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Part 1

Kernels and RKHS
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Overview

Motivations
Develop versatile algorithms to process and analyze data
No hypothesis made regarding the type of data (vectors, strings,
graphs, images, ...)

The approach
Develop methods based on pairwise comparisons.
By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).
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Representation by pairwise comparisons

1    0.5  0.3
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K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Idea
Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1,x2, . . . ,xn} by the n × n
matrix:

[K ]ij := K
(
xi ,xj

)
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Representation by pairwise comparisons

Remarks
Always a n × n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).
Total modularity between the choice of K and the choice of the
algorithm.
Poor scalability w.r.t to the dataset size (n2)
We will restrict ourselves to a particular class of pairwise
comparison functions.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X is a function
K : X × X → R symmetric:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= K

(
x′,x

)
,

and which satisfies, for all N ∈ N, (x1,x2, . . . ,xN) ∈ XN et
(a1,a2, . . . ,aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK
(
xi ,xj

)
≥ 0.
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Similarity matrices of p.d. kernels

Remarks
Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and
any set of points (x1,x2, . . . ,xN) ∈ XN , the similarity matrix
[K ]ij := K

(
xi ,xj

)
is positive semidefinite.

Kernel methods are algorithm that take such matrices as input.
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The simplest p.d. kernel

Lemma
Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
=
〈
x,x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof
〈x,x′〉Rd = 〈x′,x〉Rd ,∑N

i=1
∑N

j=1 aiaj
〈
xi ,xj

〉
Rd = ‖

∑N
i=1 aixi ‖2Rd ≥ 0
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A more ambitious p.d. kernel

φ
X F

Lemma
Let X be any set, and Φ : X 7→ Rd . Then the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)Rd 〉 ,∑N

i=1
∑N

j=1 aiaj
〈
Φ (xi) ,Φ

(
xj
)〉

Rd = ‖
∑N

i=1 aiΦ (xi) ‖2Rd ≥ 0 .
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Conversely: Kernels as Inner Products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x,x′ in X :

K
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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In case of ...

Definitions
An inner product on an R-vector space H is a mapping
(f ,g) 7→ 〈f ,g〉H from H2 to R that is bilinear, symmetric and such
that 〈f , f 〉 > 0 for all f ∈ H\{0}.
A vector space endowed with an inner product is called
pre-Hilbert. It is endowed with a norm defined by the inner product

as ‖ f ‖H = 〈f , f 〉
1
2
H.

A Hilbert space is a pre-Hilbert space complete for the norm
defined by the inner product.
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Proof: finite case

Proof
Suppose X = {x1,x2, . . . ,xN} is finite of size N.
Any p.d. kernel K : X × X → R is entirely defined by the N × N
symmetric positive semidefinite matrix [K ]ij := K

(
xi ,xj

)
.

It can therefore be diagonalized on an orthonormal basis of
eigenvectors (u1,u2, . . . ,uN), with non-negative eigenvalues
0 ≤ λ1 ≤ . . . ≤ λN , i.e.,

K
(
xi ,xj

)
=

[
N∑

l=1

λlulu>l

]
ij

=
N∑

l=1

λlul(i)ul(j) =
〈
Φ (xi) ,Φ

(
xj
)〉

RN ,

with

Φ (xi) =


√
λ1u1(i)

...√
λNuN(i)

 . �
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Proof: general case

Mercer (1909) for X = [a,b] ⊂ R (more generally X compact) and
K continuous.
Kolmogorov (1941) for X countable.
Aronszajn (1944, 1950) for the general case.
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RKHS Definition

Definition
Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f ,Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).
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An equivalent definition of RKHS

Theorem
The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary
Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .
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An equivalent definition of RKHS

Theorem
The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary
Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .

Jean-Philippe Vert (Mines ParisTech) 20 / 402



Proof

If H is a RKHS then f 7→ f (x) is continuous
If a r.k. K exists, then for any (x, f ) ∈ X ×H:

| f (x) | = | 〈f ,Kx〉H |
≤ ‖ f ‖H.‖Kx ‖H (Cauchy-Schwarz)

≤ ‖ f ‖H.K (x,x)
1
2 ,

because ‖Kx ‖2H = 〈Kx,Kx〉H = K (x,x). Therefore f ∈ H 7→ f (x) ∈ R
is a continuous linear mapping. �
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Proof (Converse)

If f 7→ f (x) is continuous then H is a RKHS
Conversely, let us assume that for any x ∈ X the linear form
f ∈ H 7→ f (x) is continuous.
Then by Riesz representation theorem there (general property of
Hilbert spaces) there exists a unique gx ∈ H such that:

f (x) = 〈f ,gx〉H

The function K (x,y) = gx (y) is then a r.k. for H. �
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Unicity of r.k. and RKHS

Theorem
If H is a RKHS, then it has a unique r.k.
Conversely, a function K can be the r.k. of at most one RKHS.

Consequence
This shows that we can talk of "the" kernel of a RKHS, or "the" RKHS
of a kernel.

Jean-Philippe Vert (Mines ParisTech) 23 / 402
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Proof

If a r.k. exists then it is unique
Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

‖Kx − K ′x ‖2H =
〈
Kx − K ′x,Kx − K ′x

〉
H

=
〈
Kx − K ′x,Kx

〉
H −

〈
Kx − K ′x,K

′
x
〉
H

= Kx (x)− K ′x (x)− Kx (x) + K ′x (x)

= 0 .

This shows that Kx = K ′x as functions, i.e., Kx(y) = K ′x(y) for any
y ∈ X . In other words, K=K’. �

The RKHS of a r.k. K is unique
Left as exercice.
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An important result

Theorem
A function K : X × X → R is p.d. if and only if it is a r.k.
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Proof

A r.k. is p.d.
1 A r.k. is symmetric because, for any (x,y) ∈ X 2:

K (x,y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = K (y,x) .

2 It is p.d. because for any N ∈ N,(x1,x2, . . . ,xN) ∈ XN , and
(a1,a2, . . . ,aN) ∈ RN :

N∑
i,j=1

aiajK
(
xi ,xj

)
=

N∑
i,j=1

aiaj
〈
Kxi ,Kxj

〉
H

= ‖
N∑

i=1

aiKxi ‖
2
H

≥ 0. �
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Proof

A p.d. kernel is a r.k. (1/4)
Let H0 be the vector subspace of RX spanned by the functions
{Kx}x∈X .
For any f ,g ∈ H0, given by:

f =
m∑

i=1

aiKxi , g =
n∑

j=1

bjKyj ,

let:
〈f ,g〉H0

:=
∑
i,j

aibjK
(
xi ,yj

)
.
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Proof

A p.d. kernel is a r.k. (2/4)
〈f ,g〉H0

does not depend on the expansion of f and g because:

〈f ,g〉H0
=

m∑
i=1

aig (xi) =
n∑

j=1

bj f
(
yj
)
.

This also shows that 〈., .〉H0
is a symmetric bilinear form.

This also shows that for any x ∈ X and f ∈ H0:

〈f ,Kx〉H0
= f (x) .
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Proof

A p.d. kernel is a r.k. (3/4)
K is assumed to be p.d., therefore:

‖ f ‖2H0
=

m∑
i,j=1

aiajK
(
xi ,xj

)
≥ 0 .

In particular Cauchy-Schwarz is valid with 〈., .〉H0
.

By Cauchy-Schwarz we deduce that ∀x ∈ X :

| f (x) | =
∣∣∣ 〈f ,Kx〉H0

∣∣∣ ≤ ‖ f ‖H0 .K (x,x)
1
2 ,

therefore ‖ f ‖H0 = 0 =⇒ f = 0.
H0 is therefore a pre-Hilbert space endowed with the inner
product 〈., .〉H0

.
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Proof

A p.d. kernel is a r.k. (4/4)

For any Cauchy sequence (fn)n≥0 in
(
H0, 〈., .〉H0

)
, we note that:

∀ (x,m,n) ∈ X × N2, | fm (x)− fn (x) | ≤ ‖ fm − fn ‖H0 .K (x,x)
1
2 .

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and
has therefore a limit.
If we add to H0 the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercice). �
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Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x,x′ in X :

K
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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Proof of Aronzsajn’s theorem

Proof
If K is p.d. over a set X then it is the r.k. of a Hilbert space
H ⊂ RX .
Let the mapping Φ : X → H defined by:

∀x ∈ X , Φ(x) = Kx .

By the reproducing property we have:

∀ (x,y) ∈ X 2, 〈Φ(x),Φ(y)〉H = 〈Kx,Ky〉H = K (x,y) . �

φ
X F
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RKHS of the linear kernel

Explicit characterization

Let X = Rd and K (x,y) = 〈x,y〉Rd be the linear kernel
The corresponding RKHS consists of functions:

x ∈ Rd 7→ f (x) =
∑

i

ai 〈xi ,x〉Rd = 〈w,x〉Rd ,

with w =
∑

i aixi .
The RKHS is therefore the set of linear forms endowed with the
following inner product:

〈f ,g〉HK
= 〈w,v〉Rd ,

when f (x) = w.x and g (x) = v.x.
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RKHS of the linear kernel (cont.)


Klin (x,x′) = x>x′ .
f (x) = w>x ,
‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5
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Smoothness functional

A simple inequality
By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x,x′ ∈ X :∣∣ f (x)− f

(
x′
) ∣∣ = | 〈f ,Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x,x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.
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Kernels and RKHS : Summary

P.d. kernels can be thought of as inner product after embedding
the data space X in some Hilbert space. As such a p.d. kernel
defines a metric on X .
A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.
The RKHS is a space of functions over X . The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the
metric defined by the kernel on X .
We will now see some applications of kernels and RKHS in
statistics, before coming back to the problem of choosing (and
eventually designing) the kernel.
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Part 2

Kernels Methods
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Motivations

Two theoretical results underpin a family of powerful algorithms for
data analysis using positive definite kernels, collectively known as
kernel methods:

The kernel trick, based on the representation of p.d. kernels as
inner products,
the representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.
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Motivations

Choosing a p.d. kernel K on a set X amounts to embedding the
data in a Hilbert space: there exists a Hilbert space H and a
mapping Φ : X 7→ H such that, for all x,x′ ∈ X ,

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

However this mapping might not be explicitly given, nor convenient
to work with in practice (e.g., large or even infinite dimensions).
A solution is to work implicitly in the feature space!
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The kernel trick

Kernel trick
Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

Remark
The proof of this proposition is trivial, because the kernel is exactly
the inner product in the feature space.
This trick has huge practical applications.
Vectors in the feature space are only manipulated implicitly,
through pairwise inner products.
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Example 1: computing distances in the feature space

φ
X F

x1

x2

x1

x2φ(     )

φ(    )d(x1,x2)

dK (x1,x2)2 = ‖Φ (x1)− Φ (x2) ‖2H
= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1,x2)2 = K (x1,x1) + K (x2,x2)− 2K (x1,x2)
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Distance for the Gaussian kernel

The Gaussian kernel with
bandwidth σ on Rd is:

K (x,y) = e−
‖ x−y ‖2

2σ2 ,

K (x,x) = 1 = ‖Φ (x) ‖2H, so all
points are on the unit sphere in
the feature space.
The distance between the
images of two points x and y in
the feature space is given by:

dK (x,y) =

√
2
[
1− e−

‖ x−y ‖2

2σ2

] −4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

||x−y||

d(
x,

y)
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Example 2: distance between a point and a set

Problem
Let S = (x1, · · · ,xn) be a finite set of points in X .
How to define and compute the similarity between any point x in X
and the set S?

A solution
Map all points to the feature space
Summarize S by the barycenter of the points:

m :=
1
n

n∑
i=1

Φ (xi) .

Define the distance between x and S by:

dK (x,S) := ‖Φ (x)−m ‖H .
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m :=
1
n

n∑
i=1

Φ (xi) .

