
IFT 6269: Probabilistic Graphical Models Fall 2018

Lecture 12 — October 12
Lecturer: Simon Lacoste-Julien Scribe: Philippe Beardsell

Based on the scribe notes from Jaime Roquero and JieYing Wu.

Proofread and quickly corrected by Simon Lacoste-Julien.

General themes in this class
(A) Modeling high dimensional distributions

• Representation: how to represent a family of distributions. → Examples of con-
venient families are given by graphical models (DGM, UGM).
• Parametrization: how to parameterize the members of the family of distributions
→ an example for this that we will see is using the exponential family (but there
are many others)

(B) Inference→ how do we compute p(xQ | xE), where Q is the query and E the evidence?

• Lecture 13 : elimination algorithm
• Lecture 14 : sum-product algorithm (belief propagation)

(C) Statistical estimation: how do we estimate the model from observations? → Examples
of principles that we see: maximum likelihood estimators, maximum entropy, method
of moments

12.1 Undirected Graphical Models (UGM)
(a.k.a. Markov random fields or Markov networks)

let G = (V,E) be an undirected graph
and let C be the set of cliques of G, where a clique is a fully connected set of nodes
(i.e. C ∈ C ⇐⇒ ∀i 6= j ∈ C, {i, j} ∈ E)

Examples of set of nodes which are cliques from size 1 to 5 :
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12.1.1 UGM associated with G
L(G) ,

{
p : p(xV ) = 1

Z

∏
C∈C

ψC(xC) for some "potentials" ψC s.t. ψC(xC) ≥ 0 ∀xC
}

and where Z is the normalizing constant

Z ,
∑
x

( ∏
C∈C

ψC(xC)
)

"partition function"

� The functions ψC are potential functions and are not probability distributions ! Unlike
in a DGM, where we could think of C to be the node and its parents, which implies

ψC(xC) = p(xi, xπi
), in a UGM, the potential ψC(xC) is not directly related to the probability

distribution p(xC).

Remark:

• We can multiply any ψC(·) by a constant without changing p (because we will re-
normalize with a new Z)

Therefore, for some undirected graph G there are multiple ways to define the probability
p(xV ). For example, consider the following graph

A

B
C

DE

we could write

P (A,B,C,D,E) ∝ ψ(A,B,E)ψ(A,B)ψ(A,E)ψ(B,E)·
ψ(B,C)ψ(C,D)ψ(D,E)

but we could also write

P (A,B,C,D,E) ∝ ψ′(A,B,E)ψ(B,C)ψ(C,D)ψ(D,E)

Note that in the second equation, we can rewrite ψ(A,B)ψ(A,E)ψ(B,E) to the simpler
potential function ψ′(A,B,E), as (A,B,E) form a clique of 3 nodes. The potential func-
tion ψ′(A,B,E) encompasses all the information about the dependencies between the nodes
(A,B,E), so there is no loss of generality in making that transformation. Therefore, it is
sufficient to consider only Cmax, the set of maximal cliques, where a maximal clique is a
clique that cannot be extended by including an additional vertex. We can restrict ourselves
to that case given that all cliques are subsets of one or more maximal cliques.

e.g. C ′ ⊆ C, then redefine ψnewC (xC) = ψoldC (xC)ψoldC′ (xC′)

[Note: we will see later that it is sometimes convenient to consider the "over-parametrization"
of trees using both ψi(xi) and ψij(xi, xj)]

Property 12.1.1 as before, E ⊆ E ′ =⇒ L(G) ⊆ L(G′)
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Trivial graphs

• consider G = (V,E) with E = ∅

A

B C

D

For p ∈ L(G), we get:

p(xV ) =
n∏
i=1

ψi(xi) as C = {{i} ∈ V }

This gives us that L(G) is the fully factorized set
and that X1, ..., Xn are all mutually independent.

• consider G = (V,E) with ∀i, j ∈ V, {i, j} ∈ E (i.e. G is one big clique)

A

B C

D

For p ∈ L(G), we get:

p(x) = 1
Z
ψV (xV ) as C is reduced to a single set V

We make no conditional independence assumptions
between any of the xi; and any distribution is in
L(G).

Property 12.1.2

• if ψC(xC) > 0 ∀xC

we can then see that p is in an exponential family:

p(xV ) = exp
{ ∑

C∈C

<θC ,TC(xC)>︷ ︸︸ ︷
logψC(xC)︸ ︷︷ ︸

negative energy function

− logZ
}

Example: Ising model in physics : xi ∈ {0, 1}

xi

node potentials → Ei = ψi(xi = 1)
edge potentials → Ei,j = ψij(xi = 1, xj = 1)

Another example could be social network modeling.
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12.1.2 Conditional independence for UGM
As for the directed graphical models, we can view the undirected graphical models as en-
coding a set of independence assumptions in their structure.

