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Preface

This book is a primer on discrete event simulation modelling using the Demos
package. It is written in informal style as a teaching text and is not meant as
a reference manual. It should thus be read from start to finish and not dipped
into at random. The book covers Demos fairly completely and uses it as a
vehicle in which to describe several simulation models. As we have not aimed
to produce a general text, no attempt has been made to cover the statistical
side of discrete event simulation.

Demos is implemented in the general purpose language Simula (an extension
to ALGOL 60). Thus Demos programs may be run on any computer that
supports Simula (see references [3–10]). The Simula source code for Demos
and a page reference manual are available from the author. See page 185 for
more details.

Simula (Dahl et al. [1]) itself contains simulation primitives sufficient to
build any simulation model, but leaves it to the user himself to flesh out the
primitives in his or her own style. While this puts the Simula expert in an
enviable position, it is at first sight unfortunate for the beginner or occasional
user of Simula. For it would seem that one has to acquire considerable exper-
tise in Simula before one can start building out these primitives and actually
get down to describing the simulation model itself. But this is not so. The
situation was foreseen by the designers of Simula and they provided a way
round the problem, namely the context (= block prefix) mechanism. A context
is a package written in Simula which extends that language towards a specific
problem area. It will define the basic concepts and methods associated with
the area, but leaves it to the modeller to apply them in his or her own way.

Demos is a context intended to help beginners in discrete event simulation
get off the ground. It augments Simula with a few building blocks which provide
a standardised approach to a wide range of problems. Demos invites model
description in terms of entities and how they compete for resources. Written
in terms of these concepts, Demos programs are bona fide Simula programs,
but Simula programs which conform to a very simple format. They can thus
be written and understood without a specialist knowledge of Simula. (This
is very typical of contexts: their use requires much less Simula expertise than
their writing.)

xiii
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Structure of the book

This book is based on material developed for undergraduate and postgraduate
courses in Discrete Systems given at Bradford University, England, and for
other courses given to industry. It has been written in tutorial style, each
new feature being first motivated and then used in an illustrative example.
Inevitably with a book written in this style, one or two Demos facilities could
not be fitted in (a list of these is given in chapter 8, page 179). The Demos
Reference Manual (Birtwistle [14]) covers the implementation of Demos in full;
it gives proper documentation and Simula source listings for all the facilities of
Demos.

For nearly all the Demos models in this book, we have first outlined our
solution pictorially by means of activity diagrams and then given the corre-
sponding Demos code. Input and output details are also recorded where ap-
propriate. The main text is spread over eight chapters. Chapter 1 provides a
brief introduction to discrete event modelling, and explains why Demos came
to be written.

Chapter 2 provides a tutorial on that small sub-set of Simula we require
(a check list of Simula declaration and statement types is given in appendix
A). N.B. The reader is assumed to have a working knowledge of ALGOL 60.
ALGOL 60, Simula and Demos programs all take the form

begin
declarations;
statements;

end;

ASIDE: All programmers have idiosyncrasies and one of the author’s is to
include semicolons before each end after the final statement in a block or com-
pound statement, and also after the final end. These are optional in Simula,
and hence in Demos.

Chapter 3 illustrates the basic Demos approach to discrete event simulation
model building (which has been inherited from Simula). With this approach,
a system is described in terms of its constituent components (the entities) and
a full action history describing its behaviour pattern is given for each entity.
The separate entity descriptions are pieced together to describe the behaviour
of the system as a whole. This approach is very natural and enables the system
modeller to focus his or her attention on the description of one entity at a time.

In discrete event simulations, entities may compete with each other for
system resources, cooperate with each other to perform a sequence of tasks,
or even interrupt one another. Chapters 4, 5, 6 and 7 consider these basic
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synchronisation problems in turn, and show how they can be described in
terms of Demos mechanisms.

In chapter 8, we first tidy up a few loose ends and then remark on the
implementation of Demos as a package in Simula.

Each chapter contains several exercises which are best attempted when
met in the text. They form an important part of the book: several reinforce
or extend points just made in the main text, and some form a lead into the
next section. Answers to all but two exercises are given at the end of the book.
Regretfully, space considerations prevented us from including activity diagrams
and output for all our solutions. That would have been nice.

Many individuals have helped make this book possible by their advice and
encouragement through the years. Very special thanks are due to my gurus
over several Kristen Nygaard (for imparting the Simula ethos) and Robin Hills
(the same for discrete event simulation). Alan Benson, Ole-Johan Dahl, Roy
Francis, Lars Enderin, Paul Luker, Mats Ohlin, Rod Wild and Norman Willis
read the manuscript and helped remove several errors and infelicities of style.
Any remaining errors are solely mine. Sorry.

Demos itself, and all the programs contained in this book, were originally
developed on the Leeds University DEC System 10 computer using the excel-
lent Simula compiler written by the Swedish Defence Research Establishment,
Stockholm. Sincere thanks are due to Jim Cunningham, Henry Islo, Henk Sol,
and Jean Vaucher for spotting errors in the original release and sending fixes.

For the second edition of the book, the programs were all re-run on Sun
workstations at the University of Calgary under the equally excellent Lund
Simula system.

Typesetting

In the formal description of Simula there are several symbols which are not
reproducible on standard line printers. The representation of Simula programs
in this book follows the recommendations of the Simula Standards Group. Key
words are reserved and written in lower case (e.g. begin, procedure, if).
Other changes are: array brackets (( for [, and ) for ]); exponentiation (**),
integer division (//), greater than or equal (>=), less than or equal (<=), not
equal (ne), logical and (and), logical or (or), logical not (not), and power of
10 (&).
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Latexed version, 2003

The Macmillan text is now out of print. As Demos is still around and in use, I
have reformatted it using LATEX. I have reworked all the diagrams and put the
full trace of chapter 3 in pictures rather than lines of text (something I always
fancied doing, but the original editor only suported ascii pictures). I have
added a fresh example as example 7 in chapter 5, page 102..110. Otherwise I
have resisted the urge to tinker with the text — nearly every line might have
been changed!

Over the last few years I had the pleasure of working with Chris Tofts,
now at HP Labs in Bristol. We applying the techniques of process algebra to
Demos models and showed how to test models for deadlock, livelock, safety and
liveness properties. Chris has produced a new system extending this work. Full
details of demos2k (which is free) can be found at http://www.demos2k.org
together with documentation and references to our work as it evolved.

Good luck.



Chapter 1

Introduction

All around us in everyday life are complex systems of men and machines. Auto-
mobile plants, steel foundries, telephone exchanges, ticket reservation systems,
banking systems, air flight control systems, local transport systems, etc. spring
to mind. For these to function properly, we need to be able to understand them
and how they react to emergencies (perhaps an amulance breaks down), con-
tinual high pressures (rush hour traffic) as well as under normal circumstances
(traffic in off-peak periods). Since the world is continually changing, systems
have to adapt to new circumstances, e.g. how does the building of a new satel-
lite town nearby affect the local bus company? Which extra services should be
provided and thus how many extra buses and crew will be needed? We may
also need to implement totally fresh systems — how then do we justify and
test our designs?

