, a\right)\left\{\sum_{\mathbf{y} \in \mathcal{S}^{*}} P(\mathbf{y} \mid \mathbf{x}) \delta\left(y_{i}, s\right)\right\} \\
& =\sum_{i=1}^{n} \delta\left(x_{i}, a\right) P\left(y_{i}=s \mid \mathbf{x}\right)
\end{aligned}
$$

and $P\left(y_{i}=s \mid \mathbf{x}\right)$ can be computed efficiently by forward-backward algorithm!

## HMM example (DNA)



## HMM example (protein)



## SCFG for RNA sequences



## SFCG rules

- $S \rightarrow S S$
- $S \rightarrow a S a$
- $S \rightarrow a S$
- $S \rightarrow a$


## Marginalized kernel (Kin et al., 2002)

- Feature: number of occurrences of each (base,state) combination
- Marginalization using classical inside/outside algorithm


## Marginalized kernels in practice

## Examples

- Spectrum kernel on the hidden states of a HMM for protein sequences (Tsuda et al., 2002)
- Kernels for RNA sequences based on SCFG (Kin et al., 2002)
- Kernels for graphs based on random walks on graphs (Kashima et al., 2004)
- Kernels for multiple alignments based on phylogenetic models (Vert et al., 2005)


## Marginalized kernels: example



A set of 74 human tRNA sequences is analyzed using a kernel for sequences (the second-order marginalized kernel based on SCFG). This set of tRNAs contains three classes, called Ala-AGC (white circles), Asn-GTT (black circles) and Cys-GCA (plus symbols) (from Tsuda et al., 2003).

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection


## Sequence alignment

## Motivation

How to compare 2 sequences?

$$
\begin{aligned}
& \mathbf{x}_{1}=\text { CGGSLIAMMWFGV } \\
& \mathbf{x}_{2}=\text { CLIVMMNRLMWFGV }
\end{aligned}
$$

Find a good alignment:

$$
\begin{aligned}
& \text { CGGSLIAMM----WFGV } \\
& \text { । . . . । । ।।। . . . ।।।। } \\
& \text { C---LIVMMNRLMWFGV }
\end{aligned}
$$

## Alignment score

In order to quantify the relevance of an alignment $\pi$, define:

- a substitution matrix $S \in \mathbb{R}^{\mathcal{A} \times \mathcal{A}}$
- a gap penalty function $g: \mathbb{N} \rightarrow \mathbb{R}$

Any alignment is then scored as follows

$$
\begin{aligned}
s_{S, g}(\pi)= & S(C, C)+S(L, L)+S(I, I)+S(A, V)+2 S(M, M) \\
& +S(W, W)+S(F, F)+S(G, G)+S(V, V)-g(3)-g(4)
\end{aligned}
$$

## Local alignment kernel

## Smith-Waterman score

- The widely-used Smith-Waterman local alignment score is defined by:

$$
S W_{S, g}(\mathbf{x}, \mathbf{y}):=\max _{\pi \in \Pi(\mathbf{x}, \mathbf{y})} s_{S, g}(\pi)
$$

- It is symmetric, but not positive definite...


## LA kernel

The local alignment kernel:
is symmetric positive definite.

## Local alignment kernel

## Smith-Waterman score

- The widely-used Smith-Waterman local alignment score is defined by:

$$
S W_{S, g}(\mathbf{x}, \mathbf{y}):=\max _{\pi \in \Pi(\mathbf{x}, \mathbf{y})} s_{S, g}(\pi)
$$

- It is symmetric, but not positive definite...


## LA kernel

The local alignment kernel:

$$
K_{L A}^{(\beta)}(\mathbf{x}, \mathbf{y})=\sum_{\pi \in \Pi(\mathbf{x}, \mathbf{y})} \exp \left(\beta s_{S, g}(\mathbf{x}, \mathbf{y}, \pi)\right)
$$

is symmetric positive definite.

## LA kernel is p.d.: proof ( $1 / 11$ )

## Lemma

- If $K_{1}$ and $K_{2}$ are p.d. kernels, then:

$$
\begin{aligned}
& K_{1}+K_{2}, \\
& \quad K_{1} K_{2}, \text { and } \\
& \quad c K_{1}, \text { for } c \geq 0
\end{aligned}
$$

are also p.d. kernels

- If $\left(K_{i}\right)_{i \geq 1}$ is a sequence of p.d. kernels that converges pointwisely to a function $K$ :

$$
\forall\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in \mathcal{X}^{2}, \quad K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\lim _{n \rightarrow \infty} K_{i}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

then $K$ is also a p.d. kernel.

## LA kernel is p.d.: proof (2/11)

## Proof of lemma

Let $A$ and $B$ be $n \times n$ positive semidefinite matrices. By diagonalization of $A$ :

$$
A_{i, j}=\sum_{p=1}^{n} f_{p}(i) f_{p}(j)
$$

for some vectors $f_{1}, \ldots, f_{n}$. Then, for any $\boldsymbol{\alpha} \in \mathbb{R}^{n}$ :

$$
\sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} A_{i, j} B_{i, j}=\sum_{p=1}^{n} \sum_{i, j=1}^{n} \alpha_{i} f_{p}(i) \alpha_{j} f_{p}(j) B_{i, j} \geq 0
$$

The matrix $C_{i, j}=A_{i, j} B_{i, j}$ is therefore p.d. Other properties are obvious from definition.

## LA kernel is p.d.: proof (3/11)

## Lemma (direct sum and product of kernels)

Let $\mathcal{X}=\mathcal{X}_{1} \times \mathcal{X}_{2}$. Let $K_{1}$ be a p.d. kernel on $\mathcal{X}_{1}$, and $K_{2}$ be a p.d. kernel on $\mathcal{X}_{2}$. Then the following functions are p.d. kernels on $\mathcal{X}$ :

- the direct sum,

$$
K\left(\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\right)=K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+K_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right),
$$

- The direct product:

$$
K\left(\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\right)=K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) K_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) .
$$

## LA kernel is p.d.: proof (4/11)

## Proof of lemma

If $K_{1}$ is a p.d. kernel, let $\Phi_{1}: \mathcal{X}_{1} \mapsto \mathcal{H}$ be such that:

$$
K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)=\left\langle\Phi_{1}\left(\mathbf{x}_{1}\right), \Phi_{1}\left(\mathbf{y}_{1}\right)\right\rangle_{\mathcal{H}} .
$$

Let $\Phi: \mathcal{X}_{1} \times \mathcal{X}_{2} \rightarrow \mathcal{H}$ be defined by:

$$
\Phi\left(\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right)=\Phi_{1}\left(\mathbf{x}_{1}\right) .
$$

Then for $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\mathbf{y}=\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \in \mathcal{X}$, we get

$$
\left\langle\Phi\left(\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\right), \Phi\left(\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\right)\right\rangle_{\mathcal{H}}=K_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right),
$$

which shows that $K(\mathbf{x}, \mathbf{y}):=K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)$ is p.d. on $\mathcal{X}_{1} \times \mathcal{X}_{2}$. The lemma follows from the properties of sums and products of p.d. kernels.

## LA kernel is p.d.: proof $(5 / 11)$

## Lemma: kernel for sets

Let $K$ be a p.d. kernel on $\mathcal{X}$, and let $\mathcal{P}(\mathcal{X})$ be the set of finite subsets of $\mathcal{X}$. Then the function $K_{P}$ on $\mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{X})$ defined by:

$$
\forall A, B \in \mathcal{P}(\mathcal{X}), \quad K_{P}(A, B):=\sum_{\mathbf{x} \in A} \sum_{\mathbf{y} \in B} K(\mathbf{x}, \mathbf{y})
$$

is a p.d. kernel on $\mathcal{P}(\mathcal{X})$.

