today: finish prob.
- frequentist vs. Bayesian

binomial distribution:

Model \(n \) independent coin flips

- sum of \(n \) independent Bern(\(p \)) random variables
- let \(X_i \sim \text{Bern}(\theta) \) independent and identically distributed
 - implicitly defining \(X_1, X_2, \ldots, X_n \)
- let \(X = \sum_{i=1}^n X_i \), then we have \(X \sim \text{Bin}(n, \theta) \)

binomial with parameters \(n, \theta \)

\[X = \{0, 1, \ldots, n\} \]

pmf: \[p(x; n, \theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad \text{for } x \in \Omega_X \]

\[\binom{n}{x} = \frac{n!}{x!(n-x)!} \]

\[p(x; n, \theta) = \frac{n!}{x!(n-x)!} \theta^x (1-\theta)^{n-x} \]

number of ways to choose \(x \) elements out of \(n \)

mean: \(X = \sum_{i=1}^n X_i \)

\[\mathbb{E}[X] = \mathbb{E}[\sum_{i=1}^n X_i] = n \mathbb{E}[X_i] = n \theta \]

Similarly, \(\text{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \text{Var}(X_i) = n \theta (1-\theta) \)

Other distributions:

- Poisson (\(\lambda \)) \[\lambda_X = \{0, 1, \ldots, \infty\} \quad \text{count data} \]
 - mean \(\lambda \)
 - variance \(\lambda \)
- Gaussian in 1D \(N(\mu, \sigma^2) \) \[\mathbb{L}X = \mathbb{R} \]
- Gamma \(\Gamma(\alpha, \beta) \) \[\mathbb{L}X = \mathbb{R}^+ \]
 - shape \(\alpha \), rate \(\beta \)
 - mean \(\frac{\alpha}{\beta} \)
 - variance \(\frac{\alpha}{\beta^2} \)
- Other: Student, Cauchy, exponential, beta, Dirichlet, Dirichlet on 2 elements
Statistical concepts

- Model
- Data
- Statistics
- Probability

Example: Model n independent coin flips

Probability: \(n \) heads in a row

Statistics: I have observed \(k \) heads, what is \(\theta \)?

Frequentist vs. Bayesian:

1. Semantic of \(\theta \): meaning of a prob?
 a) (traditional) frequentist semantic
 \[P(x=x) \text{ represents the limiting frequency of observing } x = x \]
 if I could repeat the # of iid experiments
 b) Bayesian (subjective) semantic
 \[P(x=x) \text{ encodes an agent } \text{"belief"} \text{ that } x = x \]
 the laws of prob. characterize a "rational" way to combine "beliefs" and "evidence" [observations]

Bayesian approach:

- Very simple philosophically:
 - treat all uncertain quantities as \(\text{RV} \)
 - encode all knowledge about the system ("belief") as a "prior" on probabilistic models
 - and then use law of prob. (and Bayes rule) to get updated beliefs and answers

Justification for frequentist semantic: see notes from last year

Coin flip vs. bayesian approach

Biased coin flip unknown \(\Rightarrow \) model it as a \(\text{RV} \)
biased coin flip

unknown \Rightarrow model it as a r.v.

we believe \(X \sim \text{Bin}(n, \theta) \) \Rightarrow need a \(p(\theta) \) "prior distribution"

\(\theta \in [0,1] \)

Suppose we observe \(X=x \) (result of \(n \) coin flips)

then we "update" our beliefs about \(\theta \) using Bayes rule

\[
p(\theta \mid x=x) = \frac{p(x \mid \theta) p(\theta)}{p(x)}
\]

posterior belief

\(p(x) \) normalization

\(p(x \mid \theta) \) observation model

\(p(\theta) \) "prior belief"

\(p(x) \) "marginal likelihood"

\(\text{Note: } p(x \mid \theta) \rightarrow p(x \mid \theta) \quad p(\theta) \rightarrow p(\theta) \)

\(p(x \mid \theta) \) is a "mixed distribution"

\(p(\theta) \rightarrow p(\theta) \)

Example:

Suppose \(p(\theta) \) is uniform on \([0,1] \) "no specific preference"

\[
p(\theta \mid x) \propto p(x \mid \theta) p(\theta)
\]

\(p(x \mid \theta) \propto \theta^x (1-\theta)^{n-x} \)

\(p(\theta) \propto 1 \) up to a constant

Scaling:

\[
\int \theta^x (1-\theta)^{n-x} \, d\theta = B(x+1, n-x+1)
\]

\(B(a, b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \Gamma(a-1) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \]

\(\Gamma(a) = \int_0^1 u^{a-1} e^{-u} \, du \)

normalization constant

\(\int_0^1 \theta^x (1-\theta)^{n-x} \, d\theta = 1 \)

