Hwk 1
Due date: Sept 22, 2020

Name:
Student id:

For each question, provide your derivations and not just the answer.

1. Probability and independence (10 points) Prove or disprove each of the following properties of independence.
(a) $(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$ implies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
(b) $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ and $(\mathbf{X}, \mathbf{Y} \perp \mathbf{W} \mid \mathbf{Z})$ imply $(\mathbf{X} \perp \mathbf{W} \mid \mathbf{Z})$
(c) $(\mathbf{X} \perp \mathbf{Y}, \mathbf{W} \mid \mathbf{Z})$ and $(\mathbf{Y} \perp \mathbf{W} \mid \mathbf{Z})$ imply $(\mathbf{X}, \mathbf{W} \perp \mathbf{Y} \mid \mathbf{Z})$
(d) $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ and $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{W})$ imply $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}, \mathbf{W})$

Hint: If you are convinced a statement is false, come up with a concrete and simple counterexample for which the statement is not true.

2. Bayesian inference and MAP (10 points)

Let $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n} \mid \boldsymbol{\pi} \stackrel{\text { iid }}{\sim} \operatorname{Multinomial}(1, \boldsymbol{\pi})$ on k elements. The encoding for a possible value \boldsymbol{x}_{i} of the random vector \boldsymbol{X}_{i} can take is $\boldsymbol{x}_{i}=\left(x_{1}^{(i)}, x_{2}^{(i)}, \ldots, x_{k}^{(i)}\right)$ with $x_{j}^{(i)} \in\{0,1\}$ and $\sum_{j^{\prime}=1}^{k} x_{j^{\prime}}^{(i)}=1$. In other lingo, \boldsymbol{X}_{i} is a k-dimensional one-hot vector.
Consider a Dirichlet prior distribution on $\boldsymbol{\pi}: \boldsymbol{\pi} \sim \operatorname{Dirichlet}(\boldsymbol{\alpha})$, where $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\alpha_{j}>0$ for all j. The Dirichlet distribution describes a continuous random vector $\boldsymbol{\pi}$ which lies on the probability simplex $\Delta_{k}:=\left\{\boldsymbol{\pi} \in \mathbb{R}^{k}: 0 \leq \pi_{j} \leq 1\right.$ and $\left.\sum_{j=1}^{k} \pi_{j}=1\right\}$.
Its probability density function ${ }^{1}$ is $p(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{j=1}^{k} \alpha_{j}\right)}{\prod_{j=1}^{k} \Gamma\left(\alpha_{j}\right)} \prod_{j=1}^{k} \pi_{j}^{\alpha_{j}-1}$. Just like the Binomial distribution is the special case of a Multinomial distribution with $k=2$, the Beta distribution is the 2 -dimensional instantiation of a Dirichlet distribution.
(a) Supposing that the data is IID, what are the conditional independence statements that we can state for the joint distribution $p\left(\boldsymbol{\pi}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$? Write your answer in the form of formal conditional independence statements as in Question 1 (a) - (d).
(b) Derive the posterior distribution $p\left(\boldsymbol{\pi} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$. The expected answer has the form: "The posterior is a \qquad distribution with parameters \qquad ".
(c) Derive the marginal probability $p\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ (or equivalently $p\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \mid \boldsymbol{\alpha}\right)$.) This quantity is called the marginal likelihood and we will see it again when doing model selection later in the course.
(d) Derive the MAP estimate $\hat{\boldsymbol{\pi}}$ for $\boldsymbol{\pi}$ assuming that the hyperparameters for the Dirichlet prior satisfy $\alpha_{j}>1$ for all j. Compare this MAP estimator with the MLE estimator for the multinomial distribution seen in class in the regime of extremely large $k .{ }^{2}$

3. Properties of estimators (20 points)

(a) Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Poisson (λ). The pmf for a Poisson r.v. is $p(x \mid \lambda)=e^{-\lambda} \frac{\lambda^{x}}{x!}$ for $x \in \mathbb{N}$. Find the MLE for λ and derive its bias, variance and consistency (Y/N).
(b) Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)$ and suppose that $n>10$. Consider $\hat{p}:=\frac{1}{10} \sum_{i=1}^{10} X_{i}$ as an estimator of p. Derive its bias, variance and consistency (Y / N).
(c) Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ Uniform $(0, \theta)$. Find the MLE for θ and derive its bias, variance and consistency (Y / N).
Hint: For each $c \in \mathbb{R}, P\left(\max \left\{X_{1}, \ldots, X_{n}\right\}<c\right)=P\left(X_{1}<c, X_{2}<c, \ldots, X_{n}<c\right)=$ $P\left(X_{1}<c\right) P\left(X_{2}<c\right) \cdots P\left(X_{n}<c\right)$.
(d) Let $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right)$ (where $\mu \in \mathbb{R}$) for $n \geq 2$ to simplify. Let $\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Show that the MLE ${ }^{3}$ for $\theta:=\left(\mu, \sigma^{2}\right)$ is $\hat{\mu}=\bar{X}$ and $\hat{\sigma}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Derive the bias, variance and consistency (Y / N) only for $\hat{\sigma}^{2}$.
Hint: Let χ_{n-1}^{2} be the chi-squared distribution with $(n-1)$ degrees of freedom. When calculating the variance of $\hat{\sigma}^{2}$, you may use the fact that $\operatorname{Var}\left[\chi_{n-1}^{2}\right]=2(n-1)$, and that $\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \stackrel{d}{=} \chi_{n-1}^{2}$.

4. Maximum Likelihood Estimation (10 points)

Follow the instructions in this Colab notebook: https://colab.research.google.com/ drive/1oDz7_XceB_p2g009CrGZSzJSK9XWNnY1

Notes

${ }^{1}$ Formally, this density function is taken with respect to a ($k-1$)-dimensional Lebesgue measure defined on Δ_{k}. But equivalently, you can also think of the density to be a standard one in dimension $k-1$ defined for the first $k-1$ components $\left(\pi_{1}, \ldots, \pi_{k-1}\right)$ which are restricted to the (full) dimensional polytope $T_{k-1}:=\left\{\left(\pi_{1}, \ldots, \pi_{k-1}\right) \in\right.$ $\mathbb{R}^{k-1}: 0 \leq \pi_{j} \leq 1$ and $\left.\sum_{j=1}^{k-1} \pi_{j} \leq 1\right\}$, and then letting $\pi_{k}:=1-\sum_{j=1}^{k-1} \pi_{j}$ in the formula. Note that this bijective transformation from T_{k-1} onto Δ_{k} has a Jacobian with a determinant of 1 , which is why the two Lebesgue measures are equivalent and one does not need to worry about which of the two spaces we are defining the density on.
${ }^{2}$ An example of this is when modeling the appearance of words in a document: here k would be the numbers of words in a vocabulary. The MAP estimator derived above when the prior is a symmetric Dirichlet is called additive smoothing or Laplace smoothing in statistical NLP.
${ }^{3}$ Note that formally we should use the notation $\hat{\sigma}^{2}$ (which looks ugly!) as we are estimating the variance σ^{2} of a Gaussian rather than its standard deviation σ. But as the MLE is invariant to a re-parameterization of the full parameter space (from σ^{2} to σ e.g.), then we simply have $\hat{\sigma}^{2}=\hat{\sigma}^{2}$ and the distinction is irrelevant.

