Introduction to Causal Inference \& Causal Discovery

Overview

Causal inference:

■ Causal graphical models
■ Interventions (the "do" operator)
■ Example: Study of Kidney Stone Treatments
■ Backdoor criterion

- The ladder of causation
- Counterfactuals

Causal discovery:
■ Markov equivalence

- Faithfulness
- Structure identifiability
- Constraint-based methods

■ Score-based methods

Causal Inference

Causal graphical models (CGM)

- A causal graphical model (CGM) is a pair (p, \mathcal{G}) s.t.
$\square \mathcal{G}$ is a directed acyclic graph (DAG)
- $p \in \mathcal{L}(\mathcal{G})$, i.e. p factorizes according to \mathcal{G}.

■ \mathcal{G} describes causal relationships between variables, i.e., how the system reacts to interventions.

Causal graphical models (CGM)

- A causal graphical model (CGM) is a pair (p, \mathcal{G}) s.t.

Example: Kidney stone treatment

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$
$■ \mathcal{G}$ is a directed acyclic graph (DAG)

- $p \in \mathcal{L}(\mathcal{G})$, i.e. p factorizes according to \mathcal{G}.
- \mathcal{G} describes causal relationships between variables, i.e., how the system reacts to interventions.

$$
p(S, T, R)=p(S) p(T \mid S) p(R \mid S, T)
$$

The "do" operator

Throughout, we will assume perfect deterministic interventions.
Definition (The "do" operator)
Given a causal graphical model (p, \mathcal{G}),

$$
p\left(x \mid d o\left(x_{k}^{\prime}\right)\right):=\delta\left(x_{k}, x_{k}^{\prime}\right) \prod_{i \neq k} p\left(x_{i} \mid x_{\pi_{i}^{\mathcal{G}}}\right)
$$

■ Thus, $p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$ is a "new" distribution over X_{V}.

The "do" operator

Throughout, we will assume perfect deterministic interventions.
Definition (The "do" operator)
Given a causal graphical model (p, \mathcal{G}),

$$
p\left(x \mid d o\left(x_{k}^{\prime}\right)\right):=\delta\left(x_{k}, x_{k}^{\prime}\right) \prod_{i \neq k} p\left(x_{i} \mid x_{\pi_{i}^{\mathcal{G}}}\right)
$$

■ Thus, $p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$ is a "new" distribution over X_{V}.
■ Can compute marginals, e.g. $p\left(x_{i} \mid d o\left(x_{k}^{\prime}\right)\right)=\sum_{x_{\backslash \backslash\{i\}}} p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$

The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The "do" operator)

Given a causal graphical model (p, \mathcal{G}),

$$
p\left(x \mid d o\left(x_{k}^{\prime}\right)\right):=\delta\left(x_{k}, x_{k}^{\prime}\right) \prod_{i \neq k} p\left(x_{i} \mid x_{\pi_{i}^{\mathcal{G}}}\right)
$$

■ Thus, $p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$ is a "new" distribution over X_{V}.
■ Can compute marginals, e.g. $p\left(x_{i} \mid d o\left(x_{k}^{\prime}\right)\right)=\sum_{x_{\backslash \backslash\{i\}}} p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$
$■ \ldots$ and conditionals, e.g. $p\left(x_{i} \mid x_{j}, d o\left(x_{k}^{\prime}\right)\right)=\frac{p\left(x_{i}, x_{j} \mid d o\left(x_{k}^{\prime}\right)\right)}{p\left(x_{j} \mid d o\left(x_{k}^{\prime}\right)\right)}$

The "do" operator

Throughout, we will assume perfect deterministic interventions.

Definition (The "do" operator)

Given a causal graphical model (p, \mathcal{G}),

$$
p\left(x \mid d o\left(x_{k}^{\prime}\right)\right):=\delta\left(x_{k}, x_{k}^{\prime}\right) \prod_{i \neq k} p\left(x_{i} \mid x_{\pi_{i}^{\mathcal{G}}}\right)
$$

■ Thus, $p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$ is a "new" distribution over X_{V}.
$■$ Can compute marginals, e.g. $p\left(x_{i} \mid d o\left(x_{k}^{\prime}\right)\right)=\sum_{x_{V \backslash\{i\}}} p\left(x \mid d o\left(x_{k}^{\prime}\right)\right)$
■ ... and conditionals, e.g. $p\left(x_{i} \mid x_{j}, d o\left(x_{k}^{\prime}\right)\right)=\frac{p\left(x_{i}, x_{j} \mid d o\left(x_{k}^{\prime}\right)\right)}{p\left(x_{j} \mid d o\left(x_{k}^{\prime}\right)\right)}$

■ Remark: $p\left(x_{V \backslash\{k\}} \mid d o\left(x_{k}\right)\right)=\prod_{i \neq k} p\left(x_{i} \mid x_{\pi_{i}^{\mathcal{G}}}\right)$.

