Today:

* PAC-Bayes
* Proof of PAC-Bayes
* Review of surrogate loss

PAC-Bayes:

Ockham's razor implies \(\hat{L}(w) \) with \(L_p(w) \)

uniformly over all \(w \in W \rightarrow \) but countable

using complexity \(W \) \(\propto \) "prior"

PAC-Bayes:

generalize this to

- arbitrary \(W \)
- general \(f(y,y') \in [0,1] \)

concretely: switch to a randomized predictor

i.e. instead of learning \(\hat{w} \), predicting \(y = h_\hat{w}(x) \)

consider a distribution over \(W \)

predict: first \(w \sim q(w) \); \(y = h_w(x) \)

\[\hat{L}(W) \rightarrow \mathbb{E}_{q} \left[L(w) \right] \text{ as the generalization error for } \hat{w} \]

i.e. \(\mathbb{E}_{(y,y')} \mathbb{P}_{q(w)} \mathbb{E}_{w \sim q} L(y, h_w(x)) \)

empirical version

\[\hat{L}(W) \rightarrow \mathbb{E}_{q} \left[L(w) \right] \rightarrow \text{ an structured prediction will yield risk surrogate loss} \]

Optimize over \(q \) to get \(\hat{w} \)

PAC-Bayes Theorem [McAllester, 1997, 2003]

(\((y,y') \in [0,1] \)) for any fixed prior \(p \) over \(W \)

and any distribution \(q \) over \(X \times X \)

then with prob \(\geq 1 - \delta \) over \(D_n \cup P \times X \)

it holds that \(\forall \hat{w} \) \(\mathbb{P} \) over \(W \)

\[\mathbb{E}_{q} \left[L_p(w) \right] \leq \mathbb{E}_{q} \left[L_n(w) \right] + \sqrt{\frac{\mathbb{E}_{Q} \left[L_n(w) \right]}{2m} \mathbb{K}(q || p) \ln \frac{en}{\delta}} \]

\(m \) new complexity term

Note: if \(W \) is countable, \(\mathbb{P} \) \(Q \) \(\propto \) \(\frac{1}{2} \) \(\|w\| \)
McAllester 2001 use Catoni’s PAC-Bayes (thm. version)

\[
\forall q, \quad \text{Eq} (\mathbb{E} (L(w))) \leq \frac{1}{2} \text{Eq} \left[\mathbb{L} (w) \right] + \delta_n \left[KL(q || \pi^*) + \ln \frac{1}{\delta_n} \right]
\]

if we use \(\pi = N(0, I) \)

\[
q_0 = N(w, I) \quad \text{motivates \(\hat{w}_n \) (used)}
\]

Then, I in paper:

get \(\delta_n \) slow enough so that \(\delta_n \ln n \to 0 \)

then \(\text{Sprodit} (\hat{w}_n) \overset{a.s.}{\to} L^* = \min_{w \in W} L_p (w) \)

McAllester calls this ‘consistency’

[LaCroix-Julien unpublished result:]

\(L(w) \) is def.

\(\text{Sprodit} (\hat{w}_n) \overset{a.s.}{\to} L^* \implies L(w) \overset{a.s.}{\to} L^* = L(w) \)

proof idea: use Catoni’s PAC-Bayes bound

with prob \(\geq 1 - \delta_n \)

\[
\text{Sprodit} (\hat{w}_n) \leq \left(\frac{1}{2 - \delta_n} \right) \left[\text{Sprodit} (\hat{w}_n) + \frac{\delta_n}{2} ||w^*||^2 + \frac{\ln \frac{1}{\delta_n}}{2 \delta_n} \right]
\]

\(\leq \text{Sprodit} (\hat{w}^*_n) + \frac{\delta_n}{2} ||w^*||^2 \)

\(\leq \text{Sprodit} (\hat{w}^*_n) + \sqrt{\ln \frac{1}{\delta_n}} \quad \text{Using Cauchy bound for} \ w^*_n \text{ with prob} \ \geq 1 - \frac{1}{n^2} \)

\(\implies \lim_{n \to \infty} \text{Sprodit} (\hat{w}_n) = \text{Sprodit} (\hat{w}^*_n) \quad \text{(with prob} \ 1) \)

\(\exists \ w \) also use \(\lim_{n \to \infty} \text{Sprodit} (\hat{w}_n) \leq L(w) \)

\(\implies \lim_{n \to \infty} \text{Sprodit} (\hat{w}_n) = L(w) \quad \text{[see paper for details]} \)

\(\text{Problem: } \text{Sprodit} (x, y, w) \text{ is non-convex in } w \implies \text{no optimization guarantees} \)

\(\text{Now: convex surrogates on score } \quad \text{def: } \quad s(y) \triangleq s(x, y, w) \text{ i.e. } z \hat{=} w \text{ is implicit} \)

\(\text{convex surrogates mentioned earlier} \)
Now: convex surrogates on score

\[s(y) = \min_{y \neq y^*} s(y) \]

\[\text{Score} \left(y \right) = \frac{1}{p} \log \left(\frac{1}{p} \exp(p s(y)) \right) - s(y) \left[-\log p s(y) \right] \]

\[\frac{1}{p} \log \left(\frac{1}{p} \exp(p s(y)) \right) \]

```
\text{Note: Slack rescaling more robust when have small } l(y, y^*) \text{ small.}
```

```
\text{but more computationally costly}
```

What theoretical properties could look at?

a) Generalization enforces [next class]

b) Consistency properties & calibration feat. [next class]

\[\text{Relationship between } L(w) \text{ & } g(w) \]

Why structured score functions?

\[s(z, y) = \sum_{C \in \mathcal{C}} \text{Sc}(z, y, C) \]

- Similarity to graphical models
- Statistical efficiency: less # of parameters (simpler score feat. Sc)
 \[\rightarrow \text{easier to learn} \]
 \[\text{(generalization guarantees)} \]
 \[\text{(see Cortes et al. NeurIPS 2016)} \]
 \[\text{next class} \]

2) Computational \[\text{compute agmax } s(y) \]