Define the distance between x and S by:

dK (x,S) := ‖Φ (x)−m ‖H .
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Computation

φ
X F

m

Kernel trick

dK (x,S) = ‖Φ (x)− 1
n

n∑
i=1

Φ(xi) ‖H

=

√√√√K (x,x)− 2
n

n∑
i=1

K (x,xi) +
1
n2

n∑
i=1

n∑
j=1

K (xi ,xj).
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Remarks

Remarks
The barycentre m only exists in the feature space in general: it
does not necessarily have a pre-image xm such that Φ (xm) = m.
The distance obtained is a Hilbert metric (e.g., Pythagoras
theorem holds etc..)
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1D illustration

S = {2,3}
Plot f (x) = d(x ,S)

k (x,y) = xy.

(linear)
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2D illustration

S = {(1,1)′, (1,2)′, (2,2)′}
Plot f (x) = d(x ,S)
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Application in discrimination

S1 = {(1,1)′, (1,2)′} and S2 = {(1,3)′, (2,2)′}
Plot f (x) = d (x,S1)2 − d (x,S2)2
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Example 3: Centering data in the feature space

Problem
Let S = (x1, · · · ,xn) be a finite set of points in X endowed with a
p.d. kernel K . Let G be their n × n Gram matrix: Gi,j = K

(
xi ,xj

)
.

Let m = 1/n
∑n

i=1 Φ (xi) their barycenter, and ui = Φ (xi)−m for
i = 1, . . . ,n be centered data in H.
How to compute the centered Gram matrix Gc

i,j =
〈
ui ,uj

〉
H?

φ
X F

m
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Computation

Kernel trick
A direct computation gives, for 0 ≤ i , j ≤ n:

Gc
i,j =

〈
Φ (xi)−m,Φ

(
xj
)
−m

〉
H

=
〈
Φ (xi) ,Φ

(
xj
)〉
H −

〈
m,Φ (xi) + Φ

(
xj
)〉
H + 〈m,m〉H

= Gi,j −
1
n

n∑
k=1

(
Gi,k + Gj,k

)
+

1
n2

n∑
k ,l=1

Gk ,l .

This can be rewritten in matricial form:

Gc = G − UG −GU + UGU = (I − U) G (I − U) ,

where Ui,j = 1/n for 1 ≤ i , j ≤ n.
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Kernel trick Summary

Summary
The kernel trick is a trivial statement with important applications.
It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.
It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner
product by a valid kernel for the data.
It allows in some cases to embed the initial space to a larger
feature space and involve points in the feature space with no
pre-image (e.g., barycenter).
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The Theorem

Representer Theorem
Let X be a set endowed with a p.d. kernel K , HK the
corresponding RKHS, and S = {x1, · · · ,xn} ⊂ X a finite set of
points in X .
Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.
Then, any solution to the optimization problem:

min
f∈HK

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK ) , (1)

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi ,x) . (2)
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Proof (1/2)

Let ξ (f ,S) be the functional that is minimized in the statement of
the representer theorem, and HSK the linear span in HK of the
vectors Kxi , i.e.,

HSK =

{
f ∈ HK : f (x) =

n∑
i=1

αiK (xi ,x) , (α1, · · · , αn) ∈ Rn

}
.

HSK finite-dimensional subspace, therefore any function f ∈ HK
can be uniquely decomposed as:

f = fS + f⊥ ,

with fS ∈ HSK and f⊥ ⊥ HSK (by orthogonal projection).

Jean-Philippe Vert (Mines ParisTech) 56 / 402



Proof (2/2)

HK being a RKHS it holds that:

∀i = 1, · · · ,n, f⊥ (xi) = 〈f⊥,K (xi , .)〉HK = 0 ,

because K (xi , .) ∈ HK , therefore:

∀i = 1, · · · ,n, f (xi) = fS (xi) .

Pythagoras’ theorem in HK then shows that:

‖ f ‖2HK
= ‖ fS ‖2HK

+ ‖ f⊥ ‖2HK
.

As a consequence, ξ (f ,S) ≥ ξ (fS ,S) , with equality if and only if
‖ f⊥ ‖HK = 0. The minimum of Ψ is therefore necessarily in HSK .
�
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Remarks

Practical and theoretical consequences
Often the function Ψ has the form:

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK ) = c (f (x1) , · · · , f (xn)) + λΩ (‖ f ‖HK )

where c(.) measures the “fit” of f to a given problem (regression,
classification, dimension reduction, ...) and Ω is strictly increasing.
This formulation has two important consequences:

Theoretically, the minimization will enforce the norm ‖ f ‖HK to be
“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).
Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.
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Remarks

Dual interpretations of kernel methods
Most kernel methods have two complementary interpretations:

A geometric interpretation in the feature space, thanks to the
kernel trick. Even when the feature space is “large”, most kernel
methods work in the linear span of the embeddings of the points
available.
A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.
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Principal Component Analysis (PCA)

Classical setting

Let S = {x1, . . . ,xn} be a set of vectors (xi ∈ Rd )
PCA is a classical algorithm in multivariate statistics to define a
set of orthogonal directions that capture the maximum variance
Applications: low-dimensional representation of high-dimensional
points, visualization

PC1PC2
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Principal Component Analysis (PCA)

Formalization
Assume that the data are centered (otherwise center them as
preprocessing), i.e.:

n∑
i=1

xi = 0.

The orthogonal projection onto a direction w ∈ Rd is the function
hw : X → R defined by:

hw (x) = x>
w
‖w ‖

.
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Principal Component Analysis (PCA)

Formalization
The empirical variance captured by hw is:

ˆvar (hw) :=
1
n

n∑
i=1

hw (xi)
2 =

1
n

n∑
i=1

(
x>i w

)2

‖w ‖2
.

The i-th principal direction wi (i = 1, . . . ,d) defined by:

wi = arg max
w⊥{w1,...,wi−1}

ˆvar (hw) .
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Principal Component Analysis (PCA)

Solution
Let X be the n × d data matrix whose rows are the vectors
x1, . . . ,xn. We can then write:

ˆvar (hw) =
1
n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1
n

w>X>Xw
w>w

.

The solutions of:

wi = arg max
w⊥{w1,...,wi−1}

1
n

w>X>Xw
w>w

are the successive eigenvectors of C = X>X , ranked by
decreasing eigenvalues.
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Functional point of view

Let K (x,y) = x>y be the linear kernel.
The associated RKHS H is the set of linear functions:

fw (x) = w>x ,

endowed with the norm ‖ fw ‖H = ‖w ‖Rd .
Therefore we can write:

ˆvar (hw) =
1
n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1
n‖ fw ‖2

n∑
i=1

fw(xi)
2.

Moreover, w ⊥ w′ ⇔ fw ⊥ fw′ .
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Functional point of view

In other words, PCA solves, for i = 1, . . . ,d :

fi = arg max
f⊥{f1,...,fi−1}

1
n‖ f ‖2

n∑
i=1

f (xi)
2.

We can apply the representer theorem (exercice: check that is is
also valid in a linear subspace): for i = 1, . . . ,d , we have:

∀x ∈ X , fi (x) =
n∑

j=1

αi,jK
(
xj ,x

)
,

with αi =
(
αi,1, . . . , αi,n

)> ∈ Rn.
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Functional point of view

Therefore we have:

‖ fi ‖2H =
d∑

k ,l=1

αi,kαi,lk (xk ,xl) = α>i Kαi ,

Similarly:
n∑

k=1

fi (xk )2 = α>i K 2αi .
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Functional point of view

PCA maximizes in α the function:

αi = arg max
α

α>K 2α

nα>Kα
,

under the constraints:

α>i Kαj = 0 for j = 1, . . . , i − 1 .
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Solution

Let (e1, . . . ,en) be an orthonormal basis of eigenvectors of K with
eigenvalues λ1 ≥ . . . ≥ λn ≥ 0.
Let αi =

∑n
j=1 βijej , then

α>i K 2αi

nα>i Kαi
=

∑n
j=1 β

2
ij λ

2
j

n
∑n

j=1 β
2
ij λj

,

which is maximized at α1 = β11e1, α2 = β22e2, etc...
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Normalization

For αi = βiiei , we want:

1 = ‖ fi ‖2H = α>i Kαi = β2
ii λi .

Therefore:
αi =

1√
λi

ei .
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Kernel PCA: summary

1 Center the Gram matrix
2 Compute the first eigenvectors (ei , λi)

3 Normalize the eigenvectors αi = ei/
√
λi

4 The projections of the points onto the i-th eigenvector is given by
Kαi
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Kernel PCA: remarks

In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting
Exercice: check that X>X and XX> have the same spectrum (up
to 0 eigenvalues) and that the eigenvectors are related by a
simple relationship.
This formulation remains valid for any p.d. kernel: this is kernel
PCA
Applications: nonlinear PCA with nonlinear kernels for vectors,
PCA of non-vector objects (strings, graphs..) with specific
kernels...
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Example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed
using a kernel for
sequences (the
second-order marginalized
kernel based on SCFG).
This set of tRNAs contains
three classes, called
Ala-AGC (white circles),
Asn-GTT (black circles) and
Cys-GCA (plus symbols)
(from Tsuda et al., 2003).
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Regression

Setup
Let S = {x1, . . . ,xn} ∈ X n be a set of points
Let {y1, . . . , yn} ∈ Rn be real numbers attached to the points
Regression = find a function f : X → R to predict y by f (x)
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Least-square regression

Let us quantify the error if f predicts f (x) instead of y by:

V (f (x) , y) = (y − f (x))2 .

Fix a set of functions H
Least-square regression amounts to solve:

f̂ = arg min
f∈H

1
n

n∑
i=1

(yi − f (xi))2

Issues: unstable (especially in large dimensions), overfitting if H is
too “large”
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Regularized least-square

Let us take H = Hk , the RKHS associated to a p.d. kernel k on X
Let us regularize the functional to be minimized by:

f̂ = arg min
f∈Hk

1
n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2Hk
.

1st effect = prevent overfitting by penalizing the non-smooth
functions
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Representation of the solution

By the representer theorem, any solution of:

f̂ = arg min
f∈Hk

1
n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2Hk
.

can be expanded as:

f̂ =
n∑

i=1

αiK (xi ,x) .

2nd effect = simplify the solution
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Dual formulation

Let α = (α1, . . . , αn)> ∈ Rn,
Let K be the n × n Gram matrix: Ki,j = K

(
xi ,xj

)
.

We can then write: (
f̂ (x1) , . . . , f̂ (xn)

)>
= Kα,

The following holds as usual:

‖ f̂ ‖2Hk
= α>Kα.
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Dual formulation

The problem is therefore equivalent to:

arg min
α∈Rn

1
n

(Kα− y)> (Kα− y) + λα>Kα.

This is a convex and differentiable function of α. Its minimum can
therefore be found by setting the gradient in α to zero:

0 =
2
n

K (Kα− y) + 2λKα

= K [(K + λnI)α− y ]
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Dual formulation

K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K ) ⊥ Im(K ).
In this basis we see that (K + λnI)−1 leaves Im(K ) and Ker(K )
invariant.
The problem is therefore equivalent to:

(K + λnI)α− y ∈ Ker(K )

⇔α− (K + λnI)−1 y ∈ Ker(K )

⇔α = (K + λnI)−1 y + ε, with K ε = 0.
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Kernel ridge regression

However, if α′ = α + ε with K ε = 0, then:

‖ f − f ′ ‖2HK
=
(
α−α′

)> K
(
α−α′

)
= 0,

therefore f = f ′.
One solution to the initial problem is therefore:

f̂ =
n∑

i=1

αiK (xi ,x) ,

with
α = (K + λnI)−1 y .
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Remarks

The matrix (K + nλI)−1 is invertible when λ > 0.
When λ→ 0, the method converges towards the solution of the
classical unregularized least-square solution. When λ→∞, the
solution converges to f = 0.
In practice the symmetric matrix K + nλI is inverted with specific
algorithms (e.g., Cholevsky decomposition).
This method becomes difficult to use when the number of points
becomes large.
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Example
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Kernel methods: Summary

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).
The representer theorem shows that that functional optimization
over (subsets of) the RKHS is feasible in practice.
We will see next a particularly successful applications of kernel
methods, pattern recognition.
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Part 3

Pattern recognition
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Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X
Output y ∈ {−1,1}.
Training set S = {(x1,y1) , . . . , (xn,yn)}.
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Formalization

Risk
P an (unknown) distribution on X × Y.
Observation: Sn = (Xi ,Yi)i=1,...,n i.i.d. random variables according
to P.
Loss function l (f (x) ,y) ∈ R small when f (x) is a good predictor
for y
Risk: R(f ) = El (f (X ) ,Y ).
Estimator f̂n : X → Y.