## LA kernel is p.d.: proof (6/11)

## Proof of lemma

Let $\Phi: \mathcal{X} \mapsto \mathcal{H}$ be such that

$$
K(\mathbf{x}, \mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{H}} .
$$

Then, for $A, B \in \mathcal{P}(\mathcal{X})$, we get:

$$
\begin{aligned}
K_{P}(A, B) & =\sum_{\mathbf{x} \in A} \sum_{\mathbf{y} \in B}\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{\mathbf{x} \in A} \Phi(\mathbf{x}), \sum_{\mathbf{y} \in B} \Phi(\mathbf{y})\right\rangle_{\mathcal{H}} \\
& =\left\langle\Phi_{P}(A), \Phi_{P}(B)\right\rangle_{\mathcal{H}},
\end{aligned}
$$

with $\Phi_{P}(A):=\sum_{\mathbf{x} \in A} \Phi(\mathbf{x})$.

## LA kernel is p.d.: proof (7/11)

## Definition: Convolution kernel (Haussler, 1999)

Let $K_{1}$ and $K_{2}$ be two p.d. kernels for strings. The convolution of $K_{1}$ and $K_{2}$, denoted $K_{1} \star K_{2}$, is defined for any $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$ by:

$$
K_{1} \star K_{2}(\mathbf{x}, \mathbf{y}):=\sum_{\mathbf{x}_{1} \mathbf{x}_{2}=\mathbf{x}, \mathbf{y}_{1} \mathbf{y}_{2}=\mathbf{y}} K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) K_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
$$

## Lemma

If $K_{1}$ and $K_{2}$ are p.d. then $K_{1} \star K_{2}$ is p.d..

## LA kernel is p.d.: proof (8/11)

## Proof of lemma

Let $\mathcal{X}$ be the set of finite-length strings. For $\mathbf{x} \in \mathcal{X}$, let

$$
R(\mathbf{x})=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathcal{X} \times \mathcal{X}: \mathbf{x}=\mathbf{x}_{1} \mathbf{x}_{2}\right\} \subset \mathcal{X} \times \mathcal{X}
$$

We can then write

$$
K_{1} \star K_{2}(\mathbf{x}, \mathbf{y})=\sum_{\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in R(\mathbf{x})} \sum_{\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \in R(\mathbf{y})} K_{1}\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) K_{2}\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
$$

which is a p.d. kernel by the previous lemmas. $\square$

## LA kernel is p.d.: proof (9/11)

## 3 basic string kernels

- The constant kernel:

$$
K_{0}(\mathbf{x}, \mathbf{y}):=1
$$

- A kernel for letters:

$$
K_{a}^{(\beta)}(\mathbf{x}, \mathbf{y}):= \begin{cases}0 & \text { if }|\mathbf{x}| \neq 1 \text { where }|\mathbf{y}| \neq 1 \\ \exp (\beta S(\mathbf{x}, \mathbf{y})) & \text { otherwise }\end{cases}
$$

- A kernel for gaps:

$$
K_{g}^{(\beta)}(\mathbf{x}, \mathbf{y})=\exp [\beta(g(|\mathbf{x}|)+g(|\mathbf{x}|))]
$$

## LA kernel is p.d.: proof (10/11)

## Remark

- $S: \mathcal{A}^{2} \rightarrow \mathbb{R}$ is the similarity function between letters used in the alignment score. $K_{a}^{(\beta)}$ is only p.d. when the matrix:

$$
(\exp (\beta \boldsymbol{s}(a, b)))_{(a, b) \in \mathcal{A}^{2}}
$$

is positive semidefinite (this is true for all $\beta$ when $\boldsymbol{s}$ is conditionally p.d..

- $g$ is the gap penalty function used in alignment score. The gap kernel is always p.d. (with no restriction on $g$ ) because it can be written as:

$$
K_{g}^{(\beta)}(\mathbf{x}, \mathbf{y})=\exp (\beta g(|\mathbf{x}|)) \times \exp (\beta g(|\mathbf{y}|))
$$

## LA kernel is p.d.: proof (11/11)

## Lemma

The local alignment kernel is a (limit) of convolution kernel:

$$
K_{L A}^{(\beta)}=\sum_{n=0}^{\infty} K_{0} \star\left(K_{a}^{(\beta)} \star K_{g}^{(\beta)}\right)^{(n-1)} \star K_{a}^{(\beta)} \star K_{0} .
$$

As such it is p.d..

## Proof (sketch)

- By induction on $n$ (simple but long to write).
- See details in Vert et al. (2004).


## LA kernel computation

- We assume an affine gap penalty:

$$
\left\{\begin{array}{l}
g(0)=0 \\
g(n)=d+e(n-1) \text { si } n \geq 1
\end{array}\right.
$$

- The LA kernel can then be computed by dynamic programming by:

$$
K_{L A}^{(\beta)}(\mathbf{x}, \mathbf{y})=1+X_{2}(|\mathbf{x}|,|\mathbf{y}|)+Y_{2}(|\mathbf{x}|,|\mathbf{y}|)+M(|\mathbf{x}|,|\mathbf{y}|),
$$

where $M(i, j), X(i, j), Y(i, j), X_{2}(i, j)$, and $Y_{2}(i, j)$ for $0 \leq i \leq|\mathbf{x}|$, and $0 \leq j \leq|\mathbf{y}|$ are defined recursively.

## LA kernel is p.d.: proof ()

## Initialization

$$
\left\{\begin{array}{l}
M(i, 0)=M(0, j)=0, \\
X(i, 0)=X(0, j)=0, \\
Y(i, 0)=Y(0, j)=0, \\
X_{2}(i, 0)=X_{2}(0, j)=0, \\
Y_{2}(i, 0)=Y_{2}(0, j)=0,
\end{array}\right.
$$

## LA kernel is p.d.: proof ()

## Recursion

For $i=1, \ldots,|\mathbf{x}|$ and $j=1, \ldots,|\mathbf{y}|$ :

$$
\left\{\begin{aligned}
M(i, j)= & \exp \left(\beta S\left(x_{i}, y_{j}\right)\right)[1+X(i-1, j-1) \\
& \quad+Y(i-1, j-1)+M(i-1, j-1)], \\
& \quad \exp (\beta d) M(i-1, j)+\exp (\beta e) X(i-1, j), \\
X(i, j) & =\exp (\beta d)[M(i, j-1)+X(i, j-1)] \\
Y(i, j) & \quad \exp (\beta e) Y(i, j-1), \\
& \\
X_{2}(i, j)= & M(i-1, j)+X_{2}(i-1, j), \\
Y_{2}(i, j)= & M(i, j-1)+X_{2}(i, j-1)+Y_{2}(i, j-1) .
\end{aligned}\right.
$$

## LA kernel in practice

- Implementation by a finite-state transducer in $O\left(|\mathbf{x}| \times\left|\mathbf{x}^{\prime}\right|\right)$

- In practice, values are too large (exponential scale) so taking its logarithm is a safer choice (but not p.d. anymore!)


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

- Motivations
- Feature space approach
- Using generative models
- Derive from a similarity measure
- Application: remote homology detection


## Remote homology



- Homologs have common ancestors
- Structures and functions are more conserved than sequences
- Remote homologs can not be detected by direct sequence comparison


## SCOP database



## A benchmark experiment

- Goal: recognize directly the superfamily
- Training: for a sequence of interest, positive examples come from the same superfamily, but different families. Negative from other superfamilies.
- Test: predict the superfamily.


## Difference in performance



Performance on the SCOP superfamily recognition benchmark (from Vert et al., 2004).

## String kernels: Summary

- A variety of principles for string kernel design have been proposed.
- Good kernel design is important for each data and each task. Performance is not the only criterion.
- Still an art, although principled ways have started to emerge.
- Fast implementation with string algorithms is often possible.
- Their application goes well beyond computational biology.

Part 3

## Kernels for graphs

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels


## Virtual screening for drug discovery



NCI AIDS screen results (from http://cactus.nci.nih.gov).

## Image retrieval and classification



From Harchaoui and Bach (2007).

