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Summary

First, we present a simple algorithm which, given a sorted sequence of node values, can
build a binary search tree of minimum height in O(N) time.  The algorithm works with
sequences whose length is, a priori, unknown. Previous algorithms [1-3] required the
number of elements to be known in advance.  Although the produced trees are of
minimum height, they are generally unbalanced.  We then show how to convert them into
optimal trees with a minimum internal path length in O(log N) time.  The trees produced,
both minimum height and optimal, have characteristic shapes which can easily be
predicted from the binary representation of tree size.
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Introduction

The binary search tree  (BST) is a well known data structure: it is a binary tree with the
property that the value of any given node is larger than the node values in its left sub-tree
and smaller than the values in its right sub-tree. Figure 1 shows two such trees. In this
figure and in what follows, we assume integer values for the nodes.
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Figure 1 - Binary search trees
The height of the tree is an important factor in the analysis of tree algorithms. In this
paper the height, h, is defined to be the number of nodes on the longest path from the root
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to a leaf.  The  height of the tree on the left is 3 and the height of the tree on the right is 4.
The tree on the left with all the leaves on the bottom level is said to be perfect. It contains
exactly 2h-1 nodes.  More generally, the minimum height for a tree containing N nodes is

† 

log2(N +1)È ˘.  Conversely, the maximum height is N if the tree has degenerated into a
list.

Any modern text on data structures describes the properties of BSTs and gives the basic
algorithms to find, add or remove an element.  Given random values, the time complexity
of these basic operations is O(log n); furthermore, the values from a binary search tree
can be output in sorted order in O(n) time by a simple recursive algorithm shown below.

class Node {
vType value;
Node  left, right;

}

void printTree ( Node p)
{ if p ≠ null then
 { printTree (p.left) ;

print (p.value) ;
printTree (p.right) ;

}
}

Now consider the inverse operation, namely: building a tree given a sequence of sorted
values such as produced by  printTree.  Of course, this can be accomplished by
successive INSERT operations but the complexity of this approach is O( N log N) at best.
Actually, if the basic insertion algorithm is used with a sorted set of values, the tree
degenerates into a list and the complexity is O(N2).

In 1976, Wirth [1, p. 195] gave an efficient algorithm to construct  a tree of N nodes. The
algorithm is recursive: a tree of N nodes is built by reading a node value and doing
recursive calls to build two sub-trees of (N-1)/2 nodes.  The resulting tree is perfectly
balanced and the running time is O(N), but the value of N must be known before hand.
Wirth was not concerned with node order and the tree was arbitrarily read in pre-order.
More recently, Carrano [2, p. 480, 3, p. 545],  gives a similar algorithm which works with
sorted values but again N must be known beforehand. The method is shown below.

Node buildTree ( int N )
{   if N = 0 then
        return null ;
    else
    {   Node  left  := readTree ( N / 2 ) ;
    vType value := nextValue () ;
    Node  right := readTree ( (N-1) / 2 ) ;

   return new Node( value, left, right ) ;
    }
}
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In what follows, we develop an algorithm which does the same thing as Carrano's but
does not require prior knowledge of N. This algorithm is presented in four steps. First, we
start with a simple function which works for perfect trees such as shown at the left of
Figure 1.  This function needs a parameter: h, the height of the tree. Second we note, that
with a test for end of file, the simple function still builds a minimum height tree for any
value h greater or equal to the correct value.  Thirdly, we add a driver routine which
builds successively bigger perfect trees until the end of data is reached.  This driver
function requires no height parameter and works in O(N) time.  The tree that is built is of
minimum height and supports the usual operations in logarithmic time but it may not
have an optimal shape.  Finally, we show how to modify the tree to achieve minimum
internal path length with O( log N) rotation operations.

The pseudo-code used for the programming examples is based on Java with some Simula
(Algol) notation for clarity.  The Simula influence can be seen in the use of "=" for
equality and ":=" for assignment and the if...then... else... syntax.  As in C and Java, we
assume that parameters are passed by value and that return exits immediately.  Finally,
in order to make the algorithms match the text and easy to follow, we have used more
variables and code than strictly necessary.

Reading a perfect tree

Given 2h-1 ordered nodes values, the function readTree1 -shown below- builds a perfect
tree of height h.  It assumes that the input contains exactly the right number of values and
does not check for premature end of data.

Node readTree1 ( int h )
{   if h < 1 then
       return null ;
    else
    {   Node  left  := readTree1 ( h-1 ) ;
    vType value := nextValue () ;
    Node  right := readTree1 ( h-1 ) ;

   return new Node( value, left, right ) ;
    }
}

Handling premature end of data

The next version of the input function, readTree2, is identical to the first except that we
add a test to stop construction when there is no more data to read. We assume that the
end_of_data test comes before reading and that the test can be repeated without error
even after it has returned true.  The algorithm still needs the expected tree height, h, as
a parameter but it stops creating nodes as soon as the input values are all read.