Definition 12.1 We say that p satisfies the global Markov property (with respect to an undi-
rected graph G) if and only if

∀ disjoint A,B, S ⊆ V s.t. S separates A from B in G, then we have: XA⊥⊥XB | XS.

A

S

B

Figure 12.1: The set S separates A from B. All paths from A to B must pass through S.

Proposition 12.2

p ∈ L(G) =⇒ p satisfies the global Markov property for G

Proof :
Without loss of generality, we can assume A ∪B ∪ S = V .
To see why, consider the case where A ∪B ∪ S ⊂ V . Then, let

Ã , A ∪ {a ∈ V : a and A are not separated by S}

and B̃ , V \ {S ∪ Ã}

By definition, we have the disjoint union Ã ∪ B̃ ∪ S = V , and we now show that Ã and B̃
are separated by S. By contradiction, suppose there is an a ∈ Ã and b ∈ B̃ which are not
separated by S, i.e. there exists a path from a to b not passing through S. Then by definition,
b would be in Ã, contradicting the definition of B̃ (as b cannot be in Ã and B̃ at the same
time). We also have that B ⊆ B̃ as the original B was separated from A by S. Thus we
have Ã ∪ B̃ ∪ S = V and Ã and B̃ are separated by S. If we can show that XÃ⊥⊥XB̃ | XS,
then by the decomposition property, this implies XA⊥⊥XB | XS for any subsets A of Ã and
B of B̃, giving the required general case. We thus continue the proof with A ∪B ∪ S = V .
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Let C ∈ C. We cannot have C ∩A 6= ∅ and C ∩B 6= ∅, i.e. the clique C can’t intersect both
A and B at the same time (otherwise, part of B would be connected to A by direct edges
from this clique). Thus,

p(x) = 1
Z

∏
C∈C

C⊆A∪S

ψC(xC)
∏

C′∈C

C ′ * A ∪ S︸ ︷︷ ︸
⇒C′⊆B∪S

C′*S

ψC′(xC′) = f(xA∪S)g(xB∪S)

p(xA|xS) ∝ p(xA, xS︸ ︷︷ ︸
xA∪S

) =
∑
xB

f(xA∪S)g(xB∪S)

= f(xA∪S)
∑
xB

g(xB∪S)︸ ︷︷ ︸
cst w.r.t xA

=⇒ p(xA|xS) = f(xA, xS)∑
x′A
f(x′A, xS)

Similarly,
p(xB|xS) = g(xB, xS)∑

x′B
g(x′B, xS)

Thus,

p(xA|xS)p(xB|xS) = f(xA∪S)g(xB∪S)∑
x′A

∑
x′B
f(x′A, xS)g(x′B, xS) = p(xV )

p(xS) = p(xA, xB|xS)

This proves XA⊥⊥XB | XS. �
To converse of the above theorem is not always true (see assignment 3), but if we assume

that the probability is strictly positive, it holds as given in the following (deep) theorem.

Theorem 12.3 (Hammersley-Clifford)

if p(xV ) > 0 ∀xV
then, p ∈ L(G) ⇐⇒ p satisfies the global Markov property.

Proof : see chapter 16 of Michael I. Jordan’s book

Property 12.1.3 Closure with respect to marginalization
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As for directed graphical models, we also have a marginalization notion in undirected graphs,
but it is slightly different. If p(x) factorizes in G, then p(x1, . . . , xn−1) factorizes in the graph
where the node n is removed and all neighbors are connected.

E

n

E ′

n

let V ′ = V \ {n}
E ′ = edges in G \ {n} + connect all neighbors of n in G
together (new clique)

{marginal on x1:n−1 for p ∈ L(G) } = L(G′) .

12.1.3 DGM vs UGM
Definition 12.4 Markov blanket The Markov blanket for a node i is the smallest set of
nodes M such that the node Xi is conditionally independent of all the other nodes (XV )
given XM :

Xi⊥⊥XV | XM .

• for an UGM: M = {j : {i, j} ∈ E} = set of neighbors of i

• for a DGM: the Markov blanket of node i include its parents, its children and the
parents of all its children, i.e.

M = πi ∪ children(i) ∪
⋃

j∈children(i)
πj.

iM

Table 12.1 summarizes the differences between DGM and UGM.