The "do" operator

■ Back to our example

$P(S, R \mid d o(T))=P(S) \underbrace{P(T \mid S)} P(R \mid S, T)$
The decision of taking treatment T does not depend on S anymore

The "do" operator

■ Back to our example

$$
P(S, R \mid d o(T))=P(S) \underbrace{P(T \mid S)} P(R \mid S, T)
$$

The decision of taking treatment T does not depend on S anymore
\square Notice $p\left(\cdot \mid\right.$ do $\left.\left(x_{k}^{\prime}\right)\right) \in \mathcal{L}\left(\mathcal{G}^{\prime}\right)$, where \mathcal{G}^{\prime} is the mutilated graph, i.e.

$$
\mathcal{G}^{\prime}=\left(V, E^{\prime}\right) \quad E^{\prime}=\{(i, j) \in E \mid j \neq k\}
$$

The "do" operator

■ Back to our example

$$
P(S, R \mid d o(T))=P(S) \underbrace{P(T \mid S)} P(R \mid S, T)
$$

The decision of taking treatment T does not depend on S anymore
\square Notice $p\left(\cdot \mid\right.$ do $\left.\left(x_{k}^{\prime}\right)\right) \in \mathcal{L}\left(\mathcal{G}^{\prime}\right)$, where \mathcal{G}^{\prime} is the mutilated graph, i.e.

$$
\mathcal{G}^{\prime}=\left(V, E^{\prime}\right) \quad E^{\prime}=\{(i, j) \in E \mid j \neq k\}
$$

Different types of interventions

Intervening on the treatment T

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

Observations

Perfect intervention
Imperfect intervention

Different types of interventions

Intervening on the treatment T

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

Observations

Perfect intervention
Imperfect intervention

$p(S) \tilde{p}(T) p(R \mid S, T)$

$p(S) \tilde{p}(T \mid S) p(R \mid S, T)$

Definition presented previously is a perfect intervention with $\tilde{p}(T):=\delta\left(T, T^{\prime}\right)$. It is sometimes called a perfect deterministic intervention.

Why should I care!?! (Kidney Stone Treatment)

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

	Overall	Patients with small stones	Patients with large stones
Treatment $a:$ Open surgery	$78 \%(273 / 350)$	$\mathbf{9 3 \%}(81 / 87)$	$\mathbf{7 3 \%}(192 / 263)$
Treatment $b:$ Percutaneous nephrolithotomy	$\mathbf{8 3 \%}(289 / 350)$	$87 \%(234 / 270)$	$69 \%(55 / 80)$

(Example taken from Element of Causal Inference by Peters et al. p111)

Why should I care!?! (Kidney Stone Treatment)

Pay attention to these two questions...

Why should I care!?! (Kidney Stone Treatment)

Pay attention to these two questions...

1- What is your chance of recovery knowing that the doctor gave you treatment A?

2- What is your chance of recovery if you decide to take treatment \mathbf{A} ?
(In both cases, assume you don't know the size of your stone)

Why should I care!?! (Kidney Stone Treatment)

$T=$ Treatment $\in\{A, B\}$
$Z=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

What is your chance of recovery knowing that the doctor gave you treatment A?
■ Compute $P(R=1 \mid T=A)$! (we know how to do that: D)
■ Knowing that your doctor gave you treatment A tells you that you probably have a large kidney stone $\ldots P(S=\operatorname{large} \mid T=A)=0.75$

■ ... which reduces your chance of recovery
$P(R=1 \mid T=A, S=$ large $)=0.73<0.93=P(R=1 \mid T=A, S=$ small $)$

Why should I care!?! (Kidney Stone Treatment)

$T=$ Treatment $\in\{A, B\}$
$Z=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

What is your chance of recovery knowing that the doctor gave you treatment A?
■ Compute $P(R=1 \mid T=A)$! (we know how to do that: D)
■ Knowing that your doctor gave you treatment A tells you that you probably have a large kidney stone ... $P(S=\operatorname{large} \mid T=A)=0.75$

■ ... which reduces your chance of recovery
$P(R=1 \mid T=A, S=$ large $)=0.73<0.93=P(R=1 \mid T=A, S=$ small $)$

What is your chance of recovery if you decide to take treatment A ?