Goal: small risk R
(

f̂n
)

.
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Large-margin classifiers

Margin
For pattern recognition Y = {−1,1}
Estimate a function f : X → R.
The margin of the function f for a pair (x,y) is:

yf (x)

.

Large margin classifiers
Focusing on large margins ensures that f (x) has the same sign
as y and a large absolute value (confidence).
Suggests a loss function l (f (x) ,y) = φ (yf (x)), where φ : R→ R
is non-increasing.
Goal: small φ-risk Rφ(f ) = Eφ (Yf (X ))
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Empirical risk minimization (ERM)

ERM estimator
The empirical φ-risk is:

Rn
φ(f ) =

1
n

n∑
i=1

φ (Yi f (Xi)) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f∈F

Rn
φ(f ) .
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Class capacity

Motivations

The ERM principle gives a good solution if Rn
φ

(
f̂n
)

is similar to
Rφ(f ).
This can be ensured if F is not “too large”.
We need a measure of the “capacity” of F .

Definition: Rademacher complexity
The Rademacher complexity of a class of functions F is:

Radn (F) = EX ,σ

[
sup
f∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (Xi)

∣∣∣∣∣
]
,

where the expectation is over (Xi)i=1,...,n and the independent uniform
{±1}-valued (Rademacher) random variables (σi)i=1,...,n.
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Basic learning bounds

Suppose φ is Lipschitz with constant Lφ:

∀u,u′ ∈ R,
∣∣φ(u)− φ(u′)

∣∣ ≤ Lφ
∣∣u − u′

∣∣ .
Then on average over the training set (and with high probability)
the φ-risk of the ERM estimator is closed to the empirical one:

ES
[
Rφ

(
f̂n
)
− Rn

φ

(
f̂n
)]
≤ 2LφRadn (F) .

The φ-risk of the ERM estimator is also close to the smallest
achievable on F (on average and with large probability):

ESRφ

(
f̂n
)
≤ inf

f∈F
Rφ(f ) + 4LφRadn (F) .
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ERM in RKHS balls

Principle
Suppose X is endowed with a p.d. kernel
We consider the ball of radius B in the RKHS as function class for
the ERM:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Theorem (capacity control of RKHS balls)

Radn (FB) ≤
2B
√

EK (X ,X )√
n

.
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Proof (1/2)

Radn (FB) = EX ,σ

[
sup
f∈FB

∣∣∣∣∣ 2
n

n∑
i=1

σi f (Xi )

∣∣∣∣∣
]

= EX ,σ

[
sup
f∈FB

∣∣∣∣∣
〈

f ,
2
n

n∑
i=1

σiKXi

〉 ∣∣∣∣∣
]

(RKHS)

= EX ,σ

[
B‖ 2

n

n∑
i=1

σiKXi ‖H

]
(Cauchy-Schwarz)

=
2B
n

EX ,σ

√√√√‖ n∑
i=1

σiKXi ‖2
H


≤ 2B

n

√√√√√EX ,σ

 n∑
i,j=1

σiσjK (Xi ,Xj )

 (Jensen)
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Proof (2/2)

But Eσ
[
σiσj

]
is 1 if i = j , 0 otherwise. Therefore:

Radn (FB) ≤ 2B
n

√√√√√EX

 n∑
i,j=1

Eσ
[
σiσj

]
K
(
Xi ,Xj

)
≤ 2B

n

√√√√EX

n∑
i=1

K (Xi ,Xi)

=
2B
√

EX K (X ,X )√
n

. �
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Basic learning bounds in RKHS balls

Corollary

Suppose K (X ,X ) ≤ κ2 a.s. (e.g., Gaussian kernel and κ = 1).
Let the minimum possibe φ-risk:

R∗φ = inf
f measurable

Rφ(f ) .

Then we directly get for the ERM estimator in FB:

ERφ

(
f̂n
)
− R∗φ ≤

8LφκB√
n

+

[
inf

f∈FB
Rφ(f )− R∗φ

]
.
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Choice of B by structural risk minimization

Remark
The estimation error upper bound 8LφκB/

√
n increases (linearly)

with B.
The approximation error

[
inff∈FB Rφ(f )− R∗φ

]
decreases with B.

Ideally the choice of B should find a trade-off that minimizes the
upper bound.
This is achieved when

∂ inff∈FB Rφ(f )

∂B
= −

8Lφκ√
n
.

Jean-Philippe Vert (Mines ParisTech) 98 / 402



ERM in practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n
∑n

i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

This is a constrained optimization problem.
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Optimization problems

Setting
We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.
Let us denote by f ∗ the optimal value of the decision function
under the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at
a global minimum x∗.
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Lagrangian and dual function

Lagrangian
The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x , λ, µ) = f (x) +
m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x) .

Lagrangian dual function
The Lagrange dual function g : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X

f (x) +
m∑

i=1

λihi (x) +
r∑

j=1

µjgj(x)

 .
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Properties of the dual function

q is concave in (λ, µ), even if the original problem is not convex.
The dual function yields lower bounds on the optimal value f ∗ of
the original problem when µ is nonnegative:

q(λ, µ) ≤ f ∗ , ∀λ ∈ Rm,∀µ ∈ Rr , µ ≥ 0 .
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Proofs

For each x , the function (λ, µ) 7→ L(x , λ, µ) is linear, and therefore
both convex and concave in (λ, µ). The pointwise minimum of
concave functions is concave, therefore q is concave.
Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑
i=1

λihi(x̄) +
r∑

i=1

µigi(x̄) ≤ 0 ,

=⇒ L(x̄ , λ, µ) = f (x̄) +
m∑

i=1

λihi(x̄) +
r∑

i=1

µigi(x̄) ≤ f (x̄) ,

=⇒ q(λ, µ) = inf
x

L(x , λ, µ) ≤ L(x̄ , λ, µ) ≤ f (x̄) , ∀x̄ . �
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Dual problem

Definition
For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

where q is the (concave) Lagrange dual function and λ and µ are the
Lagrange multipliers associated to the constraints h(x) = 0 and
g(x) ≤ 0.
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Weak duality

Let d∗ the optimal value of the Lagrange dual problem. Each
q(λ, µ) is an lower bound for f ∗ and by definition d∗ is the best
lower bound that is obtained. The following weak duality inequality
therefore always hold:

d∗ ≤ f ∗ .

This inequality holds when d∗ or f ∗ are infinite. The difference
d∗ − f ∗ is called the optimal duality gap of the original problem.
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Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d∗ = f ∗ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight
Strong duality does not hold for general nonlinear problems.
It usually holds for convex problems.
Conditions that ensure strong duality for convex problems are
called constraint qualification.
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Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f (x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,
Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:

gj(x) < 0 , j = 1, . . . , r , Ax = b .
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Remarks

Slater’s conditions also ensure that the maximum d∗ (if > −∞) is
attained, i.e., there exists a point (λ∗, µ∗) with

q (λ∗, µ∗) = d∗ = f ∗

They can be sharpened. For example, strict feasibility is not
required for affine constraints.
There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal, (λ∗, µ∗) is dual
optimal. Then we have:

f (x∗) = q (λ∗, µ∗)

= inf
x∈Rn

f (x) +
m∑

i=1

λ∗i hi(x) +
r∑

j=1

µ∗j gj(x)


≤ f (x∗) +

m∑
i=1

λ∗i hi(x∗) +
r∑

j=1

µ∗j gj(x∗)

≤ f (x∗)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:

L (x∗, λ∗, µ∗) = inf
x∈Rn

L (x , λ∗, µ∗) ,

showing that x∗ minimizes the Lagrangian at (λ∗, µ∗). The second
equality shows that:

µjgj(x∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:
the i th optimal Lagrange multiplier is zero unless the i th constraint is
active at the optimum.
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ERM in practice

Reformulation as penalized minimization
We must solve the constrained minimization problem:{

minf∈H
1
n
∑n

i=1 φ (yi f (xi))

subject to ‖ f ‖H ≤ B .

To make this practical we assume that φ is convex.
The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f∈H

{
1
n

n∑
i=1

φ (yi f (xi)) + λ‖ f ‖2H

}
,

and complimentary slackness holds (λ = 0 or ‖ f ‖H = B).
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Optimization in RKHS

By the representer theorem, the solution of the unconstrained
problem can be expanded as:

f (x) =
n∑

i=1

αiK (xi ,x) .

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1
n

n∑
i=1

φ

yi

n∑
j=1

αjK
(
xi ,xj

)+ λ
n∑

i,j=1

αiαjK
(
xi ,xj

) .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).

Jean-Philippe Vert (Mines ParisTech) 114 / 402



Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method φ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u,0)

Support vector machine (2-SVM) max (1− u,0)2

Boosting e−u
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Motivations

Support vector machines (SVM)
Historically the first “kernel method” for pattern recognition, still the
most popular.
Often stat-of-the-art in performance.
One particular choice of loss function (hinge loss).
Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).
Particular algorithm for fast optimization (decomposition by
chunking methods).
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Definitions

yf(x)

l(f(x),y)

1

The loss function is the hinge loss:

φhinge(u) = max (1− u,0) =

{
0 if u ≥ 1,
1− u otherwise.

SVM solve the problem:

min
f∈H

{
1
n

n∑
i=1

φhinge (yi f (xi)) + λ‖ f ‖2H

}
.
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Problem reformulation (1/3)

Slack variables
This is a convex optimization problem
However the objective function in not differentiable, so we
reformulate the problem with additional slack variables
ξ1, . . . , ξn ∈ R:

min
f∈H,ξ∈Rn

{
1
n

n∑
i=1

ξi + λ‖ f ‖2H

}
,

subject to:
ξi ≥ φhinge (yi f (xi)) .
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Problem reformulation (2/3)

The objective function is now differentiable in f and ξi , and we can
rewrite the constraints as a conjunction of linear constraints:

min
f∈H,ξ∈Rn

1
n

n∑
i=1

ξi + λ‖ f ‖2H ,

subject to: {
ξi ≥ 1− yi f (xi) , for i = 1, . . . ,n ,
ξi ≥ 0, for i = 1, . . . ,n .
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Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f̂ by

f̂ (x) =
n∑

i=1

αiK (xi ,x) ,

the problem can be rewritten as an optimization problem in α and ξ:

min
α∈Rn,ξ∈Rn

1
n

n∑
i=1

ξi + λα>Kα ,

subject to:{
yi
∑n

j=1 αjK
(
xi ,xj

)
+ ξi − 1 ≥ 0 , for i = 1, . . . ,n ,

ξi ≥ 0 , for i = 1, . . . ,n .
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Solving the problem

Remarks
This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.
The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.
Solving the dual of this problem (also a QP) will be more
convenient and lead to faster algorithms (due to the sparsity of the
final solution).
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Lagrangian

Let us introduce the Lagrange multipliers µ ∈ Rn and ν ∈ Rn.
The Lagrangian of the problem is:

L (α, ξ,µ,ν) =
1
n

n∑
i=1

ξi + λα>Kα

−
n∑

i=1

µi

yi

n∑
j=1

αjK
(
xi ,xj

)
+ ξi − 1

− n∑
i=1

νiξi .
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Minimizing L (α, ξ,µ,ν) w.r.t. α

L (α, ξ,µ,ν) is a convex quadratic function in α. It is minimized
when its gradient is null:

∇αL = 2λKα− KYµ = K (2λα− Yµ) ,

where Y is the diagonal matrix with entries Yi,i = yi .
Solving ∇αL = 0 leads to

α =
Yµ

2λ
+ ε,

with K ε = 0. But ε does not change f (same as kernel ridge
regression), so we can choose for example ε = 0 and:

α∗i (µ,ν) =
yiµi

2λ
, for i = 1, . . . ,n.
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Minimizing L (α, ξ,µ,ν) w.r.t. ξ

L (α, ξ,µ,ν) is a linear function in ξ.
Its minimum is −∞ except when ∇ξL = 0, i.e.:

∂L
∂ξi

=
1
n
− µi − νi = 0.
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Dual function

We therefore obtain the Lagrange dual function:

q (µ,ν) = inf
α∈Rn,ξ∈Rn

L (α, ξ,µ,ν)

=

{∑n
i=1 µi − 1

4λ
∑n

i,j=1 yiyjµiµjK
(
xi ,xj

)
if µi + νi = 1

n for all i ,
−∞ otherwise.