## Our approach

(1) Represent each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

## (2) Use a linear method for classification in $\mathcal{H}$.



## Our approach

(1) Represent each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

## (3) Use a linear method for classification in $\mathcal{H}$.



## Our approach

(1) Represent each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$, either explicitly or implicitly through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(2) Use a linear method for classification in $\mathcal{H}$.


## Outline

(1) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels


## The approach

(1) Represent explicitly each graph $x$ by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.

## (2) Use an algorithm for regression or pattern recognition in $\mathbb{R}^{P}$.



## The approach

- Represent explicitly each graph $x$ by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.


## (2) Use an algorithm for regression or pattern recognition in $\mathbb{R}^{p}$.



## The approach

- Represent explicitly each graph $x$ by a vector of fixed dimension $\Phi(x) \in \mathbb{R}^{p}$.
(2) Use an algorithm for regression or pattern recognition in $\mathbb{R}^{p}$.



## Example

## 2D structural keys in chemoinformatics

- Index a molecule by a binary fingerprint defined by a limited set of pre-defined stuctures

- Use a machine learning algorithms such as SVM, NN, PLS, decision tree, ...


## Challenge: which descriptors (patterns)?



- Expressiveness: they should retain as much information as possible from the graph
- Computation : they should be fast to compute
- Large dimension of the vector representation: memory storage, speed, statistical issues


## Indexing by substructures



- Often we believe that the presence substructures are important predictive patterns
- Hence it makes sense to represent a graph by features that indicate the presence (or the number of occurrences) of particular substructures
- However, detecting the presence of particular substructures may be computationally challenging...


## Subgraphs

## Definition

A subgraph of a graph $(V, E)$ is a connected graph $\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime} \subset V$ and $E^{\prime} \subset E$.




## Indexing by all subgraphs?



## Theorem

## Computing all subgraph occurrences is NP-hard.

## Proof.

- The linear graph of size $n$ is a subgraph of a graph $X$ with $n$ vertices iff $X$ has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.


## Indexing by all subgraphs?



## Theorem

Computing all subgraph occurrences is NP-hard.

## Proof.

- The linear graph of size $n$ is a subgraph of a graph $X$ with $n$ vertices iff $X$ has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.


## Indexing by all subgraphs?



## Theorem

Computing all subgraph occurrences is NP-hard.

## Proof.

- The linear graph of size $n$ is a subgraph of a graph $X$ with $n$ vertices iff $X$ has an Hamiltonian path
- The decision problem whether a graph has a Hamiltonian path is NP-complete.


## Paths

## Definition

- A path of a graph $(V, E)$ is sequence of distinct vertices $v_{1}, \ldots, v_{n} \in V\left(i \neq j \Longrightarrow v_{i} \neq v_{j}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- Equivalently the paths are the linear subgraphs.




## Indexing by all paths?



## Theorem

Computing all path occurrences is NP-hard.

## Proof.

## Same as for subgraphs.

## Indexing by all paths?



## Theorem

Computing all path occurrences is NP-hard.

## Proof. <br> Same as for subgraphs.

## Indexing by all paths?



## Theorem

Computing all path occurrences is NP-hard.

## Proof.

## Same as for subgraphs.

## Indexing by what?

## Substructure selection

We can imagine more limited sets of substuctures that lead to more computationnally efficient indexing (non-exhaustive list)

- substructures selected by domain knowledge (MDL fingerprint)
- all path up to length $k$ (Openeye fingerprint, Nicholls 2005)
- all shortest paths (Borgwardt and Kriegel, 2005)
- all subgraphs up to $k$ vertices (graphlet kernel, Sherashidze et al., 2009)
- all frequent subgraphs in the database (Helma et al., 2004)


## Example : Indexing by all shortest paths



## Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest naths.
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.


## Example : Indexing by all shortest paths



## Properties (Borgwardt and Kriegel, 2005)

- There are $O\left(n^{2}\right)$ shortest paths.
- The vector of counts can be computed in $O\left(n^{4}\right)$ with the Floyd-Warshall algorithm.


## Example : Indexing by all subgraphs up to $k$ vertices



## Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subaraphs if enumeration is infeasible.


## Example : Indexing by all subgraphs up to $k$ vertices



## Properties (Shervashidze et al., 2009)

- Naive enumeration scales as $O\left(n^{k}\right)$.
- Enumeration of connected graphlets in $O\left(n d^{k-1}\right)$ for graphs with degree $\leq d$ and $k \leq 5$.
- Randomly sample subgraphs if enumeration is infeasible.


## Summary

- Explicit computation of substructure occurrences can be computationnally prohibitive (subgraph, paths)
- Several ideas to reduce the set of substructures considered
- In practice, NP-hardness may not be so prohibitive (e.g., graphs with small degrees), the strategy followed should depend on the data considered.


## Outline

(1) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels


## The idea

## (1) Represent implicitly each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

## (2) Use a kernel method for classification in $\mathcal{H}$.



## The idea

(1) Represent implicitly each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

## (3) Use a kernel method for classification in $\mathcal{H}$.



## The idea

(1) Represent implicitly each graph $x$ by a vector $\Phi(x) \in \mathcal{H}$ through the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right) .
$$

(2) Use a kernel method for classification in $\mathcal{H}$.


## Expressiveness vs Complexity

## Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

$$
\forall G_{1}, G_{2} \in \mathcal{X}, \quad d_{K}\left(G_{1}, G_{2}\right)=0 \Longrightarrow G_{1} \simeq G_{2}
$$

Equivalently, $\Phi\left(G_{1}\right) \neq \Phi\left(G_{1}\right)$ if $G_{1}$ and $G_{2}$ are not isomorphic.
Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over $\mathcal{X}$ : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical
applications.
- Can we define tractable and expressive graph kernels?


## Expressiveness vs Complexity

## Definition: Complete graph kernels

A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

$$
\forall G_{1}, G_{2} \in \mathcal{X}, \quad d_{K}\left(G_{1}, G_{2}\right)=0 \Longrightarrow G_{1} \simeq G_{2}
$$

Equivalently, $\Phi\left(G_{1}\right) \neq \Phi\left(G_{1}\right)$ if $G_{1}$ and $G_{2}$ are not isomorphic.

## Expressiveness vs Complexity trade-off

- If a graph kernel is not complete, then there is no hope to learn all possible functions over $\mathcal{X}$ : the kernel is not expressive enough.
- On the other hand, kernel computation must be tractable, i.e., no more than polynomial (with small degree) for practical applications.
- Can we define tractable and expressive graph kernels?


## Complexity of complete kernels

## Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

Proof

- For any kernel $K$ the complexity of computing $d_{K}$ is the same as the complexity of computing $K$, because:

$$
d_{K}\left(G_{1}, G_{2}\right)^{2}=K\left(G_{1}, G_{1}\right)+K\left(G_{2}, G_{2}\right)-2 K\left(G_{1}, G_{2}\right)
$$

- If K is a complete graph kernel, then computing $d_{K}$ solves the graph isomorphism problem $\left(d_{K}\left(G_{1}, G_{2}\right)=0\right.$ iff $\left.G_{1} \simeq G_{2}\right) . \quad \square$


## Complexity of complete kernels

## Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph isomorphism problem.

## Proof

- For any kernel $K$ the complexity of computing $d_{K}$ is the same as the complexity of computing $K$, because:

$$
d_{K}\left(G_{1}, G_{2}\right)^{2}=K\left(G_{1}, G_{1}\right)+K\left(G_{2}, G_{2}\right)-2 K\left(G_{1}, G_{2}\right)
$$

- If $K$ is a complete graph kernel, then computing $d_{K}$ solves the graph isomorphism problem $\left(d_{K}\left(G_{1}, G_{2}\right)=0\right.$ iff $\left.G_{1} \simeq G_{2}\right)$. $\square$


## Subgraph kernel

## Definition

- Let $\left(\lambda_{G}\right)_{G \in \mathcal{X}}$ a set or nonnegative real-valued weights
- For any graph $G \in \mathcal{X}$, let

$$
\forall H \in \mathcal{X}, \quad \Phi_{H}(G)=\mid\left\{G^{\prime} \text { is a subgraph of } G: G^{\prime} \simeq H\right\} \mid
$$

- The subgraph kernel between any two graphs $G_{1}$ and $G_{2} \in \mathcal{X}$ is defined by:

$$
K_{\text {subgraph }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{X}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$



## Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.
Proof (1/2)

- Let $P_{n}$ be the path graph with $n$ vertices.
- Subgraphs of $P_{n}$ are path graphs:

$$
\Phi\left(P_{n}\right)=n e_{P_{1}}+(n-1) e_{P_{2}}+\ldots+e_{P_{n}}
$$

- The vectors $\Phi\left(P_{1}\right), \ldots, \Phi\left(P_{n}\right)$ are linearly independent, therefore:

where the coefficients $\alpha_{i}$ can be found in polynomial time (solving a $n \times n$ triangular system).


