IFT6269-A2021 **Hwk 4** Name:
Prof: Simon Lacoste-Julien Nov 30, 2021 Student id:

1. Entropy (10 points)

Let X be a discrete random variable on a space \mathcal{X} with $|\mathcal{X}| = k < \infty$.

- (a) Prove that the entropy $H(X) \geq 0$, with equality only when X is a constant.
- (b) Denote by p the pmf of X and q the pmf of the uniform distribution on \mathcal{X} . What is the relation between the Kullback-Leibler divergence D(p||q) and the entropy H(X) of the distribution p?
- (c) Deduce a tight upper bound which depends on k for the entropy of any distribution p over \mathcal{X} . Conclude on what is a distribution of maximum entropy on \mathcal{X} .

2. Mutual information (10 points)

We consider a pair of discrete random variables (X_1, X_2) defined over the finite set $\mathcal{X}_1 \times \mathcal{X}_2$. Let $p_{1,2}$, p_1 and p_2 denote respectively the joint distribution, the marginal distribution of X_1 and the marginal distribution of X_2 .

We define the mutual information between X_1 and X_2 as:

$$I(X_1, X_2) := \sum_{(x_1, x_2) \in \mathcal{X}_1 \times \mathcal{X}_2} p_{1,2}(x_1, x_2) \log \frac{p_{1,2}(x_1, x_2)}{p_1(x_1)p_2(x_2)}.$$

- (a) Manipulate the expression above to show that $I(X_1, X_2) \geq 0$.
- (b) Let H(Z) be the entropy of the random variable $Z = (X_1, X_2)$. Show that $I(X_1, X_2)$ can be expressed as a function of $H(X_1), H(X_2)$ and H(Z).
- (c) What is the joint distribution $p_{1,2}$ over $\mathcal{X}_1 \times \mathcal{X}_2$ of maximal entropy with fixed marginals p_1 and p_2 ?

3. Hidden Markov Models (80 points)

Follow the instructions in this Colab notebook. Please solve the math questions included in the notebook in the cells provided directly in the notebook.

https://drive.google.com/file/d/1GU1hRo6OTPREXZ4tWf8Vn5M7tEE-al2b/view?usp=sharing