The dual problem is:

maximize q (µ,ν)

subject to µ ≥ 0 ,ν ≥ 0 .
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Dual problem

If µi > 1/n for some i , then there is no νi ≥ 0 such that
µi + νi = 1/n, hence q (µ,ν) = −∞.
If 0 ≤ µi ≤ 1/n for all i , then the dual function takes finite values
that depend only on µ by taking νi = 1/n − µi .
The dual problem is therefore equivalent to:

max
0≤µ≤1/n

n∑
i=1

µi −
1

4λ

n∑
i,j=1

yiyjµiµjK
(
xi ,xj

)
.
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Back to the primal

Once the dual problem is solved in µ we get a solution of the
primal problem by α = Yµ/2λ.
We can therefore directly plug this into the dual problem to obtain
the QP that α must solve:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK
(
xi ,xj

)
= 2α>y−α>Kα ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . ,n .
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Karush-Kuhn-Tucker (KKT) conditions

The KKT optimality conditions are, for i = 1, . . . ,n:{
µi [yi f (xi) + ξi − 1] = 0,
νiξi = 0,

In terms of α this can be rewritten as:{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .
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Analysis of KKT conditions

{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

If αi = 0, then the second constraint is active: ξi = 0. This implies
yi f (xi) ≥ 1.
If 0 < yiαi <

1
2λn , then both constraints are active: ξi = 0 et

yi f (xi) + ξi − 1 = 0. This implies yi f (xi) = 1.
If αi = yi

2λn , then the second constraint is not active (ξi ≥ 0) while
the first one is active: yi f (xi) + ξi = 1. This implies yi f (xi) ≤ 1
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Geometric interpretation
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Geometric interpretation

f(x
)=

−1

f(x
)=

+1

f(x
)=

0
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Geometric interpretation

0<α

α=0

y<1/2n

αy=1/2nλ

λ
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Support vectors

Consequence of KKT conditions
The training points with αi 6= 0 are called support vectors.
Only support vectors are important for the classification of new
points:

∀x ∈ X , f (x) =
n∑

i=1

αiK (xi ,x) =
∑
i∈SV

αiK (xi ,x) ,

where SV is the set of support vectors.

Consequences
The solution is sparse in α, leading to fast algorithms for training
(use of decomposition methods).
The classification of a new point only involves kernel evaluations
with support vectors (fast).
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Remark: C-SVM

Often the SVM optimization problem is written in terms of a
regularization parameter C instead of λ as follows:

arg min
f∈H

1
2
‖ f ‖2H + C

n∑
i=1

Vhinge (f (xi) , yi) .

This is equivalent to our formulation with C = 1
2nλ .

The SVM optimization problem is then:

max
α∈Rd

2
n∑

i=1

αiyi −
n∑

i,j=1

αiαjK
(
xi ,xj

)
,

subject to:
0 ≤ yiαi ≤ C, for i = 1, . . . ,n .

This formulation is often called C-SVM.
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Remark: 2-SVM

A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

min
f∈H

{
1
n

n∑
i=1

φhinge (yi f (xi))2 + λ‖ f ‖2H

}
.

After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max
α∈Rd

2α>y−α> (K + nλI)α ,

subject to:
0 ≤ yiαi , for i = 1, . . . ,n .

This is therefore equivalent to the previous SVM with the kernel
K + nλI and C = +∞
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Kernel methods: Summary

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).
The representer theorem shows that that functional optimization
over (subsets of) the RKHS is feasible in practice.
The norm in the RKHS can be used as regularization for empirical
risk minimization. This is theoretically justified and leads to
efficient algorithms (often finite-dimensional convex problem).
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Part 4

Kernel examples
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Introduction

The kernel plays a critical role in the performance of kernel
methods.
Kernel is the place where prior knowledge about the problem can
be inserted, in particular by controlling the norm of functions in the
RKHS.
In this part we provide some intuition about the link between
kernels and smoothness functional through several examples.
Subsequent parts will focus on the design of kernels for particular
types of data.
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Mercer kernels

Definition
A kernel K on a set X is called a Mercer kernel if:

1 X is a compact metric space (typically, a closed bounded subset
of Rd ).

2 K : X × X → R is a continuous p.d. kernel (w.r.t. the Borel
topology)

Motivations
We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels
Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X (Mercer, 1905).
Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.
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Sketch of the proof

1 The kernel matrix when X is finite becomes a linear operator
when X is a metric space.

2 The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

3 The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices
can be diagonalized with nonnegative eigenvalues).

4 The kernel function can then be expanded over basis of
eigenfunctions as:

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where λi ≥ 0 are the non-negative eigenvalues.
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In case of...

Definition
Let H be a Hilbert space

A linear operator is a continuous linear mapping from H to itself.
A linear operator L is called compact if, for any bounded sequence
{fn}∞n=1, the sequence {Lfn}∞n=1 has a subsequence that
converges.
L is called self-adjoint if, for any f ,g ∈ H:

〈f ,Lg〉 = 〈Lf ,g〉 .

L is called positif if it is self-adjoint and, for any f ∈ H:

〈f ,Lf 〉 ≥ 0 .
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An important lemma

The linear operator
Let ν be any Borel measure on X , and Lν2 (X ) the Hilbert space of
square integrable functions on X .
For any function K : X 2 7→ R, let the transform:

∀f ∈ Lν2 (X ) , (LK f ) (x) =

∫
K (x, t) f (t) dν (t) .

Lemma

If K is a Mercer kernel, then LK is a compact and bounded linear
operator over Lν2 (X ), self-adjoint and positif.
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Proof (1/6)

LK is a mapping from Lν2 (X ) to Lν2 (X )

For any f ∈ Lν2 (X ) and (x1,x1) ∈ X 2:

|LK f (x1)− LK f (x2) | =

∣∣∣∣ ∫ (K (x1, t)− K (x2, t)) f (t) dν (t)
∣∣∣∣

≤ ‖K (x1, ·)− K (x2, ·) ‖‖ f ‖
(Cauchy-Schwarz)

≤
√
ν (X ) max

t∈X
|K (x1, t)− K (x2, t) | ‖ f ‖.

K being continuous and X compact, K is uniformly continuous,
therefore LK f is continuous. In particular, LK f ∈ Lν2 (X ) (with the slight
abuse of notation C (X ) ⊂ Lν2 (X )). �
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Proof (2/6)

LK is linear and continuous
Linearity is obvious (by definition of LK and linearity of the
integral).
For continuity, we observe that for all f ∈ Lν2 (X ) and x ∈ X :

| (LK f ) (x) | =

∣∣∣∣ ∫ K (x, t) f (t) dν (t)
∣∣∣∣

≤
√
ν (X ) max

t∈X
|K (x, t) | ‖ f ‖

≤
√
ν (X )CK‖ f ‖.

with CK = maxx,t∈X |K (x, t) |. Therefore:

‖LK f ‖ =

(∫
LK f (t)2 dν (t)

) 1
2

≤ ν (X ) CK‖ f ‖. �
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Proof (3/6)

Criterion for compacity
In order to prove the compacity of LK we need the following criterion.
Let C(X ) denote the set of continuous functions on X endowed with
infinite norm ‖ f ‖∞ = maxx∈X | f (x) |.
A set of functions G ⊂ C (X ) is called equicontinuous if:

∀ε > 0, ∃δ > 0,∀ (x,y) ∈ X 2,

‖x− y ‖ < δ =⇒ ∀g ∈ G, |g (x)− g (y) | < ε.

Ascoli Theorem
A part H ⊂ C(X ) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.
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Proof (4/6)

LK is compact
Let (fn)n≥0 be a bounded sequence of Lν2 (X ) (‖ fn ‖ < M for all n).
The sequence (LK fn)n≥0 is a sequence of continuous functions,
uniformly bounded because:

‖LK f ‖∞ ≤
√
ν (X )CK‖ f ‖ ≤

√
ν (X )CK M .

It is equicontinuous because:

|LK fn (x1)− LK fn (x2) | ≤
√
ν (X ) max

t∈X
|K (x1, t)− K (x2, t) |M .

By Ascoli theorem, we can extract a sequence uniformly convergent in
C(X ), and therefore in Lν2 (X ). �
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Proof (5/6)

LK is self-adjoint
K being symmetric, we have for all f ,g ∈ H:

〈f ,Lg〉 =

∫
f (x) (Lg) (x) ν (dx)

=

∫ ∫
f (x) g (t) K (x, t) ν (dx) ν (dt) (Fubini)

= 〈Lf ,g〉 .
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Proof (6/6)

LK is positif
We can approximate the integral by finite sums:

〈f ,Lf 〉 =

∫ ∫
f (x) f (t) K (x, t) ν (dx) ν (dt)

= lim
k→∞

ν (X )

k2

k∑
i,j=1

K
(
xi ,xj

)
f (xi) f

(
xj
)

≥ 0 ,

because K is positive definite. �
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Diagonalization of the operator

We need the following general result:

Spectral theorem
Let L be a compact linear operator on a Hilbert space H. Then there
exists in H a complete orthonormal system (ψ1, ψ2, . . .) of eigenvectors
of L. The eigenvalues (λ1, λ2, . . .) are real if L is self-adjoint, and
non-negative if L is positive.

Remark
This theorem can be applied to LK . In that case the eigenfunctions φk
associated to the eigenfunctions λk 6= 0 can be considered as
continuous functions, because:

ψk =
1
λk

LψK .
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Main result

Mercer Theorem
Let X be a compact metric space, ν a Borel measure on X , and K a
continuous p.d. kernel. Let (λ1, λ2, . . .) denote the nonnegative
eigenvalues of LK and (ψ1, ψ2, . . .) the corresponding eigenfunctions.
Then all ψk are continuous functions, and for any x, t ∈ X :

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where the convergence is absolute for each x, t ∈ X , and uniform on
X × X .
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Mercer kernels as inner products

Corollary
The mapping

Φ : X 7→ l2

x 7→
(√

λkψk (x)
)

k∈N

is well defined, continuous, and satisfies

K (x, t) = 〈Φ (x) ,Φ (t)〉l2 .
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Proof of the corollary

Proof
By Mercer theorem we see that for all x ∈ X ,

∑
λkψ

2
k (x) converges to

K (x,x) <∞, therefore Φ (x) ∈ l2.
The continuity of Φ results from:

‖Φ (x)− Φ (t) ‖2l2 =
∞∑

k=1

λk (ψk (x)− ψk (t))2

= K (x,x) + K (t, t)− 2K (x, t)
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Summary

This proof extends the proof valid when X is finite.
This is a constructive proof, developed by Mercer (1905).
Compacity and continuity are required.
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RKHS of Mercer kernels

Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).
We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.
In some cases this provides an intuitive feature space.
The kernel also has a RKHS, like any p.d. kernel.
Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?
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Reminder: expansion of Mercer kernel

Theorem
Denote by LK the linear operator of Lν2 (X ) defined by:

∀f ∈ Lν2 (X ) , (LK f ) (x) =

∫
K (x, t) f (t) dν (t) .

