today: linean regression logishic
linean regression: deive/notwate with conditional approach io regresion $(Y \in \mathbb{R})$

$$
\begin{array}{cc}
p(y \mid x ; \omega) & =N\left(y \mid\langle\omega, x\rangle, \sigma^{2}\right) \\
\text { prameter } & N\left(\mu, \sigma^{2}\right) \\
x \in \mathbb{R} d & N\left(y \mid \mu, \sigma^{2}\right)
\end{array}
$$

$$
\begin{aligned}
& x \in \mathbb{R}^{d} \\
& w
\end{aligned}
$$

equivalanty: $\quad Y_{i}=\omega^{\top} X_{i}+\varepsilon_{i}$ wheo $\varepsilon_{i} \mid X_{i} \stackrel{i}{\sim} N\left(0, \sigma^{2}\right)$
[aside: we use "offet" notation for x
ie. $x=\binom{\tilde{x}}{1} \perp \begin{gathered}\tilde{x} \in \mathbb{R}^{d}-1 \\ \text { "constant feative" }\end{gathered}$

]
the $\left\langle\omega_{1} x\right\rangle=\left\langle\omega_{1: d-1}, \tilde{x}\right\rangle+\omega_{q}$
"bisis" / "ofoff" b

* dataeet $\left(x_{i}, y_{y}\right)_{i=1}^{n} \quad X_{i} \sim$ whalever (don't coneri)

$$
Y_{i} \mid X_{i} \stackrel{n}{n}^{\text {nhe }} N\left(\omega^{\top} x_{i}, \sigma^{2}\right)
$$

constionicl inchlihood

$$
\begin{aligned}
& p\left(y_{1: n} \mid x_{1: n}\right) \stackrel{\text { minde }}{=} \cdot \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \\
& \text { This not } \\
& \text { "concave } \\
& \text { t set. ofor or } \\
& \left.\log (\quad 11)=\sum_{i=1}^{n}\left[-\frac{\left(y_{i}-w^{5} x_{i}\right.}{\partial \sigma^{2}}\right)^{2}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)\right] \frac{a}{x}+b \log x \\
& \frac{\partial}{\partial\left(\sigma^{2}\right)}()=0 \Rightarrow \sum_{i=1}^{n} \frac{\left[\frac{\left(y_{i}-r_{0} x_{i}\right)^{2}}{2}\left(\frac{-1}{\left(\sigma^{2}\right)^{2}}\right)-\frac{1}{2} \frac{1}{\sigma^{2}}\right]=00000}{} \\
& \Rightarrow \hat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\omega^{\top} x_{i}\right)^{2} \\
& \operatorname{doj}_{j} \rightarrow-\infty \text { as } \sigma \rightarrow 0 \quad \text { sp conclude that } \\
& \text { or } \sigma \rightarrow+\infty \text { this is correct } \\
& \text { globalmax ino } \\
& \text { for } \omega \text { frued } \\
& \text { matix (}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (see also }
\end{aligned}
$$

manis (
"Clesign matix" " $\underset{\substack{n \times d \\ \text { madik }}}{x} \triangleq\left(\begin{array}{c}-x_{1}^{\top} \\ -x_{2}^{\top} \\ \vdots \\ -x_{n}^{\top}\end{array}\right)$

$$
\stackrel{\text { vecps }}{y 气}\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)
$$

$$
X \omega=\left(\begin{array}{c}
x_{1}^{\top} \omega \\
x_{2}^{\top} \omega \\
\vdots \\
x_{n}^{\top} \omega
\end{array}\right) \in \mathbb{R}_{i=1}^{n-1}\left(y_{i}-\omega^{\top} x_{i}\right)^{2}=\left\|y-x_{\omega}\right\|_{2}^{2}
$$

can rewrite $-\log p\left(y_{1: n} \mid x\right)=\left\|y-x_{\omega}\right\|_{2}^{2}+\delta t /\left(0^{2}\right)$

$M C L \longrightarrow \min _{\omega}\|y-x \omega\|_{2}^{2} \Leftrightarrow$ prigeteng y on the coumn spare of

$$
X_{w}<\sum_{j=1}^{d} X_{00} w_{j} \prod_{j-1} \text { desamn of } X
$$

$\hat{\omega}_{M L E}=\underset{\omega \in \operatorname{congmin}^{d}}{ }\left\|y-X_{\omega \omega}\right\|_{2}^{2}$ "lecast square"
alegebra: want $\nabla_{w} \stackrel{\text { seft }}{ } 0$

$$
\begin{aligned}
& \text { velor } \\
& \nabla_{\omega}^{f}\left(\omega^{\top} A_{\omega}\right)
\end{aligned}
$$