- $P(R=1 \mid d o(T=A))$

■ Your really don't know anything about your kidney stone

Why should I care!?! (Kidney Stone Treatment)

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

$$
P(S, R \mid d o(T))=P(S) \underbrace{P(T \mid S)} P(R \mid S, T)
$$

The decision of taking treatment T does not depend on S anymore

Then simply marginalize as usual:

$$
\begin{aligned}
P(R=1 \mid d o(T=A)) & =\sum_{S} P(R=1, S \mid d o(T=A)) \\
& =\sum_{S} P(R=1 \mid S, T=A) P(S)=0,832
\end{aligned}
$$

Why should I care!?! (Kidney Stone Treatment)

$T=$ Treatment $\in\{A, B\}$
$S=$ Stone size $\in\{$ small, large $\}$
$R=$ Patient recovered $\in\{0,1\}$

What is your chance of recovery knowing that the doctor gave you treatment A?

$$
P(R=1 \mid T=A)=0,78 \quad P(R=1 \mid T=B)=\mathbf{0 , 8 3}
$$

What is your chance of recovery if you decide to take treatment A?

$$
P(R=1 \mid d o(T=A))=\mathbf{0 , 8 3 2}
$$

$$
P(R=1 \mid d o(T=B))=0,782
$$

Why should I care!?! (Kidney Stone Treatment)

- What just happened? We showed
$\underbrace{P(R=1 \mid \operatorname{do(T=A))}}_{\text {Never observed data from } p(T, S, R \mid \text { do(T=A) })}=\underbrace{\sum_{S} P(R=1 \mid S, T=A) P(S)}_{\text {...Yet I can estimate the query, since there is no "do" here :D }}$

Why should I care!?! (Kidney Stone Treatment)

■ What just happened? We showed

$$
\underbrace{P(R=1 \mid d o(T=A))}_{\text {served data from } p(T, S, R \mid d o(T=A))}=\underbrace{\sum_{S} P(R=1 \mid S, T=A) P(S)}_{\ldots \text { Yet I can estimate the query, since there is no "do" here :D }}
$$

■ Formally, this means $p(R=1 \mid d o(T=A))$ is identifiable from $p(R, T, S)$ and \mathcal{G} (our computations critically relied on the causal graph).

Why should I care!?! (Kidney Stone Treatment)

■ What just happened? We showed

$$
\underbrace{P(R=1 \mid d o(T=A))}_{\text {served data from } p(T, S, R \mid d o(T=A))}=\underbrace{\sum_{S} P(R=1 \mid S, T=A) P(S)}_{\ldots \text { Yet I can estimate the query, since there is no "do" here :D }}
$$

■ Formally, this means $p(R=1 \mid d o(T=A))$ is identifiable from $p(R, T, S)$ and \mathcal{G} (our computations critically relied on the causal graph).

■ Turns out what we just did is an instance of the backdoor criterion...

Backdoor criterion

Theorem (Backdoor criterion)

$p\left(x_{i} \mid d o\left(x_{k}\right)\right)=\sum_{x_{S}} p\left(x_{i} \mid x_{k}, x_{S}\right) p\left(x_{S}\right)$ if
$11 S$ contains no descendants of x_{k}, and
2 S blocks all paths from x_{i} to x_{k} entering x_{k} from "the backdoor", i.e. such that $x_{k} \leftarrow \ldots x_{i}$

Backdoor criterion

Theorem (Backdoor criterion)

$p\left(x_{i} \mid d o\left(x_{k}\right)\right)=\sum_{x_{S}} p\left(x_{i} \mid x_{k}, x_{S}\right) p\left(x_{S}\right)$ if
$1 S$ contains no descendants of x_{k}, and
2 S blocks all paths from x_{i} to x_{k} entering x_{k} from "the backdoor", i.e. such that $x_{k} \leftarrow \ldots x_{i}$

Say we want to compute $p(y \mid d o(x))$:

Left path: Only backdoor path. Blocked by $S=\{K\}$. Right path: Why we cannot include a descendant of X in S.