Let (λ1, λ2, . . .) denote the eigenvalues of LK in decreasing order, and
(ψ1, ψ2, . . .) the corresponding eigenfunctions. Then it holds that for
any x,y ∈ X :

K (x,y) =
∞∑

k=1

λkψk (x)ψk (y) = 〈Φ (x) ,Φ (y)〉l2 ,

with Φ : X 7→ l2 defined par Φ (x) =
(√
λkψk (x)

)
k∈N.
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RKHS construction

Theorem
Assuming that all eigenvalues are positive, the RKHS is the Hilbert
space:

HK =

{
f ∈ Lν2 (X ) : f =

∞∑
i=1

aiψi , with
∞∑

k=1

a2
k
λk

<∞

}

endowed with the inner product:

〈f ,g〉K =
∞∑

k=1

akbk

λk
, for f =

∑
k

akψk ,g =
∑

k

bkψk .

Remark
If some eigenvalues are equal to zero, then the result and the proof remain
valid on the subspace spanned by the eigenfunctions with positive
eigenvalues.
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Proof (1/6)

Sketch
In order to show that HK is the RKHS of the kernel K we need to show
that:

1 it is a Hilbert space of functions from X to R,
2 for any x ∈ X , Kx ∈ HK ,
3 for any x ∈ X and f ∈ HK , f (x) = 〈f ,Kx〉HK

.
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Proof (2/6)

HK is a Hilbert space
Indeed the function:

L
1
2
K :Lν2 (X )→ HK

∞∑
i=1

aiψi 7→
∞∑

i=1

ai
√
λiψi

is an isomorphism, therefore HK is a Hilbert space, like Lν2 (X ). �
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Proof (3/6)

HK is a space of continuous functions
For any f =

∑∞
i=1 aiψi ∈ HK , and x ∈ X , we have (if f (x) makes

sense):

| f (x) | =

∣∣∣∣∣
∞∑

i=1

aiψi (x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

i=1

ai√
λi

√
λiψi (x)

∣∣∣∣∣
≤

( ∞∑
i=1

a2
i
λi

) 1
2

.

( ∞∑
i=1

λiψi (x)2

) 1
2

= ‖ f ‖HK K (x,x)
1
2

= ‖ f ‖HK

√
CK .

Therefore convergence in ‖ . ‖HK implies uniform convergence for
functions.
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Proof (4/6)

HK is a space of continuous functions (cont.)
Let now fn =

∑n
i=1 aiψi ∈ HK . The functions ψi are continuous

functions, therefore fn is also continuous, for all n. The fn’s are
convergent in HK , therefore also in the (complete) space of continuous
functions endowed with the uniform norm.
Let fc the continuous limit function. Then fc ∈ Lν2 (X ) and

‖ fn − fc ‖Lν2 (X ) →n→∞ 0.

On the other hand,

‖ f − fn ‖Lν2 (X ) ≤ λ1‖ f − fn ‖HK →
n→∞

0,

therefore f = fc . �
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Proof (5/6)

Kx ∈ HK

For any x ∈ X let, for all i , ai = λiψi (x). We have:

∞∑
i=1

a2
i
λi

=
∞∑

i=1

λiψi (x)2 = K (x,x) <∞,

therefore φx :=
∑∞

i=1 aiψi ∈ HK . As seen earlier the convergence in
HK implies pointwise convergence, therefore for any t ∈ X :

φx (t) =
∞∑

i=1

aiψi (t) =
∞∑

i=1

λiψi (x)ψi (t) = K (x, t) ,

therefore φx = Kx ∈ HK . �
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Proof (6/6)

f (x) = 〈f ,Kx〉HK

Let f =
∑∞

i=1 aiψi ∈ HK , et x ∈ X . We have seen that:

Kx =
∞∑

i=1

λiψi (x)ψi ,

therefore:

〈f ,Kx〉HK
=
∞∑

i=1

λiψi (x) ai

λi
=
∞∑

i=1

aiψi (x) = f (x) ,

which concludes the proof. �
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Remarks

Although HK was built from the eigenfunctions of LK , which
depend on the choice of the measure ν (x), we know by unicity of
the RKHS that HK is independant of ν and LK .
Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of LK (with
adequately chosen weights).
The eigenfunctions (ψi)i∈N form an orthogonal basis of the RKHS:

〈
ψi , ψj

〉
HK

= 0 si i 6= j , ‖ψi ‖HK =
1√
λi
.

The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.
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Motivations

The RKHS norm is related to the smoothness of functions.
Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives).
In this section we make a general link between RKHS and Green
functions defined by differential operators.
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A simple example

Explicit choice of smoothness
Let

H =
{

f : [0,1] 7→ R, cont., dérivable p.p., f ′ ∈ L2 ([0,1]) , f (0) = 0
}
.

This is a Hilbert space, endowed with the inner product:

∀ (f ,g) ∈ F2 〈f ,g〉H =

∫ 1

0
f ′ (u) g′ (u) du.

The norm ‖ f ‖H measures the smoothness of f :

‖ f ‖H =

(∫ 1

0
f ′ (u)2 du

) 1
2

= ‖ f ′ ‖L2([0,1]).
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The RKHs point of view

Theorem
H is a RKHS with r.k. given by:

∀ (x , y) ∈ X 2, K (x , y) = min (x , y) .

Remark
Therefore, ‖ f ‖H = ‖ f ′ ‖L2 : the RKHS norm is precisely the
smoothness functional defined in the simple example.
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Proof (1/3)

Sketch
We need to show that

The evaluation functionals f → f (x) are continuous,
∀x ∈ [0,1], Kx ∈ H,
∀ (x , f ) ∈ [0,1]×H, 〈f ,Kx〉H = f (x).

Evaluation functionals are continuous
For any x ∈ [0,1] and f ∈ H,

f (x) = f (x)− f (0) =

∫ x

0
f ′(u)du ≤

√
x‖ f ‖H. �
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Proof (1/3)
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Proof (2/3)

∀x ∈ [0,1], Kx ∈ H
Let Kx (y) = K (x , y) = min(x , y) sur [0,1]2:

t
s 1

K(s,t)

Kx is differentiable except at s, has a square integrable derivative, and
Kx (0) = 0, therefore Kx ∈ H for all x ∈ [0,1]. �
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Proof (3/3)

For all x , f , 〈f ,Kx〉H = f (x)

For any x ∈ [0,1] and f ∈ H we have:

〈f ,Kx〉H =

∫ 1

0
f ′(u)K ′x (u)du =

∫ x

0
f ′(u)du = f (x),

which shows that K is the r.k. associated to H. �
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Generalization

Theorem
Let X = Rd and D a differential operator on a class of functions H
such that, endowed with the inner product:

∀ (f ,g) ∈ H2, 〈f ,g〉H = 〈Df ,Dg〉L2(X ) ,

it is a Hilbert space.
Then H is a RKHS that admits as r.k. the Green function of the
operator D∗D, where D∗ denotes the adjoint operator of D.
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In case of...

Green functions
Let the differential equation on H:

f = Dg ,

where g is unknown. In order to solve it we can look for g of the form:

g (x) =

∫
X

k (x , y) f (y) dy

for some function k : X 2 7→ R. k must then satisfy, for all x ∈ X ,

f (x) = Dg (x) = 〈Dkx , f 〉L2(X ) .

k is called the Green function of the operator D.
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Proof

Let H be a Hilbert space endowed with the inner product:

〈f ,g〉X = 〈Df ,Dg〉L2(X ) ,

and K be the Green function of the operator D∗D. For all x ∈ X ,
Kx ∈ H because:

〈DKx ,DKx〉L2(X ) = 〈D∗DKx ,Kx〉L2(X ) = Kx (x) <∞ .

Moreover, for all f ∈ H and x ∈ X , we have:

f (x) = 〈D∗DKx , f 〉L2(X ) = 〈DKx ,Df 〉L2(X ) = 〈Kx , f 〉H ,

which shows that H is a RKHS with K as r.k. �
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Motivation

Let us suppose that X is not compact, for example X = Rd .
In that case, the eigenvalues of:∫

X
K (x, t)ψ (t) = λψ (t)

are not necessarily countable, Mercer theorem does not hold.
Fourier transforms provide a convenient extension for translation
invariant kernels, i.e., kernels of the form K (x,y) = κ(x− y).
Harmonic analysis also bring kernels well beyond vector spaces
(e.g., groups and semigroups), a topic that we will barely touch
upon in this course.
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In case of...

Definition

Let f ∈ L1 (Rd). The Fourier transform of f , denoted f̂ or F [f ], the
function defined for all ω ∈ Rd by:

f̂ (ω) =

∫
Rd

e−ix .ωf (x) dx .
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In case of...

Properties

f̂ is complex-valued, continuous, tends to 0 at infinity and
‖ f̂ ‖L∞ ≤ ‖ f ‖L1 .

If f̂ ∈ L1 (Rd), then the inverse Fourier formula holds:

∀x ∈ Rd , f (x) =
1

(2π)d

∫
Rd

eix .ω f̂ (ω) dω.

If f ∈ L1 (Rd) is square integrable, then Parseval’s formula holds:∫
Rd
| f (x) |2 dx =

1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2 dω .
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Translation invariant kernels

Definition
A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

∀ (x , y) ∈ R2d , K (x , y) = κ (x − y) .

Intuition
If K is t.i. and κ ∈ L1 (Rd), then

κ (x − y) =
1

(2π)d

∫
Rd

ei(x−y).ωκ̂ (ω) dω

=

∫
Rd

κ̂ (ω)

(2π)d eiω(x)eiω(−y)dω .
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RKHS of translation invariant kernels

Theorem
Let K be a translation invariant p.d. kernel, such that κ is integrable on
Rd as well as its Fourier transform κ̂. The subset HK of L2

(
Rd) that

consists of integrable and continuous functions f such that:

‖ f ‖2K :=
1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2

κ̂(ω)
dω < +∞ ,

endowed with the inner product:

〈f ,g〉 :=
1

(2π)d

∫
Rd

f̂ (ω)ĝ (ω)∗

κ̂(ω)
dω

is a RKHS with K as r.k.
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Proof

For x ∈ Rd , Kx (y) = K (x , y) = κ(x − y) therefore:

K̂x (ω) =

∫
e−iω.uκ(u − x)du = e−iω.x κ̂(ω) .

This leads to Kx ∈ H, because:

∫
Rd

∣∣∣ K̂x (ω)
∣∣∣2

κ̂(ω)
≤
∫
Rd
| κ̂(ω) | <∞,

Moreover, if f ∈ H and x ∈ Rd , we have:

〈f ,Kx〉H =
1

(2π)d

∫
Rd

K̂x (ω)f̂ (ω)∗

κ̂(ω)
dω =

1

(2π)d

∫
Rd

f̂ (ω)∗ e−iω.x = f (x) �
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Application: characterization of p.d. t.i. kernels

Theorem (Bochner)

A real-valued function κ(x − y) on Rd is positive definite if and only if it
is the Fourier transform of a symmetric, positive, and finite Borel
measure.
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Example

Gaussian kernel

K (x , y) = e−
(x−y)2

2σ2

corresponds to:

κ̂ (ω) = e−
σ2ω2

2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2
2 dω <∞

}
.