Here \(p(\theta \mid x) \) is called a "beta distribution"

\[
B(\theta \mid a, b) \triangleq \frac{\theta^{a-1} (1-\theta)^{b-1}}{\text{Gamma}(a,b)}
\]

\(\text{parameters} \)

* Uniform distribution \(B(\theta \mid 1, 1) \)

* posterior \(p(\theta \mid x+1, n-x+1) \)

Exercise for the reader: if we \(B(\alpha, \beta) \) as prior

show that posterior will be \(B(x+\alpha, n-x+\beta) \)
posterior \(p(\theta|x=x) \) contains all the info from data \(x \) that we need to answer questions about \(\theta \)

e.g. question: what is prob. of head (\(F=1 \)) on the next flip

as a frequentist

\[P(F=1|data) = \theta \]

as a Bayesian

\[P(F=1|x=x) = \int p(F=1, \theta | x=x) d\theta \]

\[= \int p(F=1|\theta, x=x) p(\theta|x=x) d\theta \]

\[= \int \theta p(\theta|x=x) d\theta = \mathbb{E}_\theta[\theta|x=x] \]

\[= \mathbb{E}_\theta[\theta] = \theta \]

* a meaningful "Bayesian" estimator of \(\theta \)

\[\hat{\theta}_{\text{Bayes}}(x) = \mathbb{E}[\theta|x=x] \quad (\text{posterior mean}) \]

relation: \(\hat{\theta} : \text{observation} \rightarrow \theta \)

coin coin example: \(p(x|\theta) = \text{beta}(\theta|\alpha=\theta+1, \beta=n-\theta+1) \)

mean of a beta RV. = \(\frac{\alpha}{\alpha+\beta} \)

thus

\[\hat{\theta}_{\text{Bayes}}(x) = \mathbb{E}[\theta|x] = \frac{x+1}{n+2} \]

here, biased estimator \(\mathbb{E}_\theta[\hat{\theta}(x)] \neq \theta \)

but asymptotically unbiased \(\frac{x+1}{n+2} \to \theta \)

compare contrast with \(\hat{\theta}_{\text{MLE}}(x) = \frac{x}{n} \quad [\text{unbiased} \quad \mathbb{E}[\hat{\theta}] = \frac{x}{n} = \theta] \)

summarize:

* as a Bayesian, get a posterior + use law of probabilities

* in 'frequentist statistics',...
Maximum likelihood principle

Step: Given a parametric family $p(x; \theta)$ for $\theta \in \Theta$.

We want to estimate/learn θ from x.

$$\hat{\theta}_{ML}(x) \triangleq \arg \max_{\theta \in \Theta} p(x; \theta)$$

The "likelihood function" $L(\theta)$

MLE example 1: Binomials

n coin-flips

$X \sim \text{Bin}(n, \theta)$

$p(x; \theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$

Trick: To maximize $\log L(\theta)$ instead of $L(\theta)$

To maximize $\log p(x; \theta)$ instead of $p(x; \theta)$

Justification: $\log(.)$ is strictly increasing.

ie. $a<b \implies \log a < \log b$ for $a, b > 0$

$$\implies \arg \max_{\theta \in \Theta} \log p(x; \theta) = \arg \max_{\theta \in \Theta} p(x; \theta)$$

$$\log p(x; \theta) = \log \left(\binom{n}{x} \right) + x \log \theta + (n-x) \log (1-\theta) = \ell(\theta)$$

$$\ell'(\theta) = 0 \implies \frac{d}{d \theta} \ell(\theta) = 0$$

Look for θ s.t. θ_{MLE}

Want

$\ell' = \frac{d}{d \theta} \ell(\theta) = 0$

$\theta \in \Theta$

$x(1-\theta) - \theta(n-x) = 0$

$\theta = \frac{x}{n}$
Some optimization comment:

\[\min_{x \in \mathbb{R}} f(x) \quad \text{if } f \text{ is diff.} \]

\[\nabla f(x) = 0 \quad \text{is a necessary condition for } x \text{ being a local min when } x \text{ is in the interior of } \mathbb{R}^n \]

Also need to check

\[\nabla^2 f(x) > 0 \]

Hessian \(\nabla^2 f(x) > 0 \)

Hessian is positive definite with \(\text{Hu} > 0 \)

\[\text{only local result in general} \]

- If \(\nabla^2 f(x) > 0 \) \(\forall x \in \mathbb{R}^n \), \(f(x) \) is said "convex".
- In this case, \(\nabla f(x) = 0 \) \(\Rightarrow \) sufficient for \(x \) to be a global min.

- Otherwise, for smooth \(f(x) \), lack of zero gradients and boundary points gives enough information to find global optima.