## Subgraph kernel complexity

## Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

## Proof (1/2)

- Let $P_{n}$ be the path graph with $n$ vertices.
- Subgraphs of $P_{n}$ are path graphs:

$$
\Phi\left(P_{n}\right)=n e_{P_{1}}+(n-1) e_{P_{2}}+\ldots+e_{P_{n}} .
$$

- The vectors $\Phi\left(P_{1}\right), \ldots, \Phi\left(P_{n}\right)$ are linearly independent, therefore:

$$
e_{P_{n}}=\sum_{i=1}^{n} \alpha_{i} \Phi\left(P_{i}\right)
$$

where the coefficients $\alpha_{i}$ can be found in polynomial time (solving a $n \times n$ triangular system).

## Subgraph kernel complexity

## Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

## Proof (2/2)

- If $G$ is a graph with $n$ vertices, then it has a path that visits each node exactly once (Hamiltonian path) if and only if $\Phi(G)^{\top} e_{n}>0$, i.e.,

$$
\Phi(G)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} \Phi\left(P_{i}\right)\right)=\sum_{i=1}^{n} \alpha_{i} K_{\text {subgraph }}\left(G, P_{i}\right)>0
$$

- The decision problem whether a graph has a Hamiltonian path is NP-complete. $\square$


## Path kernel



## Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$
K_{\text {path }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{P}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.
Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.

## Path kernel



## Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

$$
K_{\text {path }}\left(G_{1}, G_{2}\right)=\sum_{H \in \mathcal{P}} \lambda_{H} \Phi_{H}\left(G_{1}\right) \Phi_{H}\left(G_{2}\right)
$$

where $\mathcal{P} \subset \mathcal{X}$ is the set of path graphs.

## Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

## Summary

## Expressiveness vs Complexity trade-off

- It is intractable to compute complete graph kernels.
- It is intractable to compute the subgraph kernels.
- Restricting subgraphs to be linear does not help: it is also intractable to compute the path kernel.
- One approach to define polynomial time computable graph kernels is to have the feature space be made up of graphs homomorphic to subgraphs, e.g., to consider walks instead of paths.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels


## Walks

## Definition

- A walk of a graph $(V, E)$ is sequence of $v_{1}, \ldots, v_{n} \in V$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for $i=1, \ldots, n-1$.
- We note $\mathcal{W}_{n}(G)$ the set of walks with $n$ vertices of the graph $G$, and $\mathcal{W}(G)$ the set of all walks.


Walks $\neq$ paths


## Walk kernel

## Definition

- Let $\mathcal{S}_{n}$ denote the set of all possible label sequences of walks of length $n$ (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph $\mathcal{X}$ let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1}(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:


## Walk kernel

## Definition

- Let $\mathcal{S}_{n}$ denote the set of all possible label sequences of walks of length $n$ (including vertices and edges labels), and $\mathcal{S}=\cup_{n \geq 1} \mathcal{S}_{n}$.
- For any graph $\mathcal{X}$ let a weight $\lambda_{G}(w)$ be associated to each walk $w \in \mathcal{W}(G)$.
- Let the feature vector $\Phi(G)=\left(\Phi_{s}(G)\right)_{s \in \mathcal{S}}$ be defined by:

$$
\Phi_{s}(G)=\sum_{w \in \mathcal{W}(G)} \lambda_{G}(w) \mathbf{1}(s \text { is the label sequence of } w) .
$$

- A walk kernel is a graph kernel defined by:

$$
K_{\text {walk }}\left(G_{1}, G_{2}\right)=\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right)
$$

## Walk kernel examples

## Examples

- The $n$ th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of $w$ is $n, 0$ otherwise. It compares two graphs through their common walks of length $n$.


## - The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where $P_{G}$ is a Markov random walk on $G$. In that case we have:

$K\left(G_{1}, G_{2}\right)=P\left(\operatorname{label}\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right)$
where $W_{1}$ and $W_{2}$ are two independant random walks on $G_{1}$ and $G_{2}$, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\text {length }(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).


## Walk kernel examples

## Examples

- The $n$ th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of $w$ is $n, 0$ otherwise. It compares two graphs through their common walks of length $n$.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where $P_{G}$ is a Markov random walk on $G$. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where $W_{1}$ and $W_{2}$ are two independant random walks on $G_{1}$ and $G_{2}$, respectively (Kashima et al., 2003).


## Walk kernel examples

## Examples

- The $n$ th-order walk kernel is the walk kernel with $\lambda_{G}(w)=1$ if the length of $w$ is $n, 0$ otherwise. It compares two graphs through their common walks of length $n$.
- The random walk kernel is obtained with $\lambda_{G}(w)=P_{G}(w)$, where $P_{G}$ is a Markov random walk on $G$. In that case we have:

$$
K\left(G_{1}, G_{2}\right)=P\left(\text { label }\left(W_{1}\right)=\operatorname{label}\left(W_{2}\right)\right),
$$

where $W_{1}$ and $W_{2}$ are two independant random walks on $G_{1}$ and $G_{2}$, respectively (Kashima et al., 2003).

- The geometric walk kernel is obtained (when it converges) with $\lambda_{G}(w)=\beta^{\operatorname{length}(w)}$, for $\beta>0$. In that case the feature space is of infinite dimension (Gärtner et al., 2003).


## Computation of walk kernels

## Proposition

These three kernels (nth-order, random and geometric walk kernels) can be computed efficiently in polynomial time.

## Product graph

## Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with labeled vertices. The product graph $G=G_{1} \times G_{2}$ is the graph $G=(V, E)$ with:
(1) $V=\left\{\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}: v_{1}\right.$ and $v_{2}$ have the same label $\}$,
(2) $E=$

$$
\left\{\left(\left(v_{1}, v_{2}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \in V \times V:\left(v_{1}, v_{1}^{\prime}\right) \in E_{1} \text { and }\left(v_{2}, v_{2}^{\prime}\right) \in E_{2}\right\} .
$$



G1


G2


G1 $\times$ G2

## Walk kernel and product graph

## Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

## Corollary



## Walk kernel and product graph

## Lemma

There is a bijection between:
(1) The pairs of walks $w_{1} \in \mathcal{W}_{n}\left(G_{1}\right)$ and $w_{2} \in \mathcal{W}_{n}\left(G_{2}\right)$ with the same label sequences,
(2) The walks on the product graph $w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)$.

## Corollary

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{s \in \mathcal{S}} \Phi_{s}\left(G_{1}\right) \Phi_{s}\left(G_{2}\right) \\
& =\sum_{\left(w_{1}, w_{2}\right) \in \mathcal{W}\left(G_{1}\right) \times \mathcal{W}\left(G_{1}\right)} \lambda_{G_{1}}\left(w_{1}\right) \lambda_{G_{2}}\left(w_{2}\right) \mathbf{1}\left(I\left(w_{1}\right)=I\left(w_{2}\right)\right) \\
& =\sum_{w \in \mathcal{W}\left(G_{1} \times G_{2}\right)} \lambda_{G_{1} \times G_{2}}(w) .
\end{aligned}
$$

## Computation of the nth-order walk kernel

- For the $n$ th-order walk kernel we have $\lambda_{G_{1} \times G_{2}}(w)=1$ if the length of $w$ is $n, 0$ otherwise.
- Therefore:

$$
K_{n t h-\operatorname{order}}\left(G_{1}, G_{2}\right)=\sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} 1
$$

- Let $A$ be the adjacency matrix of $G_{1} \times G_{2}$. Then we get:

$$
K_{\text {nth-order }}\left(G_{1}, G_{2}\right)=\sum_{i, j}\left[A^{n}\right]_{i, j}=1^{\top} A^{n} 1
$$

- Computation in $O\left(n\left|G_{1}\right|\left|G_{2}\right| d_{1} d_{2}\right)$, where $d_{i}$ is the maximum degree of $G_{i}$.