In particular, all functions in H are infinitely differentiable with all
derivatives in L2.
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Example

Laplace kernel

K (x , y) =
1
2

e−γ| x−y |

corresponds to:
κ̂ (ω) =

γ

γ2 + ω2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 (γ2 + ω2)

γ
dω <∞

}
,

the set of functions L2 differentiable with derivatives in L2 (Sobolev
norm).
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Example

Low-frequency filter

K (x , y) =
sin (Ω(x − y))

π(x − y)

corresponds to:

κ̂ (ω) = U (ω + Ω)− U (ω − Ω)

and

H =

{
f :

∫
|ω |>Ω

∣∣∣ f̂ (ω)
∣∣∣2 dω = 0

}
,

the set of functions whose spectrum is included in [−Ω,Ω].
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Generalization to semigroups (cf Berg et al., 1983)

Definition
A semigroup (S, ◦) is a nonempty set S equipped with an
associative composition ◦ and a neutral element e.
A semigroup with involution (S, ◦, ∗) is a semigroup (S, ◦) together
with a mapping ∗ : S → S called involution satisfying:

1 (s ◦ t)∗ = t∗ ◦ s∗, for s, t ∈ S.
2 (s∗)∗ = s for s ∈ S.

Examples
Any group (G, ◦) is a semigroup with involution when we define
s∗ = s−1.
Any abelian semigroup (S,+) is a semigroup with involution when
we define s∗ = s, the identical involution.
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Positive definite functions on semigroups

Definition
Let (S, ◦, ∗) be a semigroup with involution. A function φ : S → R is
called positive definite if the function:

∀s, t ∈ S, K (s, t) = φ (s∗ ◦ t)

is a p.d. kernel on S.

Example: translation invariant kernels(
Rd ,+,−

)
is an abelian group with involution. A function φ : Rd → R is

p.d. if the function
K (x , y) = φ(x − y)

is p.d. on Rd (translation invariant kernels).
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Semicharacters

Definition
A funtion ρ : S → C on an abelian semigroup with involution (S,+, ∗) is
called a semicharacter if

1 ρ(0) = 1,
2 ρ(s + t) = ρ(s)ρ(t) for s, t ∈ S,
3 ρ (s∗) = ρ(s) for s ∈ S.

The set of semicharacters on S is denoted by S∗.

Remarks
If ∗ is the identity, a semicharacter is automatically real-valued.
If (S,+) is an abelian group and s∗ = −s, a semicharacter has its
values in the circle group {z ∈ C | | z | = 1} and is a group
character.
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Semicharacters are p.d.

Lemma
Every semicharacter is p.d., in the sense that:

K (s, t) = K (t , s),∑n
i,j=1 aiajK (xi , xj) ≥ 0.

Proof
Direct from definition, e.g.,

n∑
i,j=1

aiajρ
(

xi + x∗j
)

=
n∑

i,j=1

aiajρ (xi) ρ
(
xj
)
≥ 0 .

Examples
φ(t) = eβt on (R,+, Id).
φ(t) = eiωt on (R,+,−).
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Integral representation of p.d. functions

Definition
An function α : S → R on a semigroup with involution is called an
absolute value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii)
α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S.

Theorem
Let (S,+, ∗) an abelian semigroup with involution. A function φ : S → R is p.d.
and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

φ(s) =

∫
S∗
ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the
set of bounded semicharacters).
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Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)
For an absolute value α, the set Pα

1 of α-bounded p.d. functions
that satisfy φ(0) = 1 is a compact convex set whose extreme
points are precisely the α-bounded semicharacters.
If φ is p.d. and exponentially bounded then there exists an
absolute value α such that φ(0)−1φ ∈ Pα

1 .
By the Krein-Milman theorem there exits a Radon probability
measure on Pα

1 having φ(0)−1φ as barycentre.

Remarks
The result is not true without the assumption of exponentially
bounded semicharacters.
In the case of abelian groups with s∗ = −s this reduces to
Bochner’s theorem for discrete abelian groups, cf. Rudin (1962).
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Example 1: (R+,+, Id)

Semicharacters
S = (R+,+, Id) is an abelian semigroup.

P.d. functions are nonnegative, because φ(x) = φ
(√

x
)2.

The set of bounded semicharacters is exactly the set of functions:

s ∈ R+ 7→ ρa(s) = e−as ,

for a ∈ [0,+∞] (left as exercice).
Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation
h(x + y) = h(x)h(y).
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Example 1: (R+,+, Id) (cont.)

P.d. functions
By the integral representation theorem for bounded
semi-characters we obtain that a function φ : R+ → R is p.d. and
bounded if and only if it has the form:

φ(s) =

∫ ∞
0

e−asdµ(a) + bρ∞(s)

where µ ∈Mb
+ (R+) and b ≥ 0.

The first term is the Laplace transform of µ. φ is p.d., bounded and
continuous iff it is the Laplace transform of a measure inMb

+ (R).
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Example 2: Semigroup kernels for finite measures
(1/6)

Setting
We assume that data to be processed are “bags-of-points”, i.e.,
sets of points (with repeats) of a space U .
Example : a finite-length string as a set of k -mers.
How to define a p.d. kernel between any two bags that only
depends on the union of the bags?
See details and proofs in Cuturi et al. (2005).
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Example 2: Semigroup kernels for finite measures
(2/6)

Semigroup of bounded measures
We can represent any bag-of-point x as a finite measure on U :

x =
∑

i

aiδxi ,

where ai is the number of occurrences on xi in the bag.
The measure that represents the union of two bags is the sum of
the measures that represent each individual bag.
This suggests to look at the semigroup

(
Mb

+ (U) ,+, Id
)

of
bounded Radon measures on U and to search for p.d. functions φ
on this semigroup.
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Example 2: Semigroup kernels for finite measures
(3/6)

Semicharacters
For any Borel measurable function f : U → R the function
ρf :Mb

+ (U)→ R defined by:

ρf (µ) = eµ[f ]

is a semicharacter on
(
Mb

+ (U) ,+
)
.

Conversely, ρ is continuous semicharacter (for the topology of
weak convergence) if and only if there exists a continuous function
f : U → R such that ρ = ρf .
No such characterization for non-continuous characters, even
bounded.
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Example 2: Semigroup kernels for finite measures
(4/6)

Corollary
Let U be a Hausdorff space. For any Radon measure µ ∈Mc

+ (C (U))
with compact support on the Hausdorff space of continuous
real-valued functions on U endowed with the topology of pointwise
convergence, the following function K is a continuous p.d. kernel on
Mb

+ (U) (endowed with the topology of weak convergence):

K (µ, ν) =

∫
C(X )

eµ[f ]+ν[f ]dµ(f ) .

Remarks
The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)
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Example 2: Semigroup kernels for finite measures
(5/6)

Example : entropy kernel
Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

h(x) = −
∫
U

x ln x .

Then the following entropy kernel is a p.d. kernel on X for all
β > 0:

K
(
x,x′

)
= e−βh( x+x

2 ) .

Remark: only valid for densities (e.g., for a kernel density
estimator from a bag-of-parts)
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Example 2: Semigroup kernels for finite measures
(6/6)

Examples : inverse generalized variance kernel

Let U = Rd andMV
+ (U) be the set of finite measure µ with

second order moment and non-singular variance

Σ(µ) = µ
[
xx>

]
− µ [x ]µ [x ]> .

Then the following function is a p.d. kernel onMV
+ (U), called the

inverse generalized variance kernel:

K
(
µ, µ′

)
=

1

det Σ
(
µ+µ′

2

) .
Generalization possible with regularization and kernel trick.
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Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC
shown. Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two
values.
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Kernelization of the IGV kernel

Motivations
Gaussian distributions may be poor models.
The method fails in large dimension

Solution
1 Regularization:

Kλ
(
µ, µ′

)
=

1

det
(

Σ
(
µ+µ′

2

)
+ λId

) .
2 Kernel trick: the non-zero eigenvalues of UU> and U>U are the

same =⇒ replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).
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Illustration of kernel IGV kernel
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Semigroup kernel remarks

Motivations
A very general formalism to exploit an algebric structure of the
data.
Kernel IVG kernel has given good results for character recognition
from a subsampled image.
The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.
The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.
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Kernel examples: Summary

Many notions of smoothness can be translated as RKHS norms
for particular kernels (eigenvalues convolution operator, Sobolev
norms and Green operators, Fourier transforms...).
There is no “uniformly best kernel”, but rather a large toolbox of
methods and tricks to encode prior knowledge and exploit the
nature or structure of the data.
In the following sections we focus on particular data and
applications to illustrate the process of kernel design.
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Part 5

Kernels for Biological
Sequences
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Outline

1 Kernels and RKHS

2 Kernels Methods

3 Pattern recognition

4 Kernel examples

5 Kernels for biological sequences
Motivations
Feature space approach
Using generative models
Derive from a similarity measure
Application: remote homology detection

6 Kernels for graphs

7 Kernels on graphs
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Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed
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A cell
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Chromosomes
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Chromosomes and DNA
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Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix
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Central dogma
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Proteins
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Genetic code
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Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome
Consortium with 20 labs, 6 countries
Cost : about 3,000,000,000 USD
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2003: End of genomics era

Findings
About 25,000 genes only (representing 1.2% of the genome)
Automatic gene finding with graphical models
97% of the genome is considered “junk DNA”
Superposition of a variety of signals (many to be discovered)
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Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine

E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine V : Thyrosine W : Tryptophane

I : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)
Need for algorithms to compare, classify, analyze these
sequences
Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)
Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..
...

Goal
Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
Map each string x ∈ X to a vector Φ(x) ∈ F .
Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...
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Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).
What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)
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Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest
Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model
Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure
Local alignment kernel
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Vector embedding for strings

The idea
Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

length of the sequence
time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hihi+j
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k -spectrum kernel is:

K
(
x,x′

)
:=

∑
u∈Ak

Φu (x) Φu
(
x′
)
.
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Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most |x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (|x |+ |x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (|x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k -mers up to m mismatches.
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Example 2: Substring kernel (1/11)

Definition
For 1 ≤ k ≤ n ∈ N, we denote by I(k ,n) the set of sequences of
indices i = (i1, . . . , ik ), with 1 ≤ i1 < i2 < . . . < ik ≤ n.
For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k ,n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.
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Example 2: Substring kernel (2/11)

Example

ABRACADABRA

i = (3,4,7,8,10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8
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Example 2: Substring kernel (3/11)

The kernel
Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k ,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x,x′

)
∈ X 2, Kk ,λ

(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)
.
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Example 2: Substring kernel (4/11)

Example

u ca ct at ba bt cr ar br
Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3


K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0

Jean-Philippe Vert (Mines ParisTech) 231 / 402



Example 2: Substring kernel (5/11)

Kernel computation
We need to compute, for any pair x,x′ ∈ X , the kernel:

Kn,λ
(
x,x′

)
=
∑

u∈Ak

Φu (x) Φu
(
x′
)

=
∑

u∈Ak

∑
i:x(i)=u

∑
i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order |x |k ).
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Example 2: Substring kernel (6/11)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λin−i1+1 .