For all but the very simplest systems, we cannot just go ahead, implement
a change and see what happens. It may prove too costly (who would build a
new metro system in a town “just to see if it is needed”?); it may even prove
catastrophic (a new air traffic control system, or a new control program for a
chemical plant). We have thus a distinct need to be able to experiment with
adaptations of existing systems and test proposed designs without actually
disturbing them or building them respectively. Here simulation can help.

Simulation is a technique for representing a dynamic system by a model
in order to gain information about the underlying system. If the behaviour
of the model correctly matches the relevant behaviour characteristics of the
underlying system, we may draw inferences about the system from experiments
with the model and thus spare ourselves any disasters.

Practical simulation work involves:

1. specification of the problem and satisfactory answers to such questions as:
“Is it worth doing?”, “Can it be done within our time scale and budget?”,
etc.

2. building a model which describes the system. We have used an adaptation
of the well known activity diagram technique (explained in chapter 3) to
represent pictorially the logic of the models developed in this book. In
real life situations, it is important to have such a high level representation
of the model so that the modeller can discuss his understanding of reality

1



2 CHAPTER 1. INTRODUCTION

with the specialists who run the actual system. Whoever they are, be they
managers, foremen, or workers, they are unlikely to understand computer
programs and so cannot be expected to read a program text and point
out logical flaws in a model. Yet feedback from them is essential. They
must understand (at least) how their part of the system is represented in
the model and so be able to confirm what has been done correctly, point
out what has been omitted, and draw attention to those parts which do
not function exactly as the official rule book states. Not many systems
work exactly as planned and the modeller has to describe a given system
as it actually is.

3. converting the model into an operating Demos program. This step is
quite straightforward, almost mechanical, from the appropriate activity
diagram — a second important reason for using them. Indeed, activ-
ity cycle diagrams can be used as high level flow charts for simulations
written in activity, event, process or transaction mode.

4. validating the model by checking its consistency with the underlying sys-
tem before any changes are made. The success of this validation estab-
lishes a basis of confidence in the results that the model generates under
new conditions. Inadequate consistency will cause the modeller to try
again from step 2 or step 3 above.

5. using the computer simulation program as an experimental tool to study
proposed changes in the underlying system that the program represents.

This book makes no attempt to cover the steps 1, 4, or 5 above. For thor-
ough accounts of the important topics of model validation, output analysis, and
the design of experiments, etc., the reader is instead referred to the excellent
texts of Fishman [32] and Shannon [37].

In this book we cover steps 2 and 3, first representing our models by activity
diagrams and then presenting the corresponding Demos programs.

Unlike most languages used for discrete event simulation, Simula does not
force the user into one style of modelling. (See Birtwistle [15, chapters 2 and 3],
or Hills [13] for non-trivial models coded in activity, event, and process modes.)
The designers of Simula included a standard context called SIMULATION which
contains a sort of common denominator to all these three styles, but left it to
the user to build this out. Thus if SIMULATION is to be used as it stands, a
style of model building has to be developed and one has to write one’s own
synchronisation routines, data collection routines, etc. Some of these prove to
be fairly subtle.

Demos extends SIMULATION by a few basic concepts which provide the op-
erational research worker with a standardised approach to a wide range of
discrete event problems. These are primarily the entity for mirroring major
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dynamic model components whose complete life cycles warrant description in
the model, and resource for representing minor components. In addition, De-
mos automates as much as possible (data collection, report generation), and
provides event tracing to help in model validation and debugging. Happily
these turn out to be the very areas in which the deepest knowledge of Simula
itself is required. Along with the simplifications inherent in a prescribed model
structure, this means that Demos programs can be written in a surprisingly
small sub-set of Simula. Teaching experience has shown that this can be learnt
quickly, and the beginner is very soon able to concentrate his or her attention
squarely on the construction of the model.

The approach to model building that we have used remains viable as the
range of problems widens and their degree of difficulty sharpens. Importantly,
nothing learned by the beginner need be unlearned as ones experience grows.
But Demos is not the panacea for all discrete event problems: eventually the
user will surely run into a problem which is not capable of being modelled
cleanly in complete detail in Demos. Then the user can fall back on the host
language Simula. Because Demos programs are Simula programs, all the power
of Simula is directly available behind the building blocks provided by Demos.
Any feature not provided by Demos can be written directly into a Demos
program as Simula code. Again, any user can add or even replace Demos
features by standard Simula mechanisms. Notice that at this stage of his or her
career, the user will have already written several Demos (= Simula) programs
and picking up the required expertise in Simula proper is no longer such a
problem. Much has been absorbed by osmosis.

Demos has taken some time to evolve. Vaucher [19] long ago suggested
writing a GPSS-like package in Simula and implemented a prototype package
himself. The author did the same and learnt some valuable lessons. In partic-
ular, GPSS then allowed only one transaction type (which closely parallels a
process in Simula or an entity in Demos). For many examples this is sufficient,
but the rest have to be bent into this format. It certainly concentrates the
mind wonderfully well. Experience with GPSS teaches one how to do a lot
within a simple framework — how to separate out and de-emphasize minor
components and resist the urge to overmodel. GPSS also teaches the value
of resource types, and standard methods of synchronisation, automatic report
generation and data collection.

About this time, the author collaborated for a while with Robin Hills. Hills
already had a considerable background in both practical simulation work and
simulation language design (see Hills [22, 23]). This background in activity
based languages proved especially valuable when we sought ways of tackling
models involving complicated decisions — an area in which GPSS is weak. The
product of our joint efforts, called SIMON 75 (see Hills and Birtwistle [16]), used
waituntil statements to make the scheduling of events as easy as possible and
in a uniform style. Waits until are expensive on machine time, but the package
had some merit in that it was easy to learn and resulted in concise yet readable
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programs.

It came as a pleasant surprise when some 100 or so non-trivial SIMON 75
programs were analysed by the author for their usage of wait until. They
proved necessary in only a few cases, and it was at once apparent that a much
faster new version could be implemented which would retain the ease of learning
and textual clarity of the old. Along with a few other improvements, this was
developed into Demos.

Despite its modest design aims, Demos has been successfully used to tackle
some realistic industrial simulations. The author has applied Demos to prob-
lems in the steel industry, for work on operating systems (segmentation and
paging algorithms), and designing real time processes (long haul and local area
networks, multiple cpu configurations). At the time of writing, Demos is used in
the aerospace, automobile, oil, gas, steel, and telecommunications industries,
and at a number of research institutes and universities.