## Computation of random and geometric walk kernels

- In both cases $\lambda_{G}(w)$ for a walk $w=v_{1} \ldots v_{n}$ can be decomposed as:

$$
\lambda_{G}\left(v_{1} \ldots v_{n}\right)=\lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right)
$$

- Let $\Lambda_{i}$ be the vector of $\lambda^{i}(v)$ and $\Lambda_{t}$ be the matrix of $\lambda^{t}\left(v, v^{\prime}\right)$ :

$$
\begin{aligned}
K_{\text {walk }}\left(G_{1}, G_{2}\right) & =\sum_{n=1}^{\infty} \sum_{w \in \mathcal{W}_{n}\left(G_{1} \times G_{2}\right)} \lambda^{i}\left(v_{1}\right) \prod_{i=2}^{n} \lambda^{t}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{n=0}^{\infty} \Lambda_{i} \Lambda_{t}^{n} \mathbf{1} \\
& =\Lambda_{i}\left(I-\Lambda_{t}\right)^{-1} 1
\end{aligned}
$$

- Computation in $O\left(\left|G_{1}\right|^{3}\left|G_{2}\right|^{3}\right)$


## Extensions 1: label enrichment

Atom relabebling with the Morgan index


- Compromise between fingerprints and structural keys features.
- Other relabeling schemes are possible (graph coloring).
- Faster computation with more labels (less matches implies a smaller product graph).


## Extension 2: Non-tottering walk kernel

## Tottering walks

A tottering walk is a walk $w=v_{1} \ldots v_{n}$ with $v_{i}=v_{i+2}$ for some $i$.


Tottering

- Tottering walks seem irrelevant for many applications
- Focusing on non-tottering walks is a way to get closer to the path kernel (e.g., equivalent on trees).


## Computation of the non-tottering walk kernel (Mahé et al., 2005)

- Second-order Markov random walk to prevent tottering walks
- Written as a first-order Markov random walk on an augmented graph
- Normal walk kernel on the augmented graph (which is always a directed graph).



## Extension 3: Subtree kernels



## Example: Tree-like fragments of molecules



## Computation of the subtree kernel

- Like the walk kernel, amounts to compute the (weighted) number of subtrees in the product graph.
- Recursion: if $\mathcal{T}(v, n)$ denotes the weighted number of subtrees of depth $n$ rooted at the vertex $v$, then:

$$
\mathcal{T}(v, n+1)=\sum_{R \subset \mathcal{N}(v)} \prod_{v^{\prime} \in R} \lambda_{t}\left(v, v^{\prime}\right) \mathcal{T}\left(v^{\prime}, n\right),
$$

where $\mathcal{N}(v)$ is the set of neighbors of $v$.

- Can be combined with the non-tottering graph transformation as preprocessing to obtain the non-tottering subtree kernel.


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs

- Motivation
- Explicit computation of features
- Graph kernels: the challenges
- Walk-based kernels


## Application in chemoinformatics (Mahé et al., 2004)

## MUTAG dataset

- aromatic/hetero-aromatic compounds
- high mutagenic activity /no mutagenic activity, assayed in Salmonella typhimurium.
- 188 compouunds: 125 + / 63 -


## Results

10-fold cross-validation accuracy

| Method | Accuracy |
| :--- | :---: |
| Progol1 | $81.4 \%$ |
| 2D kernel | $91.2 \%$ |

## 2D Subtree vs walk kernels



Screening of inhibitors for 60 cancer cell lines.

## Image classification (Harchaoui and Bach, 2007)

## COREL14 dataset

- 1400 natural images in 14 classes
- Compare kernel between histograms (H), walk kernel (W), subtree kernel (TW), weighted subtree kernel (wTW), and a combination (M).

Performance comparison on Corel14


## Summary: graph kernels

## What we saw

- Kernels do not allow to overcome the NP-hardness of subgraph patterns
- They allow to work with approximate subgraphs (walks, subtrees), in infinite dimension, thanks to the kernel trick
- However: using kernels makes it difficult to come back to patterns after the learning stage


## Kernels on graphs

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Graphs

## Motivation

Many data come in the form of nodes in a graph for different reasons:

- by definition (interaction network, internet...)
- by discretization / sampling of a continuous domain
- by convenience (e.g., if only a similarity function if available)


## Example: web



## Example: social network



## Example: protein-protein interaction



## Kernel on a graph



- We need a kernel $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ between nodes of the graph.
- Example: predict gene protein functions from high-throughput protein-protein interaction data.


## General remarks

## Strategies to make a kernel on a graph

- $\mathcal{X}$ being finite, any symmetric semi-definite matrix $K$ defines a valid p.d. kernel on $\mathcal{X}$.
- How to "translate" the graph topology into the kernel?
- Direct geometric approach: $K_{i, j}$ should be "large" when $\mathbf{x}_{i}$ and $\mathbf{x}_{j}$ are "close" to each other on the graph?
- Functional approach: "f I"k should be "smat"" when fis "smooth" on the graph?
- Link discrete/continuous: is there an equivalent to the continuous Gaussien kernel on the graph (e.g., limit by fine discretization)?


## General remarks

## Strategies to make a kernel on a graph

- $\mathcal{X}$ being finite, any symmetric semi-definite matrix $K$ defines a valid p.d. kernel on $\mathcal{X}$.
- How to "translate" the graph topology into the kernel?
- Direct geometric approach: $K_{i, j}$ should be "large" when $\mathbf{x}_{i}$ and $\mathbf{x}_{j}$ are "close" to each other on the graph?
- Functional approach: $\|f\|_{K}$ should be "small" when $f$ is "smooth" on the graph?
- Link discrete/continuous: is there an equivalent to the continuous Gaussien kernel on the graph (e.g., limit by fine discretization)?


## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Conditionally p.d. kernels

## Hilbert distance

- Any p.d. kernels is an inner product in a Hilbert space

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}} .
$$

- It defines a Hilbert distance:

$$
d_{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)^{2}=K(\mathbf{x}, \mathbf{x})+K\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right)-2 K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

- $-d_{K}^{2}$ is conditionally positive definite (c.p.d.), i.e.:

$$
\forall t>0, \quad \exp \left(-t d_{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)^{2}\right) \text { is p.d. }
$$

## Example

## A direct approach

- For $\mathcal{X}=\mathbb{R}^{n}$, the inner product is p.d.:

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{\top} \mathbf{x}^{\prime}
$$

- The corresponding Hilbert distance is the Euclidean distance:

$$
d_{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)^{2}=\mathbf{x}^{\top} \mathbf{x}+\mathbf{x}^{\prime \top} \mathbf{x}-2 \mathbf{x} \top \mathbf{x}^{\prime}=\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}
$$

- $-d_{K}^{2}$ is conditionally positive definite (c.p.d.), i.e.:

$$
\forall t>0, \quad \exp \left(-t\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right) \text { is p.d. }
$$

## Graph distance

## Graph embedding in a Hilbert space

- Given a graph $G=(V, E)$, the graph distance $d_{G}\left(x, x^{\prime}\right)$ between any two vertices is the length of the shortest path between $x$ and $x^{\prime}$.
- We say that the graph $G=(V, E)$ can be embedded (exactly) in a Hilbert space if $-d_{G}$ is c.p.d., which implies in particular that $\exp \left(-t d_{G}\left(x, x^{\prime}\right)\right)$ is p.d. for all $t>0$.