Let now:
Ψu (x) =

∑
i:x(i)=u

λ| x |−i1+1 .
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Example 2: Substring kernel (7/11)

Kernel computation (cont.)
Let us note x (1, j) = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ ,

and
Ψva (x) =

∑
j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ| x |−j+1 .
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Example 2: Substring kernel (8/11)

Kernel computation (cont.)
Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:{
Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ An−1):{
Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .
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Example 2: Substring kernel (9/11)

Kernel computation (cont.)
Let us now show how the function:

Bn
(
x,x′

)
:=
∑

u∈An

Ψu (x) Ψu
(
x′
)

and the kernel:
Kn
(
x,x′

)
:=
∑

u∈An

Φu (x) Φu
(
x′
)

can be computed recursively. We note that:{
B0 (x,x′) = K0 (x,x′) = 0 for all x,x′

Bk (x,x′) = Kk (x,x′) = 0 if min (|x | , |x′ |) < k
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Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn
(
xa,x′

)
=
∑

u∈An

Ψu (xa) Ψu
(
x′
)

= λ
∑

u∈An

Ψu (x) Ψu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Ψva
(
x′
)

= λBn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ| x
′ |−j+1


= λBn

(
x,x′

)
+

∑
j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)
λ| x
′ |−j+2
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Example 2: Substring kernel (10/11)

Recursive computation of Kn

Kn
(
xa,x′

)
=
∑

u∈An

Φu (xa) Φu
(
x′
)

=
∑

u∈An

Φu (x) Φu
(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Φva
(
x′
)

= Kn
(
x,x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv
(
x′ (1, j − 1)

)
λ


= λKn

(
x,x′

)
+ λ2

∑
j∈[1,| x′ |]:x ′j =a

Bn−1
(
x,x′ (1, j − 1)

)
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Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)
Implementation in O(|x| × |x′|) in memory and time for the
substring kernels
The feature space has high dimension (|A|k ), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
Chose a dictionary of sequences D = (x1,x2, . . . ,xn)

Chose a measure of similarity s (x,x′)
Define the mapping ΦD (x) = (s (x,xi))xi∈D

Examples
This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X )
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Fisher kernel

Definition
Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)
For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 1998):

K
(
x,x′

)
= Φθ0(x)>I(θ0)−1Φθ0(x′) ,

where I(θ0) = Eθ0

[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.
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Fisher kernel properties

The Fisher score describes how each parameter contributes to
the process of generating a particular example
The Fisher kernel is invariant under change of parametrization of
the model
A kernel classifier employing the Fisher kernel derived from a
model that contains the label as a latent variable is, asymptotically,
at least as good a classifier as the MAP labelling based on the
model (Jaakkola and Haussler, 1998).
A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs)
I(θ0) is often replaced by the identity matrix
Several different models (i.e., different θ0) can be trained and
combined
Feature vectors are explicitly computed
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Mutual information kernels

Definition
Chose a prior w(dθ) on the measurable set Θ

Form the kernel (Seeger, 2002):

K
(
x,x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector
K (x,x′) =< φ (x) , φ (x′) >L2(w) with

φ (x) = (Pθ (x))θ∈Θ .
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Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0,1].
Let dθ be the Lebesgue measure on [0,1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x,x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1
280

.
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Context-tree model

Definition
A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree
θ ∈ ΣD is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC(B)θACB(A)θA(C)θC(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)
For particular choices of priors, the context-tree kernel:

K
(
x,x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.
This is a valid mutual information kernel.
The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Definition
For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).
Let KZ be a kernel for the complete data z = (x,y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Kin et al., 2002):

KX
(
x,x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x,y) ,

(
x′,y′

))
Px (dy) Px′

(
dy′
)
.
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Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x,x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) ,EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �
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Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,
π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x,y) for a = 0,1 and s = N,B is the number of
occurrences of s in y which emit a in x.
Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0
(
z′
)

+ n1 (z) n1
(
z′
)

+ n1 (z) n1
(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.
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1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x,x′

)
=

∑
y,y′∈S∗

KZ ((x,y) , (x,y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s
(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x,y)
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Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x,y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi ,a) δ (yi , s)

}

=
n∑

i=1

δ (xi ,a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi ,a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)
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HMM example (protein)
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SCFG for RNA sequences

SFCG rules
S → SS
S → aSa
S → aS
S → a

Marginalized kernel (Kin et al., 2002)
Feature: number of occurrences of each (base,state) combination
Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples
Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)
Kernels for RNA sequences based on SCFG (Kin et al., 2002)
Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)
Kernels for multiple alignments based on phylogenetic models
(Vert et al., 2005)
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Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).
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Sequence alignment

Motivation
How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment π, define:
a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM----WFGV
|...|||||....||||
C---LIVMMNRLMWFGV

sS,g(π) = S(C,C) + S(L,L) + S(I, I) + S(A,V ) + 2S(M,M)

+ S(W ,W ) + S(F ,F ) + S(G,G) + S(V ,V )− g(3)− g(4)
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Local alignment kernel

Smith-Waterman score
The widely-used Smith-Waterman local alignment score is defined
by:

SWS,g(x,y) := max
π∈Π(x,y)

sS,g(π).

It is symmetric, but not positive definite...

LA kernel
The local alignment kernel:

K (β)
LA (x,y) =

∑
π∈Π(x,y)

exp
(
βsS,g (x,y, π)

)
,

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma
If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and
cK1, for c ≥ 0,

are also p.d. kernels
If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x,x′

)
∈ X 2, K

(
x,x′

)
= lim

n→∞
Ki
(
x,x′

)
,

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n× n positive semidefinite matrices. By diagonalization
of A:

Ai,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑
i,j=1

αiαjAi,jBi,j =
n∑

p=1

n∑
i,j=1

αi fp(i)αj fp(j)Bi,j ≥ 0.

The matrix Ci,j = Ai,jBi,j is therefore p.d. Other properties are obvious
from definition. �
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)
Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) + K2 (x2,y2) ,

The direct product:

K ((x1,x2) , (y1,y2)) = K1 (x1,y1) K2 (x2,y2) .
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LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1,y1) = 〈Φ1 (x1) ,Φ1 (y1)〉H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1,x2)) = Φ1 (x1) .

Then for x = (x1,x2) and y = (y1,y2) ∈ X , we get

〈Φ ((x1,x2)) ,Φ ((y1,y2))〉H = K1 (x1,x2) ,

which shows that K (x,y) := K1 (x1,y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. �
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets
Let K be a p.d. kernel on X , and let P (X ) be the set of finite subsets
of X . Then the function KP on P (X )× P (X ) defined by:

∀A,B ∈ P (X ) , KP (A,B) :=
∑
x∈A

∑
y∈B

K (x,y)

is a p.d. kernel on P (X ).
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LA kernel is p.d.: proof (6/11)

Proof of lemma
Let Φ : X 7→ H be such that

K (x,y) = 〈Φ (x) ,Φ (y)〉H .

Then, for A,B ∈ P (X ), we get:

KP (A,B) =
∑
x∈A

∑
y∈B

〈Φ (x) ,Φ (y)〉H

=

〈∑
x∈A

Φ (x) ,
∑
y∈B

Φ (y)

〉
H

= 〈ΦP(A),ΦP(B)〉H ,

with ΦP(A) :=
∑

x∈A Φ (x). �
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)
Let K1 and K2 be two p.d. kernels for strings. The convolution of K1
and K2, denoted K1 ? K2, is defined for any x,x′ ∈ X by:

K1 ? K2(x,y) :=
∑

x1x2=x,y1y2=y

K1(x1,y1)K2(x2,y2).

Lemma
If K1 and K2 are p.d. then K1 ? K2 is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1,x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ? K2(x,y) =
∑

(x1,x2)∈R(x)

∑
(y1,y2)∈R(y)

K1(x1,y1)K2(x2,y2)

which is a p.d. kernel by the previous lemmas. �
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LA kernel is p.d.: proof (9/11)

3 basic string kernels
The constant kernel:

K0 (x,y) := 1 .

A kernel for letters:

K (β)
a (x,y) :=

{
0 if |x | 6= 1 where |y | 6= 1 ,
exp (βS(x,y)) otherwise .

A kernel for gaps:

K (β)
g (x,y) = exp [β (g (|x |) + g (|x |))] .
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LA kernel is p.d.: proof (10/11)

Remark
S : A2 → R is the similarity function between letters used in the
alignment score. K (β)

a is only p.d. when the matrix:

(exp (βs(a,b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..
g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K (β)
g (x,y) = exp (βg (|x |))× exp (βg (|y |)) .
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LA kernel is p.d.: proof (11/11)

Lemma
The local alignment kernel is a (limit) of convolution kernel:

K (β)
LA =

∞∑
n=0

K0 ?
(

K (β)
a ? K (β)

g

)(n−1)
? K (β)

a ? K0.

As such it is p.d..

Proof (sketch)
By induction on n (simple but long to write).
See details in Vert et al. (2004).
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LA kernel computation

We assume an affine gap penalty:{
g(0) = 0,
g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming
by:

K (β)
LA (x,y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.
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LA kernel is p.d.: proof (/)

Initialization 

M(i ,0) = M(0, j) = 0,
X (i ,0) = X (0, j) = 0,
Y (i ,0) = Y (0, j) = 0,
X2(i ,0) = X2(0, j) = 0,
Y2(i ,0) = Y2(0, j) = 0,
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LA kernel is p.d.: proof (/)

Recursion
For i = 1, . . . , |x| and j = 1, . . . , |y|:

M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),
Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),
Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).

Jean-Philippe Vert (Mines ParisTech) 279 / 402



LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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Remote homology

Sequence similarity
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Homologs have common ancestors
Structures and functions are more conserved than sequences
Remote homologs can not be detected by direct sequence
comparison
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SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold
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A benchmark experiment

Goal: recognize directly the superfamily
Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.
Test: predict the superfamily.
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Difference in performance
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SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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String kernels: Summary

A variety of principles for string kernel design have been
proposed.
Good kernel design is important for each data and each task.
Performance is not the only criterion.
Still an art, although principled ways have started to emerge.
Fast implementation with string algorithms is often possible.
Their application goes well beyond computational biology.
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Part 3

Kernels for graphs

Jean-Philippe Vert (Mines ParisTech) 287 / 402



Outline

1 Kernels and RKHS

2 Kernels Methods

3 Pattern recognition

4 Kernel examples

5 Kernels for biological sequences

6 Kernels for graphs
Motivation
Explicit computation of features
Graph kernels: the challenges
Walk-based kernels
Applications

7 Kernels on graphs

Jean-Philippe Vert (Mines ParisTech) 288 / 402



Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Our approach

1 Represent each graph x by a vector Φ(x) ∈ H, either explicitly or
implicitly through the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a linear method for classification in H.

X
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The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

X
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Example

2D structural keys in chemoinformatics
Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as
possible from the graph
Computation : they should be fast to compute
Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence substructures are important
predictive patterns
Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures
However, detecting the presence of particular substructures may
be computationally challenging...
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Subgraphs

Definition
A subgraph of a graph (V ,E) is a connected graph (V ′,E ′) with
V ′ ⊂ V and E ′ ⊂ E .
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Paths

Definition
A path of a graph (V ,E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj ) such that (vi , vi+1) ∈ E for
i = 1, . . . ,n − 1.
Equivalently the paths are the linear subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
Computing all path occurrences is NP-hard.

Proof.
Same as for subgraphs.
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Indexing by what?

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.
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Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)
Several ideas to reduce the set of substructures considered
In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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The idea

1 Represent implicitly each graph x by a vector Φ(x) ∈ H through
the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a kernel method for classification in H.

X
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �
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Subgraph kernel

Definition
Let (λG)G∈X a set or nonnegative real-valued weights
For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .
The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αiΦ(Pi)

)
=

n∑
i=1

αiKsubgraph(G,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �
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Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...
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Walks 6= paths
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Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N
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1
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2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 3: Subtree kernels
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Example: Tree-like fragments of molecules
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Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v ,n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v ,n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt (v , v ′)T (v ′,n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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2D Subtree vs walk kernels
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Screening of inhibitors for 60 cancer cell lines.
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
1400 natural images in 14 classes
Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).
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Performance comparison on Corel14
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Summary: graph kernels

What we saw
Kernels do not allow to overcome the NP-hardness of subgraph
patterns
They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick
However: using kernels makes it difficult to come back to patterns
after the learning stage
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Part 7

Kernels on graphs
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Graphs

Motivation
Many data come in the form of nodes in a graph for different reasons:

by definition (interaction network, internet...)
by discretization / sampling of a continuous domain
by convenience (e.g., if only a similarity function if available)
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Example: web
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Example: social network

Jean-Philippe Vert (Mines ParisTech) 339 / 402



Example: protein-protein interaction
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Kernel on a graph

φ

We need a kernel K (x,x′) between nodes of the graph.
Example: predict gene protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to make a kernel on a graph
X being finite, any symmetric semi-definite matrix K defines a
valid p.d. kernel on X .
How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj
are “close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth” on
the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussien kernel on the graph (e.g., limit by fine discretization)?
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Conditionally p.d. kernels

Hilbert distance
Any p.d. kernels is an inner product in a Hilbert space

K
(
x,x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

It defines a Hilbert distance:

dK
(
x,x′

)2
= K (x,x) + K

(
x′,x′

)
− 2K

(
x,x′

)
−d2

K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−tdK

(
x,x′

)2
)

is p.d.
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Example

A direct approach
For X = Rn, the inner product is p.d.:

K (x,x′) = x>x′ .