Chapter 2

The Simula foundation

This chapter is a short introduction to the highlights of Simula. It is not
meant to be exhaustive: it merely aims to give the reader with little or no
prior knowledge of Simula enough understanding to follow through the later
chapters on Demos. Full accounts of Simula are found in Birtwistle et al. [11]
and Rohlfing [12]. The central new ideas in Simula are those of the object and
of the context.

• An object is used in Simula to mirror the characteristics and behaviour of
a major component in the system under description. For example, a boat
in a harbour simulation or a furnace in a steel mill simulation. Objects
with similar characteristics and the same behaviour pattern have the same
single definition called a class declaration.

• A context is roughly a library of object definitions common to one particu-
lar topic, e.g. a Harbour context may contain class declarations for boats,
cranes, tugs, the tide, etc., and a Traffic context may contain class dec-
larations for cars, trucks, etc. A context serve as a library of predefined
building blocks for a particular area. A context may be pre-compiled
externally and will then be available to any number of programs by an
external declaration its occurrence as prefix to a program, e.g.

external class Traffic;

Traffic

begin

program using cars, trucks, etc.;
end;

The remainder of this chapter is a tutorial on the purpose and usage of objects
and contexts.

2.1 Objects

Objects are used in Simula programs to mirror major components in the actual
system under investigation. Each major component in the actual system is
mapped into a corresponding object in the Simula program. As an example,

5
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consider a harbour simulation involving boats, lorries, etc. Each actual boat
will be represented in the Simula program by a corresponding boat object. It
follows that the boat object has to reflect all those features of the actual boat
deemed relevant in the model: not only its physical characteristics such as its
tonnage, current load, etc., but also the actions it carries out as it wends its
own way through the harbour system.

�
�

r

-

boat

tonnage 15

load 4

sail in;

unload;

sail out;

Figure 2.1: A boat and the corresponding boat object.

Figure 2.1 introduces our standard way of depicting objects — as rectan-
gular boxes divided into three levels:

1. the top level gives the class of the object (here boat)

2. the middle level gives the attributes of the object (here tonnage and load
shown with current values of 15 and 4 respectively, perhaps in units of
1000 tons), and

3. the bottom level gives the life history of the boat object as a sequence of
actions. Here, these are informally shown as

sail in; unload; sail out;

N.B. The middle and bottom layers of objects may be empty (no local data or
no actions), in which cases they will be omitted.

Where it sheds light on the situation, the current action of an object will
be marked with an arrow, thus →. This marker is called its local sequence
control (or LSC for short). The boat object in figure 2.1 represents an actual
boat sailing in. Figure 2.2 shows how a real world situation involving two
boats (one sailing out and one unloading) and one lorry (loading) would be
mapped into a Simula program. Notice how the LSCs of objects move on as
they progress through the harbour model and that the LSC’s of the unloading
boat and the lorry which it loading are “synchronised”.
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BB BB ��
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REAL WORLD

MODEL

r

-

boat
tonnage 9

load 0

sail in;
unload;
sail out;

r

-

boat
tonnage 8

load 4

sail in;
unload;
sail out;

r
-

lorry
reg 1975

load 0

load;
deliver;

Figure 2.2: Objects representing 2 boats and 1 lorry

Now although their individual data values are different, and they are cur-
rently performing different actions, the boat objects have exactly the same
layout of attributes and the same action sequence. The objects are said to be
“of the same class’ and are defined by a single class declaration. Here it is in
Simula (partly informally)

class boat;

begin

integer tonnage, load;

sail in;
unload;
sail out;

end***boat***;

In this program segment, and in others scattered throughout this book, we use
a blending of formal Simula and natural English. Teletype letters, both
upper and lower case, and punctuation are formal language elements which are
part of Simula itself. They have precisely defined meanings and must be used
strictly according to the rules of Simula. (In the above we have the key words
class, begin, integer, and end, and the comma , and semicolon ; as formal
elements. The phrase end***boat*** is exactly equivalent to end — we use
this form of comment, which is inherited from ALGOL 60, often as it helps
delineate the textual end of class and procedure declarations quite clearly.)
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For contrast, we use italics when it suits us to be informal. Above, we have
sketched the action sequence of class boat

sail in; unload; sail out;

informally as its precise formulation in Simula is not the point at issue. In this
way we can postpone detail until it is really necessary.

We need a class declaration for each type of object appearing in a Simula
program. Each declaration can be thought of as a template from which objects
of the same form can be created as and when required. Several objects of the
same class may be in existence and operating at the same time. To create
a boat object in a Simula program, we execute the command new boat. A
fresh boat object is created each time this command is executed. If we have
one or several boat objects in a Simula program, we may wish to name them
individually. To create and name two boat objects QE2 and MARIE CELESTE
respectively we would write

MARIE_CELESTE :- new boat;

QE2 :- new boat;

(The reference assignment operator :- is read denotes). MARIE CELESTE and
QE2 are Simula variables of a type not found in ALGOL 60. They are reference
variables of type ref(boat) (which is read as ref to boat) and are declared so

ref(boat) MARIE_CELESTE, QE2;

References variables are defined with a qualification which restricts the range of
objects they may access. The qualification of MARIE CELESTE and QE2 is boat.
Thus MARIE CELESTE and QE2 are reference variables capable of referencing
boat objects. 1

In the same way, should we wish to create and name a lorry L, we would
declare ref(lorry) L and execute the reference assignment

L :- new lorry;

EXERCISES 2

Exercise 2.1 Give an informal declaration of class lorry based on the
lorry object depicted in figure 2.2.

1This will be made more flexible in section 2.3.
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2.2 Class declarations

We now start to put things on a more formal footing. Consider the class of
road vehicles. Although vehicles are of many shapes and sizes and are built
for different purposes, they do have certain characteristics in common. We
let them be typified (fairly arbitrarily) by their “year of registration”, their
“unladen weight”, and by whether or not they are currently “broken down”.

r

-

MAIN

class vehicle

FIAT

ROLLS

FIAT :- new vehicle(1974,0.8);

ROLLS :- new vehicle(1930,3.0);

L:

r -r

-

r vehicle

registered 1974

weight 0.8

brokendown false

if registered < 1885

or weight <= 0.0

then ERROR;

r vehicle

registered 1930

weight 3.0

brokendown false

if registered < 1885

or weight <= 0.0

then ERROR;

Figure 2.3: Two terminated vehicle objects

The following program declares the prototype for such vehicles (lines 2–7),
declares a pair of reference variables (FIAT and ROLLS) capable of referencing
vehicle objects (line 9) and then creates a 1974 vehicle of weight 0.8 tons (FIAT)
and a 1930 vehicle of weight 3.0 tons (ROLLS). Neither vehicle is broken down.
The informal call on the undefined procedure ERROR indicates that corrective
action is to be taken should the actual parameter values to an object under
creation prove to be invalid.
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begin

class vehicle(registered, weight);

integer registered; real weight;

begin

boolean brokendown;

if registered < 1885 or weight <= 0.0 then ERROR;
end***vehicle***;

ref(vehicle) FIAT, ROLLS;

FIAT :- new vehicle(1974, 0.8);

ROLLS :- new vehicle(1930, 3.0);

L:end;

Figure 2.3 is a representation of the structures created at the label L. Initially
there are no objects in the system and the reference variables FIAT and ROLLS
each take the standard value of none, which represents no object.2. Two vehicle
objects are created by our program (lines 12 and 13).