[^0]
## Graph distance

## Graph embedding in a Hilbert space

- Given a graph $G=(V, E)$, the graph distance $d_{G}\left(x, x^{\prime}\right)$ between any two vertices is the length of the shortest path between $x$ and $x^{\prime}$.
- We say that the graph $G=(V, E)$ can be embedded (exactly) in a Hilbert space if $-d_{G}$ is c.p.d., which implies in particular that $\exp \left(-t d_{G}\left(x, x^{\prime}\right)\right)$ is p.d. for all $t>0$.


## Lemma

- In general graphs can not be embedded exactly in Hilbert spaces.
- In some cases exact embeddings exists, e.g.:
- trees can be embedded exactly,
- closed chains can be embedded exactly.


## Example: non-c.p.d. graph distance



$$
d_{G}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 2 \\
1 & 0 & 2 & 2 & 1 \\
1 & 2 & 0 & 2 & 1 \\
1 & 2 & 2 & 0 & 1 \\
2 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$\lambda_{\min }\left(\left[e^{\left(-0.2 d_{G}(i, j)\right)}\right]\right)=-0.028<0$.

## Graph distance on trees are c.p.d.

## Proof

- Let $G=(V, E)$ a tree
- Fix a root $x_{0} \in V$
- Represent any vertex $x \in V$ by a vector $\Phi(x) \in \mathbb{R}^{|E|}$, where $\Phi(x)_{i}=1$ is the $i$-th edge is in the (unique) path between $x$ and $x_{0}, 0$ otherwise.
- Then:

$$
d_{G}\left(x, x^{\prime}\right)=\left\|\Phi(x)-\Phi\left(x^{\prime}\right)\right\|^{2}
$$

and therefore $-d_{G}$ is c.p.d., in particular $\exp \left(-t d_{G}\left(x, x^{\prime}\right)\right)$ is p.d. for all $t>0$.

## Example

$$
\left[e^{-d_{G}(i, j)}\right]=\left(\begin{array}{rrrrr}
1 & 0.14 & 0.37 & 0.14 & 0.05 \\
0.14 & 1 & 0.37 & 0.14 & 0.05 \\
0.37 & 0.37 & 1 & 0.37 & 0.14 \\
0.14 & 0.14 & 0.37 & 1 & 0.37 \\
0.05 & 0.05 & 0.14 & 0.37 & 1
\end{array}\right)
$$

## Graph distance on closed chains are c.p.d.

## Proof: case $|V|=2 p$

- Let $G=(V, E)$ a cycle with an even number of vertices $|V|=2 p$
- Fix a root $x_{0} \in V$, number the $2 p$ edges from $x_{0}$ to $x_{0}$.
- Map the $2 p$ edges in $\mathbb{R}^{p}$ to $\left(e_{1}, \ldots, e_{p},-e_{1}, \ldots,-e_{p}\right)$
- Map a vertex $v$ to the sum of the edges in the shortest path between $x_{0}$ and $v$.



## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Functional approach

## Motivation

- How to make p.d. kernel on general graphs?
- Making a kernel is equivalent to defining a RKHS.
- There are intuitive notions of smoothness on a graph


## Idea

- Define a priori a smoothness functional on the functions $f: \mathcal{X} \rightarrow \mathbb{R}$.
- Show that it defines a RKHS and identify the corresponding kernel


## Notations

- $\mathcal{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)$ is finite.
- For $\mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}$, we note $\mathbf{x} \sim \mathbf{x}^{\prime}$ to indicate the existence of an edge between $\mathbf{x}$ and $\mathbf{x}^{\prime}$
- We assume that there is no self-loop $\mathbf{x} \sim \mathbf{x}$, and that there is a single connected component.
- The adjacency matrix is $A \in \mathbb{R}^{m \times m}$ :

$$
A_{i, j}= \begin{cases}1 & \text { if } i \sim j \\ 0 & \text { otherwise }\end{cases}
$$

- $D$ is the diagonal matrix where $D_{i, i}$ is the number of neighbors of $\mathbf{x}_{i}\left(D_{i, i}=\sum_{i=1}^{m} A_{i, j}\right)$.


## Example

$$
A=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \quad D=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

## Graph Laplacian

## Definition

The Laplacian of the graph is the matrix $L=D-A$.

$$
L=D-A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
-1 & -1 & 3 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

## Properties of the Laplacian

## Lemma

Let $L=D-A$ be the Laplacian of a connected graph:

- For any $f: \mathcal{X} \rightarrow \mathbb{R}$,

$$
\Omega(f):=\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}=f^{\top} L f
$$

- L is a symmetric positive semi-definite matrix
- 0 is an eigenvalue with multiplicity 1 associated to the constant eigenvector $1=(1, \ldots, 1)$
- The image of $L$ is

$$
\operatorname{Im}(L)=\left\{f \in \mathbb{R}^{m}: \sum_{i=1}^{m} f_{i}=0\right\}
$$

## Proof: link between $\Omega(f)$ and $L$

$$
\begin{aligned}
\Omega(f) & =\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2} \\
& =\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)^{2}+f\left(\mathbf{x}_{j}\right)^{2}-2 f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right)\right) \\
& =\sum_{i=1}^{m} D_{i, i} f\left(\mathbf{x}_{i}\right)^{2}-2 \sum_{i \sim j} f\left(\mathbf{x}_{i}\right) f\left(\mathbf{x}_{j}\right) \\
& =f^{\top} D f-f^{\top} A f \\
& =f^{\top} L f
\end{aligned}
$$

## Proof: eigenstructure of $L$

- $L$ is symmetric because $A$ and $D$ are symmetric.
- For any $f \in \mathbb{R}^{m}, f^{\top} L f=\Omega(f) \geq 0$, therefore the (real-valued) eigenvalues of $L$ are $\geq 0: L$ is therefore positive semi-definite.
- $f$ is an eigenvector associated to eigenvalue 0
iff $f^{\top} L f=0$
iff $\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}=0$,
iff $f\left(\mathbf{x}_{i}\right)=f\left(\mathbf{x}_{j}\right)$ when $i \sim j$,
iff $f$ is constant (because the graph is connected).
- $L$ being symmetric, $\operatorname{Im}(L)$ is the orthogonal supplement of $\operatorname{Ker}(L)$, that is, the set of functions orthogonal to 1.


## Our first graph kernel

## Theorem

The set $\mathcal{H}=\left\{f \in \mathbb{R}^{m}: \sum_{i=1}^{m} f_{i}=0\right\}$ endowed with the norm:

$$
\Omega(f)=\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}
$$

is a RKHS whose reproducing kernel is $L^{*}$, the pseudo-inverse of the graph Laplacian.

## In case of...

## Pseudo-inverse of $L$

Remember the pseudo-inverse $L^{*}$ of $L$ is the linear application that is equal to:

- 0 on $\operatorname{Ker}(L)$
- $L^{-1}$ on $\operatorname{Im}(L)$, that is, if we write:

$$
L=\sum_{i=1}^{m} \lambda_{i} u_{i} u_{i}^{\top}
$$

the eigendecomposition of $L$ :

$$
L^{*}=\sum_{\lambda_{i} \neq 0}\left(\lambda_{i}\right)^{-1} u_{i} u_{i}^{\top}
$$

- In particular it holds that $L^{*} L=L L^{*}=\Pi_{\mathcal{H}}$, the projection onto $\operatorname{Im}(L)=\mathcal{H}$.


## Proof (1/2)

- Resticted to $\mathcal{H}$, the symmetric bilinear form:

$$
\langle f, g\rangle=f^{\top} L g
$$

is positive definite (because $L$ is positive semi-definite, and $\mathcal{H}=\operatorname{Im}(L))$. It is therefore a scalar product, making of $\mathcal{H}$ a Hilbert space (in fact Euclidean).