The corresponding Hilbert distance is the Euclidean distance:

dK
(
x,x′

)2
= x>x + x′>x− 2x>x′ = ||x− x′||2 .

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−t ||x− x′||2

)
is p.d.
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Graph distance

Graph embedding in a Hilbert space
Given a graph G = (V ,E), the graph distance dG(x , x ′) between
any two vertices is the length of the shortest path between x and
x ′.
We say that the graph G = (V ,E) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG(x , x ′)) is p.d. for all t > 0.

Lemma
In general graphs can not be embedded exactly in Hilbert spaces.
In some cases exact embeddings exists, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.
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Example: non-c.p.d. graph distance

1 5

2

3
4

dG =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0


λmin

([
e(−0.2dG(i,j))

])
= −0.028 < 0 .
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Graph distance on trees are c.p.d.

Proof
Let G = (V ,E) a tree
Fix a root x0 ∈ V
Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 is the i-th edge is in the (unique) path between x and
x0, 0 otherwise.
Then:

dG(x , x ′) = ‖Φ(x)− Φ(x ′) ‖2 ,

and therefore −dG is c.p.d., in particular exp(−tdG(x , x ′)) is p.d.
for all t > 0.
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Example

1

2

3

4

5

[
e−dG(i,j)

]
=


1 0.14 0.37 0.14 0.05

0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1
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Graph distance on closed chains are c.p.d.

Proof: case |V | = 2p
Let G = (V ,E) a cycle with an even number of vertices |V | = 2p
Fix a root x0 ∈ V , number the 2p edges from x0 to x0.
Map the 2p edges in Rp to (e1, . . . ,ep,−e1, . . . ,−ep)

Map a vertex v to the sum of the edges in the shortest path
between x0 and v .
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Functional approach

Motivation
How to make p.d. kernel on general graphs?
Making a kernel is equivalent to defining a RKHS.
There are intuitive notions of smoothness on a graph

Idea
Define a priori a smoothness functional on the functions
f : X → R.
Show that it defines a RKHS and identify the corresponding kernel
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Notations

X = (x1, . . . ,xm) is finite.
For x,x′ ∈ X , we note x ∼ x′ to indicate the existence of an edge
between x and x′

We assume that there is no self-loop x ∼ x, and that there is a
single connected component.
The adjacency matrix is A ∈ Rm×m:

Ai,j =

{
1 if i ∼ j ,
0 otherwise.

D is the diagonal matrix where Di,i is the number of neighbors of
xi (Di,i =

∑m
i=1 Ai,j ).
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Example

1

2

3

4

5

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1
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Properties of the Laplacian

Lemma
Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f ) :=
∑
i∼j

(
f (xi)− f

(
xj
))2

= f>Lf

L is a symmetric positive semi-definite matrix
0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . ,1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}
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Proof: link between Ω(f ) and L

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj
))2

=
∑
i∼j

(
f (xi)

2 + f
(
xj
)2 − 2f (xi) f

(
xj
))

=
m∑

i=1

Di,i f (xi)
2 − 2

∑
i∼j

f (xi) f
(
xj
)

= f>Df − f>Af

= f>Lf
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Proof: eigenstructure of L

L is symmetric because A and D are symmetric.
For any f ∈ Rm, f>Lf = Ω(f ) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.
f is an eigenvector associated to eigenvalue 0
iff f>Lf = 0
iff
∑

i∼j
(
f (xi)− f

(
xj
))2

= 0 ,
iff f (xi) = f

(
xj
)

when i ∼ j ,
iff f is constant (because the graph is connected).
L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �
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Our first graph kernel

Theorem

The set H =
{

f ∈ Rm :
∑m

i=1 fi = 0
}

endowed with the norm:

Ω (f ) =
∑
i∼j

(
f (xi)− f

(
xj
))2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.
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In case of...

Pseudo-inverse of L
Remember the pseudo-inverse L∗ of L is the linear application that is
equal to:

0 on Ker(L)

L−1 on Im(L), that is, if we write:

L =
m∑

i=1

λiuiu>i

the eigendecomposition of L:

L∗ =
∑
λi 6=0

(λi)
−1 uiu>i .

In particular it holds that L∗L = LL∗ = ΠH, the projection onto
Im(L) = H.
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Proof (1/2)

Resticted to H, the symmetric bilinear form:

〈f ,g〉 = f>Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).
The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = f>Lf = Ω(f ) .

Jean-Philippe Vert (Mines ParisTech) 361 / 402



Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that: {

∀x ∈ X , Kx ∈ H ,

∀ (x, f ) ∈ X ×H, 〈f ,Kx〉 = f (x) .

Ker(K ) = Ker (L∗) = Ker (L), implying K 1 = 0. Therefore, each
row/column of K is in H.
For any f ∈ H, if we note gi = 〈K (i , ·), f 〉 we get:

g = KLf = L∗Lf = ΠH(f ) = f .

As a conclusion K = L∗ is the reproducing kernel of H. �
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Example

1

2

3

4

5

L∗ =


0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08
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Interpretation of the Laplacian

dx

f

i−1 i i+1

∆f (x) = f ′′(x)

∼ f ′(x + dx/2)− f ′(x − dx/2)

dx

∼ f (x + dx)− f (x)− f (x) + f (x − dx)

dx2

=
fi−1 + fi+1 − 2f (x)

dx2

= −Lf (i)
dx2 .
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Interpretation of regularization

For f = [0,1]→ R and xi = i/m, we have:

Ω(f ) =
m∑

i=1

(
f
(

i + 1
m

)
− f
(

i
m

))2

∼
m∑

i=1

(
1
m
× f ′

(
i
m

))2

=
1
m
× 1

m

m∑
i=1

f ′
(

i
m

)2

∼ 1
m

∫ 1

0
f ′(t)2dt .
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Motivation

Consider the normalized Gaussian kernel on Rd :

Kt
(
x,x′

)
=

1

(4πt)
d
2

exp
(
−‖x− x′ ‖2

4t

)
.

In order to transpose it to the graph, replacing the Euclidean
distant by the shortest-path distance does not work.
In this section we provide a characterization of the Gaussian
kernel as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.
The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.
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The diffusion equation

Lemma
For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0,x) =
1

(4πt)
d
2

exp
(
−‖x− x0 ‖2

4t

)
.

is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t) .

with initial condition Kx0 (x,0) = δx0(x)

(proof = direct computation).
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Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e−tL

with

etL = I − tL +
t2

2!
L2 − t3

3!
L3 + . . .
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Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K = e−tL

which is indeed symmetric positive semi-definite because if we write:

L =
m∑

i=1

λiuiu>i (λi ≥ 0)

we obtain:

K = e−tL =
m∑

i=1

e−tλi uiu>i

Jean-Philippe Vert (Mines ParisTech) 370 / 402



Example: complete graph

Ki,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .
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Example: closed chain

Ki,j =
1
m

m−1∑
ν=0

exp
[
−2t

(
1− cos

2πν
m

)]
cos

2πν(i − j)
m

.
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Motivation

In this section we show that the diffusion and Laplace kernels can
be interpreted in the frequency domain of functions
This shows that our strategy to design kernels on graphs was
based on (discrete) harmonic analysis on the graph
This follows the approach we developed for semigroup kernels!
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Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λiuiu>i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi uiu>i
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Norm in the diffusion RKHS

Any function f ∈ Rm can be written as f = K
(
K−1f

)
, therefore its

norm in the diffusion RKHS is:

‖ f ‖2Kt
=
(

f>K−1
)

K
(

K−1f
)

= f>K−1f .

For i = 1, . . . ,m, let:
f̂i = u>i f

be the projection of f onto the eigenbasis of K .
We then have:

‖ f ‖2Kt
= f>K−1f =

m∑
i=1

etλi f̂ 2
i .

This looks similar to
∫ ∣∣∣ f̂ (ω)

∣∣∣2 eσ
2ω2

dω ...
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Discrete Fourier transform

Definition

The vector f̂ =
(

f̂1, . . . , f̂m
)>

is called the discrete Fourier transform of
f ∈ Rn

The eigenvectors of the Laplacian are the discrete equivalent to
the sine/cosine Fourier basis on Rn.
The eigenvalues λi are the equivalent to the frequencies ω2

Successive eigenvectors “oscillate” increasingly as eigenvalues
get more and more negative.
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Example: eigenvectors of the Laplacian
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Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)uiu>i

associated with the following RKHS norms:

‖ f ‖2Kr
=

m∑
i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.
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Example : regularized Laplacian

r(λ) =
1

λ+ ε
, ε > 0

K =
m∑

i=1

1
λi + ε

uiu>i = (L + εI)−1

‖ f ‖2K = f>K−1f =
∑
i∼j

(
f (xi)− f

(
xj
))2

+ ε

m∑
i=1

f (xi)
2 .
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Example

1

2

3

4

5

(L + I)−1 =


0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62
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Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f∈RX

∑
i∼j

(
fi − fj

)2 s.t.
∑

i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2
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Applications 2: search on a graph

Let x1, . . . , xq a set of q nodes (the query). How to find “similar”
nodes (and rank them)?
One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . ,q.
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Application 3: Semi-supervised learning

Jean-Philippe Vert (Mines ParisTech) 385 / 402



Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray
data

Data available
Gene expression measures for more than 10k genes
Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal
Design a classifier to automatically assign a class to future
samples from their expression profile
Interpret biologically the differences between the classes
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Linear classifiers

The approach
Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes
Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βixi + β0 ,

that is positive for one class, negative for the other
Interpretation: the weight βi quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls
No robust estimation procedure exist for 100 samples in 105

dimensions!
It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach
A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
‖β ‖2 =

∑p
i=1 β

2
i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros
Good performance in
classification

Cons
Limited interpretation
(small weights)
No prior biological
knowledge
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Example 2: Feature Selection

The approach
Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about
the selected genes.

Pros
Good performance in
classification
Useful for biomarker
selection
Apparently easy
interpretation

Cons
The gene selection
process is usually not
robust
Wrong interpretation is
the rule (too much
correlation between
genes)
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Pathway interpretation

Motivation
Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling,
regulatory)
Many pathways are already known
How to use this prior knowledge to constrain the weights to have
an interpretation at the level of pathways?

Solution (Rapaport et al., 2006)
Constrain the diffusion RKHS norm of β
Relevant if the true decision function is indeed smooth w.r.t. the
biological network
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Pathway interpretation

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Bad example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
SVM
Good classification
accuracy, but no
possible interpretation!
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Pathway interpretation

Good example
The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)
We project the classifier
weight learned by a
spectral SVM
Good classification
accuracy, and good
interpretation!

Jean-Philippe Vert (Mines ParisTech) 394 / 402



Conclusion
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What we saw

Basic definitions of p.d. kernels and RKHS
How to use RKHS in machine learning
The importance of the choice of kernels, and how to include “prior
knowledge” there.
Several approaches for kernel design (there are many!)
Review of kernels for strings and on graphs
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What we did not see

How to automatize the process of kernel design (kernel selection?
kernel optimization?)
How to deal with non p.d. kernels (tends to become the rule in
applications)
Applications beyond bioinformatics (there are many!).
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Further reading
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