12.1.4 Moralization
Let G be a DAG; when can we transform G to an undirected graph Ḡ such that the DGM
from G is the same as the UGM on Ḡ? Before answering this question, we first define the
undirected graph Ḡ so that L(G) ⊆ L(Ḡ).
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Table 12.1: Summary of the main differences between DGM and UGM

Directed graphical model Undirected graphical model

Factorization p(x) =
n∏
i=1

p(xi|xπi
) p(x) = 1

Z

∏
C∈C

ψC(xC)

Conditional d-separation separation
independence [Xi⊥⊥Xnd(i) | Xπi

] [XA⊥⊥XB | XS]
and many more!

Marginalization not closed in general, closed
only when marginalizing leaf nodes

cannot exactly
capture some families

grid v-structure

Definition 12.5 for G a DAG, we call Ḡ the moralized graph of G

where Ḡ is an undirected graph with the same set of vertices V

and Ē = { {i, j} : (i, j) ∈ E}︸ ︷︷ ︸
undirected version of E

∪ { {k, l} : k 6= l ∈ πi for some i}︸ ︷︷ ︸
"moralization"

That is, the moralization1 can be explained less formally as connecting all the parents of
i (πi) with i in a big clique. Note that we only need to add edges when |πi| > 1, i.e. when
there is a v-structure. Here are two examples of this transformation :

(A)

G

i

Ḡ

i

(B)

G

i

Ḡ

i

Note that in the conversion process from a Bayesian network to a Markov random field, we
loose the marginal independence of the parents.

We are now in position to answer the original question of when a DGM yields the same
as a UGM.

1Note that the terminology “moralization” come from the fact that we are “marrying” all the parents (by
adding edges between them), and thus from a traditional Christian point of view, we are making the “family
moral”.
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Proposition 12.6 for a DAG G with no v-structure [forest]

then L(G) = L(Ḡ)

but in general, we can only say that L(G) ⊆ L(Ḡ)
(note that Ḡ is the minimal undirected graph such that L(G) ⊆ L(Ḡ))

Proof: This will be done in assignment!

Proposition 12.7 (Flipping a covered edge in a DGM) Let G = (V,E) be a DAG.
We say that a directed edge (i, j) ∈ E is a covered edge if and only if πj = πi ∪ {i}. Suppose
the edge (i, j) ∈ E is covered and define G′ = (V,E ′), with E ′ = (E\{(i, j)})∪{(j, i)}. Prove
that L(G) = L(G′).

Proof. Note that in order to identify the factors of the decomposition of the joint
distribution provided by G′ with conditional distributions, we need to show that G′ is indeed
a DAG! We know that G is a DAG, but must prove that flipping (i, j) did not introduce any
cycles for G′.

G′ is a DAG. Recall that a graph is a DAG if an only if it has a topological order. WLOG,
assume that the vertices of the original graph G are indexed with such a topological ordering
(1, . . . , i, . . . , j, . . . , n) and so j = i+ k (for some k ∈ N).

Now, the sequence (1, . . . , i, j, i+ 1, . . . , i+ k− 1, j, i+ k + 1, . . . , n) is also a topological
ordering of G since πj ⊂ {1, . . . , i} and and (b) ∀m > 0, if πi+m ⊂ {1, . . . , i + m − 1} then
πi+m ⊂ {1, . . . , i+m− 1} ∪ {j}.

Then, (1, . . . , j, i, . . . , n) is a topological ordering of G′ since everyone’s ancestors are to
their left. Therefore, G′ is a DAG.

L(G) ⊆ L(G′). Let p ∈ L(G). We thus have p(x) = ∏n
k=1 p(xk | xπk

), where πk denotes the
parents of k in G. Consider any xi, xj, xπi

such that p(xi, xj, xπi
) 6= 0. Then by the chain

rule (valid for any distribution), we have

p(xi | xπi
)p(xj | xi, xπi

) = p(xi, xj | xπi
) = p(xj | xπi

)p(xi | xj, xπi
). (12.1)

As (i, j) is a covered edge, we have πj = πi ∪ {j}. Moreover, by definition of E ′, we have
π′j = πi and π′i = πj ∪ {j} with π′i the parents of i in G′. So note that equation (12.1) can
be interpreted as:

p(xi | xπi
)p(xj | xπj

) = p(xj | xπ′j )p(xi | xπ′i).

As π′k = πk for any k 6= i, j, we can simply swap the two terms for i and j in the product
factorization of p:

p(x) = p(xi | xπi
)p(xj | xπj

)
∏
k 6=i,j

p(xk | xπk
) = p(xj | xπ′j )p(xi | xπ′i)

∏
k 6=i,j

p(xk | xπ′
k
).
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If p(xi, xj, xπi
) = 0, then both the LHS and RHS above are equal to zero and so are still

equal. We thus have p ∈ L(G′). By symmetry, we can reverse the argument, and thus
L(G) = L(G′). �
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