We detail the creation of the first object by following through the reference
assignment on line 10, namely FIAT :- new vehicle(1974, 0.8);. First an
object is created with layout as defined by class vehicle. The parameter
values 1974 and 0.8 are transmitted (by value in the ALGOL 60 sense), and
its local variable brokendown is set to the standard initial value false. Then
the actions of the object are entered. These perform a rough check on the
validity of the parameters. Once the actions of the object have been exhausted,
their LSCs are no longer required, and the objects are said to be terminated.
Program control returns to the generator new and the whereabouts of the object
is assigned to the reference variable FIAT.

The second object is created in the same way, and so at the label L, FIAT
and ROLLS will reference two distinct vehicle objects. We can now access the
current data values of their attributes (parameters and local data values) from
the main program by the dot notation. Below we tabulate all the possible
accesses, their current values and their types.

Access Value Type

FIAT.registered 1974 integer
FIAT.weight 0.8 real
FIAT.brokendown false boolean

ROLLS.registered 1930 integer
ROLLS.weight 3.0 real
ROLLS.brokendown false boolean

2In Simula all declared variables have standard initial values according to their type.
Booleans are initialised to false, arithmetics to zero, and reference variables to none.
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Possible statements in a main program using these accesses are

[ integer vintage; real tonnage; ]

ROLLS.registered < 1930 then vintage := vintage+1;

if FIAT.brokendown then take FIAT off the road;
tonnage := FIAT.weight + ROLLS.weight;

The dot notation can be used to re-assign attribute values as well as read them.
Should the unthinkable happen and ROLLS later break down, we would write
ROLLS.brokendown := true in our program.

Notice that when the program action is inside a particular object — such
as when carrying out the parameter checking on object creation — the object
refers to its own attributes directly, e.g. weight and registered. When the
action is in the main program, we have to specify the particular object we
require as well as the name of the attribute. These remote accesses have the
format

<object reference>.<attribute name>, e.g. ROLLS.weight

A run time (= execution time) error results if the value of the object refer-
ence in a remote access is none. The null object certainly has no attributes.
Accordingly, the program will stop executing and print out a suitable error
message.

The remote access problem has its analogues in everyday life. For example,
when requiring the telephone number Edinburgh 123 4567, we dial 123 4567
from inside Edinburgh itself, but 031 123 4567 from the rest of Britain, and
indeed 011 44 31 123 4567 from outside Britain. 031 is the dialling code for
Edinburgh. When outside Edinburgh, omitting the 031 prefix gives us quite a
different telephone number. Indeed 123 4567 may not even be valid (compare
asking for brokendown within the main block).

EXERCISES 2 (continued)

Exercise 2.2 Give an informal declaration of class customer describing
the actions of customers who enter a barber’s shop for a haircut. Draw a
customer object which represents an actual customer whose hair is currently
being cut.

Exercise 2.3 Write the declaration of class car. Each car object is
registered, has a weight, and may or may not be broken down. In addition to
these vehicle attributes, it has a maximum speed and some seats. Remember
to check as many parameter values as you can.
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Write Simula code to create a 1970, 1.2 ton car with a maximum speed of
240 kph and 2 seats referenced by ref(car) JAG. Cause JAG to breakdown.
Draw the object referenced by JAG, filling in its attribute values to represent
its status after the breakdown.

Exercise 2.4 Write a declaration for class boat. Each boat object has a
tonnage, a current load (not a parameter), and a crew. The owners man the
boats according to the formula: 5 permanent officers (including the captain),
plus one seaman for every 200 tons of tonnage (calculated by rounding).

Write Simula code to create a boat object (referenced by) B of tonnage
2600 tons and then load it with 1600 tons. Use the actions of the class body
to compute the size of the crew. Draw the object.

Exercise 2.5 Give another everyday analogue of the remote access problem
in addition to the one given in the text (telephoning a number in London).

2.2.1 Sub-classes (of vehicle)

We now turn our attention to defining more specific kinds of road vehicles,
for example, cars, trucks and pick-ups. All are vehicles and will be registered,
have an unladen weight and (hopefully) will be roadworthy. But they have
distinguishing qualities too — trucks carry loads, cars carry passengers and
pick-ups have cranes for towing. We could start from scratch and define

class truck(registered, weight, maxload);

integer registered; real weight, maxload;

begin

boolean brokendown, juggernaut;

real load;

if registered < 1885 or weight <= 0.0 or maxload <= 0.0

then ERROR;

juggernaut := maxload >= 25.0;

end***truck***;

and in the same way

class car(registered,weight,maxspeed,seats);...;

class pickup(registered,weight);...............;

But we have done so much of this work before. If trucks, cars, and pick-ups
really are “vehicles plus” we should be able to build on the definition of vehicle
that we have already worked out. This we can do in Simula by employing the
prefix notation. We simply declare
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vehicle class truck(maxload); real maxload;

begin

boolean juggernaut;

real load;

if maxload <= 0.0 then ERROR;

juggernaut := maxload >= 25.0;

end***truck***;

vehicle class car(maxspeed, seats); integer maxspeed, seats;

begin

if maxspeed < 50 or seats < 1 then ERROR;

end***car***;

vehicle class pickup;

begin

ref(vehicle) VICTIM;

procedure towin(V); ref(vehicle) V;

begin

if V.brokendown

then VICTIM :- V

else FALSE ALARM;

end***tow in***;

end***pick up***;

truck, car, and pickup are said to be sub-classes of vehicle. Figure 2.4
shows the attribute structures of the four types of object we have defined so far
and typical accesses. Objects of the three sub-classes truck, car, and pickup
are compound objects which inherit all the attributes and all the actions of
their prefix vehicle. When such objects are created, the actions of the prefix
level(s) are executed first, and then the actions at the new level.

Prefixing can be carried out to any depth, and so we may now use truck,
car, or pickup as prefix if we wish.