- The norm in this Hilbert space $\mathcal{H}$ is:

$$
\|f\|^{2}=\langle f, f\rangle=f^{\top} L f=\Omega(f)
$$

## Proof (2/2)

To check that $\mathcal{H}$ is a RKHS with reproducing kernel $K=L^{*}$, it suffices to show that:

$$
\begin{cases}\forall \mathbf{x} \in \mathcal{X}, & K_{\mathbf{x}} \in \mathcal{H} \\ \forall(\mathbf{x}, f) \in \mathcal{X} \times \mathcal{H}, & \left\langle f, K_{\mathbf{x}}\right\rangle=f(\mathbf{x})\end{cases}
$$

- $\operatorname{Ker}(K)=\operatorname{Ker}\left(L^{*}\right)=\operatorname{Ker}(L)$, implying $K 1=0$. Therefore, each row/column of $K$ is in $\mathcal{H}$.
- For any $f \in \mathcal{H}$, if we note $g_{i}=\langle K(i, \cdot), f\rangle$ we get:

$$
g=K L f=L^{*} L f=\Pi_{\mathcal{H}}(f)=f
$$

As a conclusion $K=L^{*}$ is the reproducing kernel of $\mathcal{H} . \quad \square$

## Example

$$
L^{*}=\left(\begin{array}{rrrrr}
0.88 & -0.12 & 0.08 & -0.32 & -0.52 \\
-0.12 & 0.88 & 0.08 & -0.32 & -0.52 \\
0.08 & 0.08 & 0.28 & -0.12 & -0.32 \\
-0.32 & -0.32 & -0.12 & 0.48 & 0.28 \\
-0.52 & -0.52 & -0.32 & 0.28 & 1.08
\end{array}\right)
$$

## Interpretation of the Laplacian



$$
\begin{aligned}
\Delta f(x) & =f^{\prime \prime}(x) \\
& \sim \frac{f^{\prime}(x+d x / 2)-f^{\prime}(x-d x / 2)}{d x} \\
& \sim \frac{f(x+d x)-f(x)-f(x)+f(x-d x)}{d x^{2}} \\
& =\frac{f_{i-1}+f_{i+1}-2 f(x)}{d x^{2}} \\
& =-\frac{L f(i)}{d x^{2}}
\end{aligned}
$$

## Interpretation of regularization

For $f=[0,1] \rightarrow \mathbb{R}$ and $x_{i}=i / m$, we have:

$$
\begin{aligned}
\Omega(f) & =\sum_{i=1}^{m}\left(f\left(\frac{i+1}{m}\right)-f\left(\frac{i}{m}\right)\right)^{2} \\
& \sim \sum_{i=1}^{m}\left(\frac{1}{m} \times f^{\prime}\left(\frac{i}{m}\right)\right)^{2} \\
& =\frac{1}{m} \times \frac{1}{m} \sum_{i=1}^{m} f^{\prime}\left(\frac{i}{m}\right)^{2} \\
& \sim \frac{1}{m} \int_{0}^{1} f^{\prime}(t)^{2} d t
\end{aligned}
$$

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Motivation

- Consider the normalized Gaussian kernel on $\mathbb{R}^{d}$ :

$$
K_{t}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{4 t}\right)
$$

- In order to transpose it to the graph, replacing the Euclidean distant by the shortest-path distance does not work.
- In this section we provide a characterization of the Gaussian kernel as the solution of a partial differential equation involving the Laplacian, which we can transpose to the graph: the diffusion equation.
- The solution of the discrete diffusion equation will be called the diffusion kernel or heat kernel.


## The diffusion equation

## Lemma

For any $\mathbf{x}_{0} \in \mathbb{R}^{d}$, the function:

$$
K_{\mathbf{x}_{0}}(\mathbf{x}, t)=K_{t}\left(\mathbf{x}_{0}, \mathbf{x}\right)=\frac{1}{(4 \pi t)^{\frac{d}{2}}} \exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}}{4 t}\right) .
$$

is solution of the diffusion equation:

$$
\frac{\partial}{\partial t} K_{\mathbf{x}_{0}}(\mathbf{x}, t)=\Delta K_{\mathbf{x}_{0}}(\mathbf{x}, t)
$$

with initial condition $K_{\mathbf{x}_{0}}(\mathbf{x}, 0)=\delta_{\mathbf{x}_{0}}(\mathbf{x})$
(proof $=$ direct computation).

## Discrete diffusion equation

For finite-dimensional $f_{t} \in \mathbb{R}^{m}$, the diffusion equation becomes:

$$
\frac{\partial}{\partial t} f_{t}=-L f_{t}
$$

which admits the following solution:

$$
f_{t}=f_{0} e^{-t L}
$$

with

$$
e^{t L}=I-t L+\frac{t^{2}}{2!} L^{2}-\frac{t^{3}}{3!} L^{3}+\ldots
$$

## Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:

$$
K=e^{-t L}
$$

which is indeed symmetric positive semi-definite because if we write:

$$
L=\sum_{i=1}^{m} \lambda_{i} u_{i} u_{i}^{\top} \quad\left(\lambda_{i} \geq 0\right)
$$

we obtain:

$$
K=e^{-t L}=\sum_{i=1}^{m} e^{-t \lambda_{i}} u_{i} u_{i}^{\top}
$$

## Example: complete graph



## Example: closed chain



$$
K_{i, j}=\frac{1}{m} \sum_{\nu=0}^{m-1} \exp \left[-2 t\left(1-\cos \frac{2 \pi \nu}{m}\right)\right] \cos \frac{2 \pi \nu(i-j)}{m} .
$$

## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Motivation

- In this section we show that the diffusion and Laplace kernels can be interpreted in the frequency domain of functions
- This shows that our strategy to design kernels on graphs was based on (discrete) harmonic analysis on the graph
- This follows the approach we developed for semigroup kernels!


## Spectrum of the diffusion kernel

- Let $0=\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{m}$ be the eigenvalues of the Laplacian:

$$
L=\sum_{i=1}^{m} \lambda_{i} u_{i} u_{i}^{\top} \quad\left(\lambda_{i} \geq 0\right)
$$

- The diffusion kernel $K_{t}$ is an invertible matrix because its eigenvalues are strictly positive:

$$
K_{t}=\sum_{i=1}^{m} e^{-t \lambda_{i}} u_{i} u_{i}^{\top}
$$

## Norm in the diffusion RKHS

- Any function $f \in \mathbb{R}^{m}$ can be written as $f=K\left(K^{-1} f\right)$, therefore its norm in the diffusion RKHS is:

$$
\|f\|_{K_{t}}^{2}=\left(f^{\top} K^{-1}\right) K\left(K^{-1} f\right)=f^{\top} K^{-1} f
$$

- For $i=1, \ldots, m$, let:

$$
\hat{f}_{i}=u_{i}^{\top} f
$$

be the projection of $f$ onto the eigenbasis of $K$.

- We then have:

$$
\|f\|_{K_{t}}^{2}=f^{\top} K^{-1} f=\sum_{i=1}^{m} e^{t \lambda_{i}} \hat{f}_{i}^{2}
$$

- This looks similar to $\int|\hat{f}(\omega)|^{2} e^{\sigma^{2} \omega^{2}} d \omega$...


## Discrete Fourier transform

## Definition

The vector $\hat{f}=\left(\hat{f}_{1}, \ldots, \hat{f}_{m}\right)^{\top}$ is called the discrete Fourier transform of $f \in \mathbb{R}^{n}$

- The eigenvectors of the Laplacian are the discrete equivalent to the sine/cosine Fourier basis on $\mathbb{R}^{n}$.
- The eigenvalues $\lambda_{i}$ are the equivalent to the frequencies $\omega^{2}$
- Successive eigenvectors "oscillate" increasingly as eigenvalues get more and more negative.