Backdoor criterion

Can all identifiable queries $p\left(x_{i} \mid d o\left(x_{k}\right)\right)$ be expressed with the backdoor criterion?

Backdoor criterion

Can all identifiable queries $p\left(x_{i} \mid d o\left(x_{k}\right)\right)$ be expressed with the backdoor criterion?
Answer: No!

Backdoor criterion

Can all identifiable queries $p\left(x_{i} \mid d o\left(x_{k}\right)\right)$ be expressed with the backdoor criterion?
Answer: No!

■ Since U is unobserved, we cannot apply the backdoor criterion...

- Turns out we can nevertheless identify $p(y \mid d o(x))$ from $p(X, Z, Y)$ using the front-door criterion. Look it up!

Do-calculus

- Do-calculus is a set of three rules that can be applied to transform an interventional query (including a "do") into an observational expression (without any "do").

■ Not enough time to present them...

- All identifiable queries can be found by a subsequent application of these rules, i.e. the rules are complete.

The ladder of causation

You now know about the first two steps of Pearl's "ladder of causation".

Level (Symbol)	Typical Activity	Typical Questions	Examples
1. Association $P(y \mid x)$	Seeing	What is? How would seeing X change my belief in Y ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?
2. Intervention $P(y \mid d o(x), z)$	Doing Intervening	What if? What if I do $X ?$	What if I take aspirin, will my headache be cured? What if we ban cigarettes?
3. Counterfactuals $P\left(y_{x} \mid x^{\prime}, y^{\prime}\right)$	Imagining, Retrospection	Why? Was it X that caused $Y ?$ What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Os- wald not shot him? What if I had not been smoking the past 2 years?

Fig. 1. The Causal Hierarchy. Questions at level i can only be answered if information from level i or higher is available.
Taken from "The Seven Tools of Causal Inference with Reflections on Machine Learning" by Judea Pearl

Counterfactual

You need structural causal models (SCM). Let \mathcal{G} be a DAG:

$$
\begin{align*}
& X_{1}:=f_{1}\left(X_{\pi_{1}^{\mathfrak{G}}}\right)+N_{1} \tag{1}\\
& X_{2}:=f_{2}\left(X_{\pi_{2}^{\mathfrak{G}}}\right)+N_{2} \tag{2}\\
& \ldots \tag{3}\\
& X_{d}:=f_{d}\left(X_{\pi_{d}^{\mathfrak{G}}}\right)+N_{d}
\end{align*}
$$

■ This induces an observational distribution

■ Can define interventions as well

■ Can define counterfactual statements (not possible with a causal graphical model). See Section 6.4 in ECI.

Causal Discovery

Markov Equivalence

■ Recall: A Directed Graphical Model encodes the Conditional Independence of a distribution.

■ Multiple DAGs may encode the same Conditional Independence statements.

■ Two DAGs encoding the same Conditional Independence statements are called Markov Equivalent.

Markov Equivalence

Theorem (Verma \& Pearl, 1991)

Two DAGs G_{1} and G_{2} are Markov Equivalent if and only if they have the same skeleton and the same v-structures.

G_{1}

G_{2}

Markov Equivalence

Theorem (Verma \& Pearl, 1991)

Two DAGs G_{1} and G_{2} are Markov Equivalent if and only if they have the same skeleton and the same v-structures.

G_{1}

G_{2}

CPDAG

Markov Equivalence Classes can be represented as a Completed Partially Directed Acyclic Graph (CPDAG).

Faithfulness

Global Markov Property

$A \& B$ are d-separated given C in \mathcal{G}
$X_{A} \Perp X_{B} \mid X_{C}$

Faithfulness

Global Markov Property

Faithfulness

Global Markov Property

Exercise: Violation of Faithfulness

$$
\begin{aligned}
& X:=N_{X} \\
& Y:=X+N_{Y} \\
& Z:=X-Y+N_{Z} \\
& \text { with } N_{X}, N_{Y}, N_{Z} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

$p(X, Y, Z)$ is a Multivariate Normal distribution, where the only conditional independence statements are: $X \Perp Z$ and $X \not \Perp Z \mid Y$.