Node readTree2 ( int h )
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{  if h < 1 then
return null ;

   else
   {   Node left  := readTree2 ( h-1 ) ;
   if end_of_data() then return left ;
       vType value := nextValue () ;
   Node  right := readTree2 ( h-1 ) ;

  return new Node( value, left, right ) ;
   }
}

As long as the data is not exhausted, all trees returned by readTree2 will be perfect.
Since the algorithm proceeds in order building the left sub-tree before the node, the fact
that we are able to read a node value implies that end_of_data was not encountered
during the construction of the left sub-tree/  it is therefore perfect; but the same cannot be
said for right sub-trees.

Figure 2 shows what happens, when the initial value of h is correct or larger than strictly
necessary but there are fewer than 2h-1 nodes and end_of_data is encountered while
building the tree. In the example, there are only 5 node values but the function is called
with an expected height h = 4.  The shaded part shows the virtual perfect tree of height 4
(with 15 nodes) which could have been returned by the read function.  When there are
fewer nodes, the algorithm traverses this virtual tree in the usual order building nodes
with successive input value until the end_of_data is reached.  Essentially, it fills in the
bottom left-hand corner of the virtual tree. In terms of execution time, overestimating the
tree height means that we visit the extra virtual nodes between the root and the actual
nodes built.
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Figure 2 - Tree returned by readTree2( 4 ) from values 1, 3, 8, 9 and 11

Essentially, the algorithm tries to build successively taller perfect trees until all node
values have been read. As long as the initial value of h ≥  log2 (N+1) all nodes will be
read and the returned tree will be of minimum height but it may be unbalanced.  The left
sub-tree of the root - being perfect - contains  exactly 2h"-1-1 nodes (where h" is the
actual height of the tree) but the right sub-tree, which contains the remaining nodes, may
contain anywhere from 0 to 2h"-1-1 nodes.



Festschrift for Ole-Johan Dahl (dec. 2002) p. 5

Dispensing with the estimated height parameter

To avoid specifying an initial value for the tree height, h, we use a loop which calls
readTree2 with successively larger values of h to build trees of increasing size until the
end of data is reached.

Node readMinTree ()
{

int  h    := 0;
    Node tree := null;
    while not end_of_data() do

{
    Node  left := tree;

vType root_value := nextValue () ;
Node  right := readTree2 ( h ) ;
tree  := new Node(root_value, left, right ) ;
h ++ ;

}
return tree ;

}

In the function: tree is the last tree that was built and its height is h.  While there are
nodes to read, tree is a perfect tree containing exactly 2h-1 nodes.  The next larger tree (of
height h+1) uses the old tree as its left sub-tree.  The next node value is read for the root
and we call readTree2 to build a new right sub-tree of the same height as the left.  If data
is still not exhausted, the resulting tree is again perfect and we repeat the process until
end of data is reached.

Initially, we start with h=0 and an empty tree.  When the loop terminates, the tree built by
this function has the same shape as described for readTree2: minimum height and a full
left sub-tree but a right sub-tree containing anywhere from zero to 2h-1-1 nodes.

Essentially the algorithm does a recursive traversal of the tree that it builds and its time
complexity is  O(N).

The shape of returned trees

The trees returned by readMinTree have a definite characteristic shape.  While the left
sub-tree of the root is perfect, the right sub-tree contains at most the same number of
nodes as the left and generally fewer so the right half of the tree is generally not as deep
as the left.  The same reasoning applies to right sub-trees, which will either be balanced
or skewed to the left.  Overall, the tree shape, as shown, below could be characterized as
a staircase.
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Figure 3 - Characteristic shape of the trees constructed by readMinTree

We can get a more precise idea of the tree topology by noting that our tree is composed
of a succession of perfect trees that decrease in size as they are built from left to right and
we can think of the nodes on the right edge of the tree as a list connecting these perfect
trees together.  This view will make it easy to determine the shape of the tree from the
binary coding of N, the tree size.  Consider the perfect tree of height h shown below.  It
contains 2h–1 nodes but, if we add the extra link node at the top, the structure accounts for
2h nodes.

h

2h-1

Figure 4 - Perfect tree component

Thus there is a direct correspondence between the perfect trees in our structure and the
ones in the binary representation of the tree size.   For example, consider a tree of 37
nodes: “1001012” in binary.  This corresponds to a tree shown below with 3 linked
perfect trees whose sizes correspond to the powers of 2 that add up to 37: 32 + 4 + 1. The
shape is shown in Figure 5.

