Lecture 1 - setup
Tuesday, January 9, 2024 9:42 AM

Learning problem

Given a training dataset $D = (x_i, y_i)_{i=1}^n$,

good: learn a prediction mapping $f_w : X \rightarrow \mathcal{Y}$

That has low classification error

generalization error

statistical decision loss

[see lecture 5 of my POM on review of statistical]

"Risk" in ML

Examples of learning approaches:

- Regularized ERM
- Empirical risk minimization

 Empirical error

\[\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} L(x_i, h_w(x_i)) + R(w) \]

Not in \mathbb{R} in w

Non-convex

Mussy $\Sigma \text{NP hard to minimize in general}$

\[\hat{L}(w) = \frac{1}{n} \sum_{i=1}^{n} L(x_i, y_i, w) + R(w) \]

\(\Sigma \text{replace } \hat{L} \text{ with a surrogate loss} \)

\(\text{e.g. convex in } w \)

\(\text{ surrogate loss } \)

1 O-lasso

structured sparse line

1 G-lasso
Some important aspects of structured prediction (in binary classification):
1) \(Y \) output is usually exponentially big (in natural size of input)
2) Structured error function \(l(y, y') \)
3) Sometimes constraints on pairs of \(y \)
 - Consider word alignment example
 - English words: French words
 - "like" ⇔ "aime"
 - "time" ⇔ "temps"

Note: Need "encoding \(\xi \),"
\(y = (y_1, \ldots, y_p) \in \{0, 1\}^p \)
\(\sim \) \(y = (y_1, \ldots) \in \{0, 1\}^p \)
\(y = (y_{ij})_{i,j} \in \mathbb{R}^{n \times n} \)

\(\text{Possible edges (have all pairs)} \)

Matching constraints:

\[
\begin{align*}
\forall i & : \sum_{j} y_{ij} \leq 1 \\
\forall j & : \sum_{i} y_{ij} \leq 1
\end{align*}
\]