Trucks initially carry no payload. They are deemed juggernauts if their
maximum payload is 25 tons or over. To create a 1970, 5 ton truck with a
maximum payload of 37.5 tons we may write

T :- new truck(1970, 5.0, 37.5); [ ref(truck) T;]

Note that each new truck object requires 3 parameters — two are inherited
from the vehicle prefix. Later, to give T a load of 16 tons, we write

T.load := 16.0;

Cars have maximum speeds and seats as attributes in addition to vehicle
attributes. We create a new 1969, 1.5 ton car with a top speed of 145 kph and
with 5 seats by

C :- new car(1969, 1.5, 145, 5); [ ref(car) C; ]
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pickup

registered

weight

brokendown

VICTIM

towin

� r ref(pickup) P

P.registered

P.weight

P.brokendown

P.VICTIM

P.towin(C)

truck

registered

weight

brokendown

maxload

juggernaut

load

� r ref(truck) T

T.registered

T.weight

T.brokendown

T.maxload

T.juggernaut

T.load

car

registered

weight

brokendown

maxspeed

seats

� r ref(car) C

C.registered

C.weight

C.brokendown

C.maxspeed

C.seats

vehicle

registered

weight

brokendown

� r ref(vehicle) V

V.registered

V.weight

V.brokendown

Figure 2.4: Attribute structures and accesses

Finally, pick-up objects are furnished with a reference VICTIM to the current
vehicle (if any) that they are towing. VICTIM is initially none. The procedure
towin is the means of supplying a suitable value to VICTIM. It may be any
vehicle, truck, car or pickup object. Local procedures, such as towin, are
treated as attributes in just the same way as are parameters and local data
values. They too are accessible via the dot notation. We create a 1976, 4 ton
pick-up by

P :- new pickup(1976, 4.0); [ ref(pickup) P; ]
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If ref(car)C breaks down, P can be deputed to tow in C by such a coding
sequence as

C.brokendown := true;

P.towin(C);

L:

r

-

MAIN

class vehicle

class car

class truck

class pickup

ref(pickup) P

ref(car) C

...............

L:

r
-

r

-

r pickup

registered 1976

weight 4.0

brokendown false

VICTIM

procedure towin

r

�r car

registered 1969

weight 1.5

brokendown true

maxpseed 145

seats 5

Figure 2.5: Result of the call P.towin(C)

Figure 2.5 pictures the situation at the label L. When the procedure towin
is called, the actual parameter value C is passed by reference — a mechanism not
found in ALGOL 60. Informally this method of passing reference parameters
is equivalent to the reference assignment

<formal parameter> :- <actual parameter>; (here V :- C;)

and is subject to the compatibility checks outlined in the next sub-section.

Rather interestingly, if P now breaks down, another pick-up (Q say) can be
instructed to tow in P (and C with it!) by
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P.brokendown := true;

Q.towin(P);

In our examples, the actions belonging to an object have been concerned
with checking parameter values on object creation and initialising local quan-
tities. They are executed at once each time a fresh object of that class is
created.

But their scope is much broader than this. As indicated earlier, class body
actions may be used to describe complete life histories. While such action
sequences may be executed all at once, they may also be executed as sequences
of separate sub-tasks or active phases. That is, between two active phases of
a given object, any number of active phases of other objects may occur. This
is the very basis of the process approach and is fully developed in the next
chapter.

2.2.2 Security of data access

For the examples of this section we assume the class declarations of the previous
section and the existence of the reference variables

ref(vehicle) V;

ref(truck) T; ref(car) C; ref(pickup) P;

So far we have concentrated on the objects themselves. We now turn our
attention to reference variables and reference assignments. Reference variables
are given a qualification on declaration, e.g. the qualification of ref(vehicle)
V is vehicle and of ref(truck) T is truck. This qualification restricts the
kind of object to which a reference variable is allowed to refer. The typical
reference assignment is

<reference variable> :- <object expression>;

Reference variables may be assigned to reference

1. objects of their qualifying class, e.g.
V :- new vehicle(1976, 1.4)
T :- new truck(1974, 5.0, 37.2)

2. objects of classes prefixed by their qualifying class, e.g.
V :- new pickup(1970, 10.0)
V :- T (an existing object or none)



2.2. CLASS DECLARATIONS 17

3. no object at all, e.g.
V :- none

By means of qualification, a Simula compiler can check the compatibility
of the left and right hand sides. (none can be thought of as having a universal
qualification here.) Such attempted assignments as

T :- new car(1939, 1.4, 100, 4);

C :- new vehicle(1976, 1.9);

must always fail this compatibility check. This is sensible because later, ap-
parently good attempts to access (such as T.load or C.seats above) would
be in error. There is one genuine case of doubt exemplified by the reference
assignment

T :- V;

which may be valid. It is valid if V currently references a truck object or
none: but is illegal if V currently references a vehicle, a car, or a pick-up
object. This check can only be made during program execution. On meeting
such assignments in the source program, the Simula compiler prints a warning
message and plants a run time check which is carried out when the assignment is
actually attempted. If this compatibility check fails, execution of the program
stops at once. The compiler can thus guarantee that, at run time, a reference
variable refers either to none, or to an object of its qualifying class, or to
an object prefixed by its qualifying class. That is, if a ref(A) variable does
reference an object, then that object is at least “A sized”.

The qualification of a reference variable acts as a key opening up the inside
of the object it currently references. In a remote access such as C.seats, we
are guaranteed that C references none (causing a run time error) or that the
object referenced by C, being at least car sized, does indeed possess an integer
attribute seats. The qualification car of C gives both the offset of seats within
the object and its type (integer). The compiler can also use qualification to
reject such attempted accesses as C.driver or T.seats as undefined, and trap
such attempted illegal uses as

C.brokendown := C.brokendown + 1;

The prefix notation permits a useful flexibility in object referencing illus-
trated by the procedure towin local to class pickup. Any vehicle object,
or object of a class prefixed by vehicle, is a suitable potential victim. This
is very desirable. A weak qualification permits a wide range of objects to be
referenced at the cost of run time checks on the validity of all remote accesses



18 CHAPTER 2. THE SIMULA FOUNDATION

to attributes declared at stronger levels. We do not go into this aspect of Sim-
ula here as we never need to use it in the sequel. Indeed it is not frequently
required in Demos programs. The reader is referred to Birtwistle et al. [11,
chapter 4 on qua, inspect, and virtual].

2.2.3 ==, =/=, is, in

To complete this section on security of access, we introduce four more operators
which enable us to distinguish at run time between references to objects (==,
=/=) and ascertain the class of an object (is, in).