Faithfulness

Global Markov Property

Exercise: Violation of Faithfulness

$$
\begin{aligned}
& X:=N_{X} \\
& Y:=X+N_{Y} \\
& Z:=X-Y+N_{Z} \\
& \text { with } N_{X}, N_{Y}, N_{Z} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

Structure

$p(X, Y, Z)$ is a Multivariate Normal distribution, where the only conditional independence statements are: $X \Perp Z$ and $X \not \Perp Z \mid Y$.

Structure Identifiability

Theorem

Assume that p is faithful wrt. \mathcal{G}^{0}. The Markov Equivalence class of \mathcal{G}^{0}, represented by its CPDAG, is identifiable from p.

Structure Identifiability

Theorem

Assume that p is faithful wrt. \mathcal{G}^{0}. The Markov Equivalence class of \mathcal{G}^{0}, represented by its CPDAG, is identifiable from p.

■ Only the Markov Equivalence class is identifiable from observations, not an individual graph. Two Markov Equivalent graphs may lead to different causal conclusions!

or

■ Under different assumptions, an individual DAG may be identifiable

Structure Identifiability

Theorem

Assume that p is faithful wrt. \mathcal{G}^{0}. The Markov Equivalence class of \mathcal{G}^{0}, represented by its CPDAG, is identifiable from p.

■ Only the Markov Equivalence class is identifiable from observations, not an individual graph. Two Markov Equivalent graphs may lead to different causal conclusions!

or

■ Under different assumptions, an individual DAG may be identifiable

- Additive Noise Model (ANM): $X_{j}:=f_{j}\left(X_{\mathrm{Pa}_{j}}\right)+N_{j}, N_{j} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$, where f_{j} are nonlinear.

Structure Identifiability

Theorem

Assume that p is faithful wrt. \mathcal{G}^{0}. The Markov Equivalence class of \mathcal{G}^{0}, represented by its CPDAG, is identifiable from p.

■ Only the Markov Equivalence class is identifiable from observations, not an individual graph. Two Markov Equivalent graphs may lead to different causal conclusions!

or

■ Under different assumptions, an individual DAG may be identifiable

- Additive Noise Model (ANM): $X_{j}:=f_{j}\left(X_{\mathrm{Pa}_{j}}\right)+N_{j}, N_{j} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$, where f_{j} are nonlinear.

■ Using interventional data (i.e. data resulting from controlled experiments).

Causal Structure Learning (Causal Discovery)

	X_{1}	X_{2}	X_{3}
sample 1	1.2	2.6	0.2
sample 2	2.3	5.4	0.5
...		...	
sample n	0.9	1.9	0.1

Intervention \#1		$\mathrm{X}_{1} \quad \mathrm{X}_{2}$	X_{3}		
sam\|	Interventio	ion \#2 X_{1}	X_{2}	X_{3}	
sam\|	sample ${ }^{\text {I }}$	Intervention \#3	X_{1}	X_{2}	X_{3}
	sample	sample 1	1.2	2.6	0.2
sam\|	...	sample 2	2.3	5.4	0.5
	sample	...		\ldots	
		sample n	0.9	1.9	0.1

How to recover the (CP)DAG using a dataset \mathcal{D} ?

Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes $X \& Y$, and
$\mathbf{A} \subseteq \mathbf{V} \backslash\{X, Y\}$, test if $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$.
If there is no set \mathbf{A} s.t. $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$, then add an edge $X-Y$.

Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes $X \& Y$, and $\mathbf{A} \subseteq \mathbf{V} \backslash\{X, Y\}$, test if $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$.
 If there is no set \mathbf{A} s.t. $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$, then add an edge $X-Y$.

Step 2: Identify the v-structures
For each structure $X-Z-Y$ with no edge between $X \& Y$, orient $X \rightarrow Z \leftarrow Y$ iff $Z \notin \mathbf{A}$, where \mathbf{A} is such that $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$.

Constraint-based methods

Step 1: Identify the skeleton

For each pair of nodes $X \& Y$, and $\mathbf{A} \subseteq \mathbf{V} \backslash\{X, Y\}$, test if $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$. If there is no set \mathbf{A} s.t. $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$, then add an edge $X-Y$.

Step 2: Identify the v-structures
For each structure $X-Z-Y$ with no edge between $X \& Y$, orient $X \rightarrow Z \leftarrow Y$ iff $Z \notin \mathbf{A}$, where \mathbf{A} is such that $X \Perp_{\mathcal{D}} Y \mid \mathbf{A}$.