31

3

Figure 5 - Staircase of size 37
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Improving the tree

The time complexity of traditional search tree algorithms is strongly dependent on the
tree height. In the case of our staircase trees, the height is a minimum and equal to

† 

log2(N +1)È ˘ so that standard operations can be done in O(log N) time.  This height is
indicative of worst case operation and compares favorably to balanced AVL trees where
the height in the worst case is 1.44 log(N+2) [5, p.118].

However,  for complexity in the average case, the staircase shape is not optimal. Consider
the extreme case when the number of nodes is a power of 2.  The tree that we return is
shown on the left in Figure 6.  In such a case, the right sub-tree is empty and all nodes are
in a perfect tree on the left. A better disposition of the nodes is shown on the right where
all nodes in the left sub-tree have been moved up by one level and the root has been
moved to the bottom.

Figure 6 - Optimizing a staircase tree

The tree on the right is an example of an optimal search tree: one in which all levels,
except possibly for the bottom one, are completely filled.  In such a tree, there is no
empty slot closer to the root into which a node from the bottom could be moved up and
the total path length, the sum of the distances between each node and the root, is
minimized. Note that the improvement in average path length to be gained from
modifying our trees will be marginal - at most one level - as shown in figure 6.  This is
because staircase trees are already of minimum height and represent intermediate stages
between perfect trees whose heights differ by one.

In what follows, we will show how to modify our staircase tree into an optimal shape in h
steps, where h is the tree height.  To do this we will use rotations - operations commonly
used in AVL trees [4-6] - which move one sub-tree up closer to the root while moving
another sub-tree down; all the while keeping the tree height constant.  If the number of
nodes going up is greater than the number going down, the rotation improves the average
path length.

In Figure 7 below, the tree on the left is typical of the staircase trees that we produce.
Here X is the root with a perfect sub-tree to its left and a smaller tree (R) to its right. The
root Y of the left sub-tree has two equal size (perfect) sub-trees labeled L (left) and M
(middle).  As a result of a rotation, the old root X and its imperfect right sub-tree R are
moved down one level. Y and its sub-tree L move up one level.  Y becomes the new root.
The middle tree, M, is now tied to X instead of Y, but in terms of distances of its nodes to
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the (new) root, nothing has changed and it can be thought of as a fixed pivot upon which
the other sub-trees balance. Note that the rotation does not change the tree height and it
maintains the order between nodes and sub-trees: L < Y < M < X < R.  The important
effect is that L moves up whereas the smaller R moves down.

Figure 7 - Effect of a rotation

Another way to consider the effect of the rotations is to note that they modify the tree
towards the optimal shape by bringing down the smaller imperfect sub-tree (R) on the
right until its bottom layer lines up with the bottom of the tree.  One rotation may not be
enough. In the example of Figure 7, after the first rotation, R could still move down and
we would do further rotations on X. With each rotation, R is attached to a lower point in
the main (left) tree. When R reaches the bottom, we can start applying rotations to R
itself with a view of bringing its right half in line with its left. Now for every tree on the
right that goes down, a tree on the left must go up but you will note in what follows that
the trees that move up (like L) start on the bottom and go up by only one level. Thus
these promotions do not destroy the optimal shape.

Knowing N, the number of nodes in the tree1, we can compute the number of nodes in the
various sub-trees and decide if a rotation is warranted:

- nodes in the whole tree: N
- height of the tree: h = Èlog2(N+1)˘
- height of tree rooted at Y : hL = h-1
- size of tree rooted at Y : 2h-1 - 1
- size of R : nR = N-(2h-1- 1)-1 = N - 2h-1

- height of R: hR = Èlog2(nR+1)˘

An example will clarify the situation.  In figure 8, we consider the optimization of the
staircase tree shown previously.  Here, in the initial situation (a), N=37 and h=6, the
heights of the trees on the left and right are 5 and 3 respectively.  A rotation is warranted
and the original root along with the right sub-tree moves down one level as shown in (b)

                                                  
1 These should be counted by the input function nextValue and made available in a global variable.
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[the arrow always the shows the tree under consideration]. Now, hR remains at 3 but hL
= 4 and a further rotation brings us to (c).  At this point, the right sub-tree is level with
the bottom of the tree and further rotation of the original right sub-tree is no longer
beneficial.
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c) d)
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15
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Figure 8 – Optimizing a staircase tree

At this point, we skip the rotation but still go down a level to the right to see if rotations
within the original right sub-tree could be beneficial. Now we have N=5, hL=2,
nR=hR=1.  A final rotation brings us to (d) where the rightmost leaf being on the bottom,
the work is finished.  At each step in the optimization process we go down one level,
thus the complexity is O( h ) = O( log N).