==, =/=: Because such a remote access as

V.brokendown [ ref(vehicle) V; ]

causes a run time error if the value of V is none, it is important to have a means
of checking against that eventuality. To this end, Simula includes the reference
comparators == and =/=. Let V and W be references to objects or none. Then

• V == W is true only if V and W reference the same object, or both are
none

• V =/= W is equivalent to not(V == W)

Typical uses are furnished by:

1. ROLLS gets special treatment

if V == ROLLS

then special treatment
else send V to end of queue ;

2. we expressed the procedure towin local to class pickup as

procedure towin(V); ref(VEHICLE) V;

begin

if V.brokendown then VICTIM :- V else

FALSE ALARM;
end***towin***;

A better formulation might be to use if V == none to guard against
the actual parameter value being none and use if VICTIM =/= none to
check that this pick-up is not already busily towing a victim. Only if
these two checks are passed do we enter the third if condition.
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procedure towin(V); ref(VEHICLE) V;

begin

if V == none then ERROR: argument none else

if VICTIM =/= none then pick-up already in use else

if V.brokendown then VICTIM :- V else

FALSE ALARM;
end***towin***;

is, in: is and in may be used to ascertain at run time the type of object a
variable is currently referencing. We use them in conditions of the formats (a
little restricted)

<reference variable> is <qualification>, e.g. V is CAR

<reference variable> in <qualification>, e.g. V in VEHICLE

Given class A and ref(A) X. Then at run time the value of X can only be
a) none, b) an A object, or c) an object of a class prefixed by A.

• X is A is true only if X references an A object; it is false if X has the
value none or X references an object of a class prefixed by A

• X in A is true if X references an A object or an object of a class prefixed
by A; it is false if X == none

We could thus extend the procedure towin to

procedure towin(V); ref(VEHICLE) V;

begin

if V == none then ERROR: argument none else

if VICTIM =/= none then pick-up already in use else

if V.brokendown then VICTIM :- V else

FALSE ALARM;
if V is car then tow to nearest garage else

if V is truck then tow to its owner else

tow to my garage;
end***towin***;

where a call on this new towin not only locates the victim as before, but takes
it to the nearest garage if it is a car, to the victim’s owning garage if it is a
truck, and to the rescuer’s garage if the victim is either another pick-up or a
vehicle object.

EXERCISES 2 (continued)

Exercise 2.6 Define a class order which describes a class of objects each
of which possesses a serial number, an arrival number, a set-up time, and a
processing time.
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Define a class batch which describes a class of objects which have all the
attributes of order objects plus a batch size.

Define a class single which describes a class of objects which have all the
attributes of order objects plus a finishing time and a weight.

Define a class plate which describes a class of objects which have all the
attributes of order objects plus weight, length, width, and finishing time.

N.B. In our suggested solution, all attributes are given as local variables
and none as parameters.

2.3 Contexts

A Simula program must contain the class declarations which give the patterns
of the objects it uses. For example, a traffic simulation involving the classes
we developed in the last section, would have the format

begin

class vehicle..............;

vehicle class car..........;

vehicle class truck........;

vehicle class pickup.......;

other relevant declarations;

actions involving objects of
the above classes;

end;

N.B. In a proper Simula program, the declarations must, of course, appear in
full. We have used the dots for brevity’s sake, a device we will often resort to
in the sequel.

When working in a particular problem area, e.g. traffic simulation, it is clear
that the same basic declarations may be useful over a whole range of programs.
It is tiresome and error prone to prepare much the same program several times.
Instead, the inter-related definitions of vehicle types can be collected together
in Simula to define a context. In this case, we choose to call it traffic and define
it by

class Traffic;

begin

class vehicle..............;

vehicle class car..........;

vehicle class truck........;

vehicle class pickup.......;

end;
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Normally, Traffic would now be separately compiled and the object code be
retained in a library. Users with an interest in this particular field and local
access to the library can pick up the compiled context code by an external
declaration as below

external class Traffic;

Traffic

begin

other relevant declarations;

actions involving objects of
classes defined within Traffic
and this prefixed block;

end;

As a particular example, the user wishing to write a program involving 2
cars and 1 pick-up merely codes

external class Traffic;

Traffic

begin

ref(car) C1, C2;

ref(pickup) AUTO REX;

C1 :- new car......;

C2 :- new car......;

AUTO REX :- new pickup...;

..........................

end;

All the concepts defined inside Traffic (namely vehicle, car, truck, pickup)
are directly available within the user-defined block.

In general, contexts make available to the programmer a set of problem-
oriented and familiar concepts for use as building blocks in programs. Given
the right abstractions, this may be enough, and the ordinary user does not have
to know the full Simula language. But the experienced programmer has the
general language available and may extend the application language by new
concepts that be desirable. For example,

external class Traffic;

Traffic class Police Surveillance;

begin

class traffic lights...........;

vehicle class black maria......;

car class police car...........;

................................

end***Police Surveillance***;

Any block prefixed by this new context, e.g.
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external class Police Surveillance;

Police Surveillance

begin

................................

end;

has available all the definitions at the Traffic level plus the new ideas of
traffic lights and police vehicles. Notice that black marias and police cars
may be towed in by pick-ups when broken down since their respective class
declarations both contain the prefix vehicle (directly in the case of class
black maria, and implicitly in the case of class police car since its explicit
prefix car is itself prefixed by vehicle). Trafficants unconcerned by police
activities will continue to use Traffic as prefix to their programs.

N.B. Typically, when a context has been developed and is stable, it will be
placed in a group or system library and be made generally available. In such
cases, external declarations require additional search path information. On
my system, I locate the compiled version of Demos by:

external class Demos = "/usr/local/simulabin/demos.atr"

The details will differ on your system — look it up in the appropriate Simula
implementation manual.

EXERCISES 2 (continued)

Exercise 2.7 Which items would you like already defined in a context for
a harbour simulation? Write down the skeleton of its definition in Simula and
how you would use it.



Chapter 3

Modelling with entities

We begin with an analogy. Consider splitting the text of a play (∼ a system)
into separate scripts for each role (∼ each entity). For example, Act 1, Scene
1 of Shakespeare’s Macbeth starts

1 Witch. When shall we three meet again.
In thunder, lightning, or in rain?

2 Witch. When the hurlyburly’s done,
When the battle’s lost and won.

3 Witch. That will be ere the set of sun.
1 Witch. Where the place?
2 Witch. Upon the heath.
3 Witch. There to meet with Macbeth.

......................

This can be split into three separately described roles, as below. (Asterisks
represent pauses in between speeches.)

1 Witch. When shall we three meet again.
In thunder, lightning or in rain?
*
Where the place?
*
.................

2 Witch. When the hurlyburly’s done,
When the battle’s lost and won.
*
Upon the heath.
*
...............

3 Witch. That will be ere the set of sun.
*
There to meet with Macbeth.
*
...........................

The separate roles are sequences of active speaking phases and passive waits
until it is one’s turn again.

23
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In much the same way, when we come to describe a simulation model, we
first split the totality into suitable components (cf. 1 Witch, 2 Witch, 3 Witch,
... in Macbeth), and provide an object with a full life history to act out the role
of each. Once we have sorted out how each object synchronises its actions with
other objects (a major modelling problem), the description of the rest of an
object’s life history can be completed separately. We simply psyche ourselves
into each role in turn and then write out its actions from its own viewpoint.