a) if $x^{\top} x$'s invertible, then have ungque soln

$$
\hat{\omega}_{M E E}=\left(x^{\top} x\right)^{-1} x^{\top} y
$$

$\underset{1 B_{n \times d}}{X} \Rightarrow \operatorname{Tan} k(X) \propto \min \{n, d\}$

$$
\begin{aligned}
\operatorname{rank}\left(x^{\top} x\right) & =\operatorname{rank}(x) \\
& =\min \{\operatorname{nid}
\end{aligned}
$$

$$
\leq \min \{n, d\}
$$

predictinin on

$$
\hat{y}=X_{\hat{\omega}}=\underbrace{x^{\hat{\omega_{M L E}}\left(x^{\top} X\right)^{-1} X^{\top}} y}
$$

$x^{\top} X$ is Gierthbe

$$
\Rightarrow n \geqslant d
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \omega}\left[\left(y-x_{\omega}\right)^{\top}\left(y-x_{\omega}\right)\right] \frac{6}{=} 0 \\
& \begin{aligned}
& \partial w[\left.\|y\|^{2}-2 y^{\top} x_{w}+w^{\top} x^{\top} x_{w}\right] \\
& 0=0 \\
&-2 x^{\top} y+2 x^{\top} x_{w}=0
\end{aligned} \\
& =\left(A+A^{\top}\right)_{\omega} \\
& \text { (conver fit.g } \omega \\
& \rightarrow \text { sat. pti. is goble min) } \\
& \Rightarrow \quad\left(x^{\top} x\right) \omega^{*}=x^{\top} y \text { "normal equation" }
\end{aligned}
$$

prgection matrix on (recal yeametric pergectree.)
column space of $X \quad$. column space of X
(8) If $n<d$ lie. high demension. then $x^{\top} x$ is not invertible or bou dota regine)
b) if $X^{\top} X$ is not unvectible \rightarrow there is no unigue soir
any $\hat{\omega}$ s.t. ($\left.X^{\top} X\right) \hat{\omega}=x^{\top} y$ is a MCL estinate
could choose $\hat{\omega}=$ angmin $\|w\|_{2} \quad=x^{+} y^{+}$Mosven-Penrose

$$
w:\left(x^{\top} x\right)^{\prime 2} w=x^{\top} y
$$ psendo-irurise (see Wikipedia)

$$
X^{+}=\left(X^{\top} x\right)^{-} X^{\top} \text { when }
$$

$$
x \text { is fub rank }
$$

problem: pseudb-unvers is not numeriodly stible insteed it is better regulanie to get sinidan esfect
$16 h 00$
regularization: (can be motivated from MAP point of veew)
\log posterior: $\log p(w) d a t a)=\log p\left(y_{1: n} \mid x, \omega\right)+\log p(\omega)+$ cstr

$$
=\frac{-1}{\partial \sigma^{2}}\left\|y-x_{w}\right\|_{2}^{2}+f\left(f \cdot \cdot\left(\sigma^{2}\right)-\frac{\Delta}{\partial \sigma^{2}}\|w\|^{2}+c \theta .\right.
$$

this is dje. \rightarrow is shrongly cannes is ω \Rightarrow a unique saln $f(\cdot)$ is x-strangly connex

$$
\begin{aligned}
& \text { MAP here } \hat{\omega}_{\text {MAP }}=\underset{\omega}{\operatorname{angmun}} \frac{\| \| y-x_{w} \|_{2}^{2}}{2}+\frac{\lambda}{2}\| \|_{0} \|_{2}^{2} \quad \begin{array}{l}
\text { "ridge } \\
\text { vegressiens" }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& X_{n \times d}=U \sum_{n \in d} V^{\top}
\end{aligned}
$$

$\Leftrightarrow f(\cdot)=\frac{\hat{\lambda} \| \cdot H^{2}}{2}$ is comes $\dot{h}(\cdot)$
no proem for $d>n$
good practice: to either standardize fatness ie. make each feature zero mean or normalise \quad make x_{i} int empirical vaician normalize make x_{i} unit norm $\left\|x_{i}\right\|_{2}=1$ or Scale fating to $[0,1]$ or $[-1,1]$
logistic regression
setup: binary classification $y=\{0,1\} \quad x \in \mathbb{R}^{d}$
generative molal maturation:
suppose only assumptions is there exists a pelf (density) in IR d for each class conditionals

$$
\begin{aligned}
p(Y=1 \mid X=x) & =\frac{p(x \mid y=1) \xi p(x \mid y=0)}{p(y=1, y=x)+p(y=0, X=x)\} p(X=x)} \\
& =\frac{1}{1+\frac{p(y=0, x=x)}{p(y=1, X=x)}}=\frac{1}{1+\exp (-f(x))}
\end{aligned}
$$

in general,

$$
p(y=1 \mid x=x)=\sigma(f(x))
$$

where $\sigma(z) \geq \frac{1}{1+e \operatorname{lip}(-z)}$

some properties of ot):

$$
\begin{aligned}
& \sigma(-z)=1-\sigma(z) \quad[\sigma(z)+\sigma(-z)=1] \\
& \frac{d}{d z} \sigma(z)=\sigma(z) \sigma(-z)=\sigma(z)(1-\sigma(z))
\end{aligned}
$$