IC Algorithm

Constraint-based methods

Step 2': Additional orientations

Use Meek's orientation rules to
orient some of the remaining edges.

\Downarrow

\Downarrow

\Downarrow

Rule 1

Rule 2

Rule 3

\Downarrow

Rule 4

Score-based methods

- Idea: treat the problem of learning the structure of the DAG as a model selection problem

```
\mp@subsup{max}{\mathcal{G}\in\textrm{DAG}}{\operatorname{score}(\mathcal{G}|\mathcal{D})}\mathbf{})
\mathcal{G}\in\textrm{DAG}
```

Recall: choices of scores

Score-based methods

- Idea: treat the problem of learning the structure of the DAG as a model selection problem

```
max }\operatorname{score(\mathcal{G}|\mathcal{D})
\mathcal{G}\inDAG
```

Recall: choices of scores
■ Likelihood score:

$$
\operatorname{score}_{L}(\mathcal{G} \mid \mathcal{D})=\log p\left(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\mathrm{MLE}}, \mathcal{G}\right)
$$

Score-based methods

■ Idea: treat the problem of learning the structure of the DAG as a model selection problem

$$
\max _{\mathcal{G} \in \mathrm{DAG}} \operatorname{score}(\mathcal{G} \mid \mathcal{D})
$$

Recall: choices of scores
■ Likelihood score:

$$
\operatorname{score}_{L}(\mathcal{G} \mid \mathcal{D})=\log p\left(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\mathrm{MLE}}, \mathcal{G}\right)
$$

■ Bayesian score:

$$
\operatorname{score}_{\mathcal{B}}(\mathcal{G} \mid \mathcal{D})=\log p(\mathcal{D} \mid \mathcal{G})+\log p(\mathcal{G})
$$

Score-based methods

■ Idea: treat the problem of learning the structure of the DAG as a model selection problem

$$
\max _{\mathcal{G} \in \mathrm{DAG}} \operatorname{score}(\mathcal{G} \mid \mathcal{D})
$$

Recall: choices of scores
■ Likelihood score:

$$
\operatorname{score}_{L}(\mathcal{G} \mid \mathcal{D})=\log p\left(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\mathrm{MLE}}, \mathcal{G}\right)
$$

■ Bayesian score:

$$
\operatorname{score}_{\mathcal{B}}(\mathcal{G} \mid \mathcal{D})=\log p(\mathcal{D} \mid \mathcal{G})+\log p(\mathcal{G})
$$

■ Bayesian Information Criterion (BIC):

$$
\operatorname{score}_{\text {BIC }}(\mathcal{G} \mid \mathcal{D})=\log p\left(\mathcal{D} \mid \hat{\theta}_{\mathcal{G}}^{\mathrm{MLE}}, \mathcal{G}\right)-\frac{\log N}{2} \operatorname{Dim}[\mathcal{G}]
$$

Score-based methods

```
max }\operatorname{score}(\mathcal{G}|\mathcal{D}
\mathcal{G}\in\textrm{DAG}
```

- How to search over the space of DAGs?
- The number of DAGs over n nodes is super-exponential in $n: 2^{\Theta\left(n^{2}\right)}$.

Score-based methods

```
max }\operatorname{score}(\mathcal{G}|\mathcal{D}
\mathcal{G}\in\textrm{DAG}
```

■ How to search over the space of DAGs?

The number of DAGs over n nodes is super-exponential in $n: 2^{\Theta\left(n^{2}\right)}$.

Theorem

Let $G_{\leq d}=\{\mathcal{G}$ a $D A G \mid$ every node has at most d parents $\}$. Finding a $D A G$ in $G_{\leq d}$ that maximizes a score is NP-hard for $d \geq 2$.

Score-based methods

```
max }\operatorname{score}(\mathcal{G}|\mathcal{D}
G\inDAG
```

■ How to search over the space of DAGs?

■ The number of DAGs over n nodes is super-exponential in $n: 2^{\Theta\left(n^{2}\right)}$.

Theorem

Let $G_{\leq d}=\{\mathcal{G}$ a $D A G \mid$ every node has at most d parents $\}$. Finding a DAG in $G_{\leq d}$ that maximizes a score is NP-hard for $d \geq 2$.

■ Heuristic solutions:
■ Greedy algorithms: Hill climbing, GES

- Genetic algorithms

■ Constrained continuous optimization: NOTEARS, Gran-DAG, DCDI, etc...