Example 1: Port system

A port has 2 jetties each of which can be used for unloading by one boat at a
time. Boats arrive at the port periodically and must wait if no jetty is currently
free. When a jetty is available, a boat may dock and start to unload. When
this activity has been completed, the boat leaves the jetty and sails away. The
port authority has a pool of 3 tugs. Two are required for docking: only one
when a boat leaves its jetty.

It is instructive to hand simulate the system with some “easy” numbers.
Assume that

• boats arrive at times 0, 1, 15

• tug manoeuvres take 2 time units

• unloading takes 14 time units.

Table 3.1 gives a full trace of the port system using this data. We have
named the boats B1, B2, and B3. As the state of the system changes only at
certain critical times, only these times have been recorded (hence discrete event
simulation).

The trace records the essential behaviour of the system as a time ordered
sequence of events. The first three columns of table 3.1 give the ’when’, the
’who’ and the ’what’ of each event. The who of each event is always a boat,
and so the behaviour of the complete system can be rephrased in terms of the
actions and interactions of B1, B2, and B3.
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TIME BOAT CURRENT ACTION NEXT EVENT
0.0 B1 arrive

B1 request 1 jetty
B1 seize 1 jetty
B1 request 2 tugs
B1 seize 2 tugs
B1 start docking 2.0

1.0 B2 arrive
B2 request 1 jetty
B2 seize 1 jetty
B2 request 2 tugs

2.0 B1 release 2 tugs
B1 start unloading 16.0
B2 seize 2 tugs
B2 start docking 4.0

4.0 B2 release 2 tugs
B2 start unloading 18.0

15.0 B3 arrive
B3 request 1 jetty

16.0 B1 request 1 tug
B1 seize 1 tug
B1 start leaving 18.0

18.0 B2 request 1 tug
B2 seize 1 tug
B2 start leaving 20.0
B1 release 1 tug
B1 release 1 jetty
B1 quit ****
B3 seize 1 jetty
B3 request 2 tugs
B3 seize 2 tugs
B3 start docking 20.0

20.0 B2 release 1 tug
B2 release 1 jetty
B2 quit ****
B3 release 2 tugs
B3 start unloading 34.0

34.0 B3 request 1 tug
B3 seize 1 tug
B3 start leaving 36.0

36.0 B3 release 1 tug
B3 release 1 jetty
B3 quit ****

Table 3.1: Trace of the Port System



26 CHAPTER 3. MODELLING WITH ENTITIES

We follow this lead in table 3.2 and split the trace narrative into three
separate columns, one for each boat. Notice that each and every event appears
once under the appropriate boat name, and that no events have been omitted.
The whole is precisely the sum of its parts.

TIME
EVENT SEQUENCE B1 B2 B3
arrive 0.0 1.0 15.0
request 1 jetty 0.0 1.0 15.0
seize 1 jetty 0.0 1.0 18.0
request 2 tugs 0.0 1.0 18.0
seize 2 tugs 0.0 2.0 18.0
start docking 0.0 2.0 18.0
release 2 tugs 2.0 4.0 20.0
start unloading 2.0 4.0 20.0
request 1 tug 16.0 18.0 34.0
seize 1 tug 16.0 18.0 34.0
start leaving 16.0 18.0 34.0
release 1 tug 18.0 20.0 36.0
release 1 jetty 18.0 20.0 36.0
quit 18.0 20.0 36.0

Table 3.2: Table of event times for each boat

Table 3.2 is just a rehash of the trace in which we have followed through
the actions of each boat as an individual. Importantly, the action sequence
of each boat may be framed in exactly the same way — as the sequence of
activities

dock; unload; leave;

and invites the declaration of a class boat (informally)

class boat;

begin

request 1 jetty; seize 1 jetty;
request 2 tugs; seize 2 tugs;

dock;
release 2 tugs;

unload;

request 1 tug; seize 1 tug;
leave;

release 1 tug;
release 1 jetty;

end***boat***;
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from which three boat objects will be created. Notice that a fresh arrival will
be taken care of by executing new boat at an appropriate time in the main
program. Quitting is taken care of automatically by the Simula system when
a boat object exhausts its action sequence.

EXERCISES 3

Exercise 3.1 Give another class declaration-role analogue besides the one
given in the text (Macbeth).

3.1 Activities

Before developing Demos code for class boat, we take a closer look at the
notion of a task or activity. The life history of each boat is a sequence of three
activities and their most general pattern would seem to be:

1. acquire (= request and seize when available) the extra resources needed
for the forthcoming task. Extra resources are usually requested one at
a time, and each request may be followed by a wait until sufficient of
the resource is available and can be seized. N.B. This being understood,
from now on we will usually use acquire for this joint phase instead of
separating it into a request followed by a seize.

2. hold all resources (both those just seized and those previously acquired)
while carrying out the task.

3. release those resources no longer required and continue with the next
activity, if any.

activity extra resources required duration resources to release

DOCK 1 jetty and 2 tugs 2.0 2 tugs
UNLOAD none 14.0 none
LEAVE 1 tug 2.0 1 tug and 1 jetty

Table 3.3: The three activity patterns in detail

Table 3.3 tabulates these activity stages in the context of our port system.
If all the extra resources required for the start of an activity are free, they can
be seized in turn immediately and the activity starts at once (e.g. B1 when
docking). When a resource is not available, then a request is followed by a wait,
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and the boat object issuing the request has to wait until any current user(s)
have freed sufficient for it to proceed (e.g. at time 1.0, B2 can seize a jetty, but
must wait for 2 tugs as only 1 is then free). Again, at time 15.0, B3 must wait
for a jetty to be released. When this occurs at time 18.0 (released by B1), B3
does not have to wait further to seize 2 tugs as sufficient are then free.

Notice that each boat object retains the same jetty throughout its lifespan,
but releases the tugs after docking and before unloading. In general, resources
may be retained through an arbitrary number of activities. Also note that if
no extra resources are required, as for ’unload’ (because the jetty has already
been seized), the pattern simplifies as the acquire phase drops out and there
can be no waiting. Such activities are sometimes called bound activities as they
are bound to follow straight on from the previous activity.