## Example: eigenvectors of the Laplacian



## Generalization

This observation suggests to define a whole family of kernels:

$$
K_{r}=\sum_{i=1}^{m} r\left(\lambda_{i}\right) u_{i} u_{i}^{\top}
$$

associated with the following RKHS norms:

$$
\|f\|_{K_{r}}^{2}=\sum_{i=1}^{m} \frac{\hat{f}_{i}^{2}}{r\left(\lambda_{i}\right)}
$$

where $r: \mathbb{R}^{+} \rightarrow \mathbb{R}_{*}^{+}$is a non-increasing function.

## Example : regularized Laplacian

$$
\begin{gathered}
r(\lambda)=\frac{1}{\lambda+\epsilon}, \quad \epsilon>0 \\
K=\sum_{i=1}^{m} \frac{1}{\lambda_{i}+\epsilon} u_{i} u_{i}^{\top}=(L+\epsilon I)^{-1} \\
\|f\|_{K}^{2}=f^{\top} K^{-1} f=\sum_{i \sim j}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right)^{2}+\epsilon \sum_{i=1}^{m} f\left(\mathbf{x}_{i}\right)^{2} .
\end{gathered}
$$

## Example



## Outline

(9) Kernels and RKHS
(2) Kernels Methods
(3) Pattern recognition

4 Kernel examples
(5) Kernels for biological sequences

6 Kernels for graphs
(7) Kernels on graphs

- Motivation
- Graph distance and p.d. kernels


## Applications 1: graph partitioning

- A classical relaxation of graph partitioning is:

$$
\min _{f \in \mathbb{R}^{\mathcal{X}}} \sum_{i \sim j}\left(f_{i}-f_{j}\right)^{2} \quad \text { s.t. } \sum_{i} f_{i}^{2}=1
$$

- This can be rewritten

$$
\max _{f} \sum_{i} f_{i}^{2} \text { s.t. } \quad\|f\|_{\mathcal{H}} \leq 1
$$

- This is principal component analysis in the RKHS ("kernel PCA")



## Applications 2: search on a graph

- Let $x_{1}, \ldots, x_{q}$ a set of $q$ nodes (the query). How to find "similar" nodes (and rank them)?
- One solution:

$$
\min _{f}\|f\|_{\mathcal{H}} \quad \text { s.t. } \quad f\left(x_{i}\right) \geq 1 \text { for } i=1, \ldots, q .
$$



## Application 3: Semi-supervised learning



## Application 3: Semi-supervised learning



## Application 4: Tumor classification from microarray data

## Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)
- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes


## Application 4: Tumor classification from microarray data

## Data available

- Gene expression measures for more than 10k genes
- Measured on less than 100 samples of two (or more) different classes (e.g., different tumors)


## Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes


## Linear classifiers

## The approach

- Each sample is represented by a vector $x=\left(x_{1}, \ldots, x_{p}\right)$ where $p>10^{5}$ is the number of probes
- Classification: given the set of labeled sample, learn a linear decision function:

$$
f(x)=\sum_{i=1}^{p} \beta_{i} x_{i}+\beta_{0}
$$

that is positive for one class, negative for the other

- Interpretation: the weight $\beta_{i}$ quantifies the influence of gene $i$ for the classification


## Linear classifiers

## Pitfalls

- No robust estimation procedure exist for 100 samples in $10^{5}$ dimensions!
- It is necessary to reduce the complexity of the problem with prior knowledge.


## Example : Norm Constraints

## The approach

A common method in statistics to learn with few samples in high dimension is to constrain the norm of $\beta$, e.g.:

- Euclidean norm (support vector machines, ridge regression):

$$
\|\beta\|_{2}=\sum_{i=1}^{p} \beta_{i}^{2}
$$

- $L_{1}$-norm (lasso regression) : $\|\beta\|_{1}=\sum_{i=1}^{p}\left|\beta_{i}\right|$


## Pros

- Good performance in classification


## Cons

- Limited interpretation (small weights)
- No prior biological knowledge


## Example 2: Feature Selection

## The approach

Constrain most weights to be 0, i.e., select a few genes (<20) whose expression are enough for classification. Interpretation is then about the selected genes.

## Pros

- Good performance in classification
- Useful for biomarker selection
- Apparently easy interpretation


## Cons

- The gene selection process is usually not robust
- Wrong interpretation is the rule (too much correlation between genes)


## Pathway interpretation

## Motivation

- Basic biological functions are usually expressed in terms of pathways and not of single genes (metabolic, signaling, regulatory)
- Many pathways are already known
- How to use this prior knowledge to constrain the weights to have an interpretation at the level of pathways?


## Solution (Rapaport et al., 2006)

- Constrain the diffusion RKHS norm of $\beta$
- Relevant if the true decision function is indeed smooth w.r.t. the biological network


## Pathway interpretation



## Bad example

- The graph is the complete known metabolic network of the budding yeast (from KEGG database)
- We project the classifier weight learned by a SVM
- Good classification accuracy, but no possible interpretation!


## Pathway interpretation



## Conclusion

## What we saw

- Basic definitions of p.d. kernels and RKHS
- How to use RKHS in machine learning
- The importance of the choice of kernels, and how to include "prior knowledge" there.
- Several approaches for kernel design (there are many!)
- Review of kernels for strings and on graphs


## What we did not see

- How to automatize the process of kernel design (kernel selection? kernel optimization?)
- How to deal with non p.d. kernels (tends to become the rule in applications)
- Applications beyond bioinformatics (there are many!).


## Further reading

## Kernels and RKHS: general

N. Aronszajn.

Theory of reproducing kernels.
Trans. Am. Math. Soc., 68:337-404, 1950.
䍰 C. Berg, J. P. R. Christensen, and P. Ressel.
Harmonic analysis on semigroups.
Springer-Verlag, New-York, 1984.
圊 G. Wahba.
Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics.
SIAM, Philadelphia, 1990.

## Further reading

## Learning with kernels

圊 V. N. Vapnik.
Statistical Learning Theory. Wiley, New-York, 1998.
B. B. Schölkopf and A. J. Smola.

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, 2002.
U. Shawe-Taylor and N. Cristianini.

Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.
嗇 B. Schölkopf, K. Tsuda, and J.-P. Vert.
Kernel Methods in Computational Biology.
MIT Press, 2004.

## Further reading

## String kernels (1/2)

Ti Jaakkola, M. Diekhans, and D. Haussler.
A Discriminative Framework for Detecting Remote Protein Homologies.
J. Comput. Biol., 7(1,2):95-114, 2000.

国 D. Haussler.
Convolution Kernels on Discrete Structures.
Technical Report UCSC-CRL-99-10, UC Santa Cruz, 1999.
固 C. Leslie, E. Eskin, and W.S. Noble.
The spectrum kernel: a string kernel for SVM protein classification.
In PSB 2002, pages 564-575. World Scientific, 2002.

## Further reading

## String kernels (2/2)

R. K. Tsuda, T. Kin, and K. Asai.

Marginalized Kernels for Biological Sequences.
Bioinformatics, 18:S268-S275, 2002.
圊 J.-P. Vert, H. Saigo, and T. Akutsu.
Local alignment kernels for biological sequences.
In B. Schölkopf, K. Tsuda, and J.P. Vert, editors, Kernel Methods in Computational Biology, pages 131-154. MIT Press, 2004.

圊 M. Cuturi and J.-P. Vert.
The context-tree kernel for strings.
Neural Network., 18(4):1111-1123, 2005.

## Further reading

## Kernels on graphs

R R. I. Kondor and J. Lafferty.
Diffusion Kernels on Graphs and Other Discrete Input. In ICML 2002, 2002.

## Semigroup kernels

R C. Berg, J. P. R. Christensen, and P. Ressel.
Harmonic analysis on semigroups.
Springer-Verlag, New-York, 1984.
( M. Cuturi, K. Fukumizu, and J.P. Vert.
Semigroup Kernels on Measures.
J. Mach. Learn. Res., 6:1169-1198, 2005.


[^0]:    Lemma

    - In general graphs can not be embedded exactly in Hilbert spaces. In some cases exact embeddings exists, e.g.
    - trees can be embedded exactly,
    - closed chains can be embedded exactly.