(4) Is maturate lineman logistic regression, consider class cendutimals,

Gaussian: $\log p\left(x \mid \mu, \sigma^{2}\right)=\frac{-1}{2} \log \partial \pi \sigma^{2}-\frac{(x-\mu)^{2}}{\partial \sigma^{2}}$

$$
\begin{aligned}
& =\left(m_{1}-n_{0}\right)^{\top} T(x)+A\left(m_{0}\right)-A\left(m_{1}\right)+\log _{\frac{\pi}{1} \pi} \\
& \triangleq \omega^{\top} \varphi(x)
\end{aligned}
$$

$$
\text { where } w=\binom{n_{1}-n_{0}}{A\left(n_{0}\right)-A\left(n_{1}\right)+\log _{\frac{\pi}{1-n}}} \quad \varphi(x)=\binom{\left.\pi_{x}\right)}{1}
$$

get legistic:

deacision baunday $1\{\omega((x)>0\}$
eterais lo radn: ty angument atove with $p(x / y)=N(x \mid \mu y, \Sigma y)$

$$
\text { - if } \Sigma_{0}=\Sigma_{0} \text {, then } \tilde{C}(x)=\binom{x}{1}
$$

- Whenwis $\varphi(x)=-1-x x^{t} \mid$

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \\
& -\left[\frac{x^{2}}{\partial \sigma^{2}}-x \frac{\mu}{\partial^{2}}+\frac{\mu^{2}}{\partial \sigma^{2}}\right] \\
& \text { let } T(x)=\left[\begin{array}{c}
-x^{2} / 2 \\
x
\end{array}\right] \\
& n\left(\mu, \sigma^{2}\right)=\left[\begin{array}{l}
1 / \alpha^{2} \\
\mu / \sigma^{2}
\end{array}\right] \\
& A(n)=\frac{1}{2} \log \left(2 \not x \sigma^{2}\right)+\frac{\mu^{2}}{\partial \sigma^{2}} \\
& \left.p(x \mid y=1)=p|x| n_{1}\right) \\
& p|x| y=0)=p\left(x \mid n_{0}\right)
\end{aligned}
$$

(aside: showing that the sigma^2 above is the global max is subtle because the objective is not concave in sigma^2. I give more info here for your curiosity, but it is not required for the assignment.)

- Formally, to find a global max of a *differentiable objective*, you need to check all stationary points (zero gradient points), as well as the values at the boundary of the domain.

Thus here, you would need to show that the objective cannot take higher value anywhere at the boundary of the domain (which is the case here (exercise!), as the objective goes to -infinity at the boundary), so you are done (this is the only possible global optimum -- a maximum here, as it should be, given that there are no other stationary points and all values are lower at the boundary, but one could also explicitly check the Hessian to see that it is strictly negative definite at the stationary point, ie. it looks like a local maximum).

Note that we will see later in the class that the Gaussian is in the exponential family, with a log-concave likelihood in the right ("natural") parametrization, and thus using the invariance principle of the MLE, we could also easily deduce the MLE in the "moment" parametrization which is the usual (mu,sigma^2) one, without having to worry about local optima...

- for a cute counter-example illustrating that a differentiable function could have only one stationary point which is a local min but *not a global min* (and thus why one need to look at the values at the boundary), see:
- https://en.wikipedia.org/wiki/Maxima_and_minima\#Functions_of_more_than_one variable
- ie.

$$
f(x, y)=x^{2}+y^{2}(1-x)^{3}, \quad x, y \in \mathbb{R},
$$

shows. Its only critical point is at $(0,0)$, which is a local minimum with $f(0,0)=0$. However,
it cannot be a global one, because $f(2,3)=-5$.
(see picture of function here)
(and note that the "Mountain pass theorem" which basically says that if you have a strict local optimum with another point somewhere with the same value, then there must be a saddle point somewhere (a "mountain pass") i.e. another stationary point, does not hold for this counter-example as one of the required regularity condition, the "Palais-Smale compactness condition" fails. Here, the saddle point (which should intuitively exist) "happens at infinity", which is why it only has one stationary point despite $(0,0)$ not being a global minimum)

- the moral of the story: intuitions for multivariate optimization are often misleading! (this counter-example would not work in 1d because of Rale's theorem)