Going a step further, we can understand the shape of the final tree obtained in (d) above
by considering that a perfect tree of the same height would have contained 26 more nodes
than our 37-node tree.  In an optimal tree, the missing nodes must come from the bottom
layer: they are the nodes that would have been leaves below our promoted trees.  The
way we promoted trees was to start with the largest on the left, reducing the size by a
factor of two at each step. Therefore, the gaps from right to left in the bottom layer
correspond to the binary representation of the missing nodes.  In our case: 16 + 8 + 2 =
26 as shown in Figure 9.  When comparing figures 8 and 9, remember that the bottom
layer of a perfect tree with 2h-1 nodes contains 2h-1 nodes and that the (missing) layer
below that would contain 2h nodes.
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Figure 9 – Layout of an optimized tree

The optimizing algorithm

The code below implements the technique that we have outlined with a slight
improvement.  In the example of Figure 8, we showed how a sub-tree several levels
above the bottom could be moved down with a sequence of rotations; however, it is more
efficient to find the node on the right edge below which the sub-tree will eventually be
placed and do a single rotation at that point.

1 Node optimize ( Node root, int N, int h )
2   {
3   if N <= 1 then return root;
4
5 int  hL = h-1 ;
6 int  nR = N - 2**(h-1);
7 int  hR = ceiling( log(nR+1));
8
9 Node newRoot = root;
10 if hL > hR then
11 {
12 Node leftTree = newRoot = root.left;
13 hL = hL-1;
14 while hL > hR do
15 {
16 leftTree = leftTree.right;
17 hL = hL-1;
18 }
19 root.left = leftTree.right;
20 leftTree.right = root;
21 }
22 root.right = optimize ( root.right, nR, hR );
23 return newRoot;
24    }
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The method takes 3 parameters: root, a pointer to the root of the staircase tree to be
optimized; N, the tree size and h the tree height. It works recursively: on each call, it
optimizes a tree by deciding if the right sub-tree should be moved down and if so does
the demotion; it then proceeds to optimize the right sub-tree.  The algorithm terminates
when the tree has shrunk down to a single node (line 3). In the code, we use more
significant names, root and leftTree, to denote the X and Y nodes of Figure 7.
Initially (lines 5-6), we compute the size of the right sub-tree, nR, as well as the heights
of both sub-trees, hL and hR.  newRoot represents the root of the optimized tree; it is
initialized to root, the value that will be returned if no rotation is done. If the right tree
is shorter than the left (line 10), then the right tree will be moved down and lines 12-18
determine where it will be inserted.  At the same time the value of newRoot is changed.
The rotation to insert the right sub-tree lower in the left Tree is done in lines 19-20.
Whether, the right sub-tree has been moved or not, we optimize it (line 22) and return the
optimized tree (line 23).

We show below the final version of readTree which combines the optimization with the
initial tree building to meet the stated objective:  constructing an optimal search tree from
a sorted set of values.

int N;  // number of nodes - incremented by nextValue

Node readTree ()  // final version
{

int  h    := 0;
Node tree := null;
while not end_of_data() do
{

Node  left := tree;
vType root_value := nextValue () ;
Node  right := readTree2 ( h ) ;
tree := new Node(root_value, left, right ) ;
h ++ ;

}
return optimize( tree, N, h );

}

A Java test version of this algorithm is available on the Internet at the following URL:
http://www.iro.umontreal.ca/~vaucher/Pubs/BST.java
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Conclusions

We have developed a simple algorithm which, given a sorted sequence of node values,
can build a balanced binary search tree in O(N) time, without requiring a priori
knowledge of the number of elements, N. The novel idea is that a minimum height tree
can be constructed by trying to build successively deeper perfect trees, using the tree
from the last step as the left sub-tree of the new one.  It is then a simple - though tricky -
matter to reshape the tree with rotations to minimize internal path length.  We also
showed that the shape of the trees had a simple one-to-one correspondence to the binary
representation of the tree size.

This algorithm could also be used to re-balance an arbitrary tree.  Given a language with
coroutines (like Simula [7]), we could emulate Ole-Johan Dahl's technique from his
classic 1972 paper with Tony Hoare [8]: using one coroutine object to recursively
traverse the old tree and provide input for another coroutine using our algorithm to build
a better tree.  With a current language like Java, rebalancing could still be done but would
be less elegant.

I met Ole-Johan Dahl along with his colleague Kristen Nygaard in the early 1970s on a
visit to Oslo to learn more about Simula.  The concern with rigor and clarity as well as
innovation evident in their work over the years has been a continuing source of
inspiration and I grieve their passing.
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