This activity pattern of acquire (with the implicit wait until resources
are available), hold, and then release turns out to be very common in dis-
crete event model building — indeed, CSL (Buxton and Laski [20]) and ECSL
(Clementson [21]) were founded upon it. The activity pattern can be repre-
sented neatly by activity diagrams. These were introduced by Tocher and Hills,
but we can simplify them due to Simula’s object orientation. Activity diagrams
are essentially high level flow charts which capture the structure of a model at
a very convenient level of abstraction. They are important because they not
only provide a good basis for model presentation and discussion (especially
when some participants are unfamiliar with programming languages): but also
because they guide the eventual coding of the model. In activity diagrams, we
depict model resources by circles labelled with the initial value of the item they
represent, e.g.

jetties "!
# 

2 tugs"!
# 

3

Figure 3.1: Depiction of system resources

and each activity duration is represented by a rectangular box labelled with
the appropriate task, e.g.

dock

Figure 3.2: Depiction of an activity duration

The activities are considered one by one. If extra resources are required for
an activity, then we draw directed lines from the appropriate resource circle
into the top edge of the activity box (if time is taken to flow down the page).
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jetties��
��

2 dock tugs��
��

3

? ??

66

Figure 3.3: The activity dock

Directed lines leading from the bottom edge of the activity box back into
resource circles represent resources no longer needed when the activity has been
completed. Figure 3.3 shows the diagram for the activity dock. Notice that
we have used double arrows from and into the resource tugs to indicate that
two tugs are required. The full activity diagram for each boat’s behaviour is
obtained by stringing together the separate activity drawings in the correct
time ordered sequence (see figure 3.4.

class boat;

begin

acquire 1 jetty;

acquire 2 tugs;

dock;

release 2 tugs;

unload;

acquire 1 tug;

leave;

release 1 tug;

release 1 jetty;

end***boat***;

dock

unload

leave

���� ����2 3 tugsjetties

?

6 6

??

??

?

Figure 3.4: Port System activity diagram
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In figure 3.4, we have included the outline of class boat (with a request
followed by a seize shortened into acquire). Notice that the class declaration
can be written down from the activity diagram line by line in a quite mechanical
way. Indeed, Clementson [21] and Matthewson [26] have automated similar
processes.

EXERCISES 3 (continued)

Exercise 3.2 Customers arrive at a one man barber’s shop for haircuts. If
the barber is free, a haircut starts at once. If not, the customers wait on the
first-come, first-served (henceforth FCFS) basis. Give a trace for the simulation
in terms of the actions of the customers, assuming that four customers arrive
at times 0, 20, 35, and 40 respectively and that each haircut takes 15 minutes.
(Ignore the time taken to get seated, leave the chair and pay the barber.)
Prepare an activity diagram for the model, and give an informal declaration
for class customer.

HINT: let the barber be modelled as a resource, initially of size 1.

Exercise 3.3 Repeat exercise 3.2 above for a two man barber’s shop using
the same customer arrival sequence and the same length of time per haircut.

Exercise 3.4 A fleet of vans delivers sheet metal to a factory. When a van
arrives at the one entrance, it passes overs a weighbridge which can weigh one
van at a time. Then the van is driven to an unloading area where its contents
are removed. Assume that each unloading takes 20 minutes and that there is
always ample space for unloading so that the vans never need to queue here.
Once unloaded, the vans are driven out of the factory, again passing over the
weighbridge. Assume that vans arrive at times 0.0, 1.0, 24.0, and 25.0 minutes,
that the weighing operation takes 3 minutes for vans going in either direction,
and that the vans queue for the weighbridge in FCFS fashion. Ignore the time
taken to drive between the weighbridge and the unloading area. Give a trace
for this problem (stop at time = 40.0), construct the activity diagram and give
a declaration for class van. What difference would it make to the trace if
vans leaving were given priority in the weighbridge queue over vans entering?

3.2 A first look at Demos

We now outline Demos and its method of scheduling events. First note that
Demos is just another Simula context, no more, no less. Demos takes its inspi-
ration and approach from Simula’s standard class SIMULATION (but does not
use it). As with class SIMULATION, Demos provides various behind-the-scenes
structures such as an event list and primitive routines for entering entities into
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it and deleting entities from it. These are not meant to be used directly. In-
stead Demos provides some much higher-level classes and procedures for direct
use. From the user’s point of view, we can picture the declaration of the Demos
context by1

class Demos;

begin

class entity(title); value title; text title;

begin

procedure schedule(t); real t;............;

procedure cancel;.........................;

end***entity***;

class res(title, avail);....................;

ref(entity)procedure current;...............;

real procedure time;........................;

procedure hold(t); real t;..................;

.............................................

actions to set up the event list at clock time 0.0;

.............................................

end***demos***;

Demos is used as a context in the usual manner:

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

.....

end;

NB. In the code above (and throughout this text)

external class Demos = "/usr/local/simulabin/demos.atr";

gives the path to where the externally compiled class Demos is lo-
cated on my system. Expect the path to be different on your system.

Entities

class entity is used as prefix to declarations of major simulation components
in Demos. Entity objects are given full life histories and are the only objects
that can be scheduled in the event list. The event list is ordered according to

1This skeleton suffices for the time being — other Demos facilities will be introduced as
we go along. A more complete outline is given in appendix B.
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the time of an entity’s next scheduled event, with the smallest at the front.
The scheduling strategy guarantees that the (single) active entity is the one
at the head of the event list. ref(entity)current returns a reference to the
entity that is now active, and real procedure time returns the simulation
clock time (the event time associated with current).

procedure schedule is used to enter an unscheduled (or passive) entity
into the event list. For example, new boat("boat").schedule(15.0) enters
a new boat object into the event list at the current clock time + 15.0. ***A
call X.schedule(dt) has no effect if X is already scheduled.***

procedure hold always operates on the entity at the head of the event list
and is used to represent the duration of an activity. Seen from inside the calling
object itself, it represents a period of time in the same state and holding the
same resources until it takes up its actions again. hold is global rather than
local to class entity to prevent an arbtitrary object from being “held”.

Note that the argument to hold and schedule represents a delay from the
simulation clock time: it is not an absolute time.

cancel is used to remove a scheduled entity from the event list, e.g. a call
RIVAL.cancel suffices to de-schedule RIVAL.

Resources

class res is used to model minor simulation elements, such as tugs and
jetties, where we don’t need to give full role descriptions, but essentially
record how much of the modelled resource is currently available. In the port
example, we declare ref(res)tugs, jetties and create appropriate objects
by

jetties :- new res("jetties", 2);

tugs :- new res("tugs", 3);

res

title "tugs"

avail 3

q

procedure acquire(n)

procedure release(n)

res

title "jetties"

avail 2

q

procedure acquire(n)

procedure release(n)

Figure 3.5: The two res objects
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res objects require two parameters: the first is text title (enclosed in double
quotes ") which is used in reports and traces; the second is integer avail
which is used to fix the initial size of the resource pool. Thereafter, avail
is maintained by calls on acquire and release to record the current level of
the resource pool. Calls on acquire and release maintain the invariant 0 <=
avail <= initial size.

After object creation, portions of a resource may be acquired in integer
chunks, e.g. jetties.acquire(1); tugs.acquire(2); Requests are consid-
ered on the first-come, first-served basis (this can be altered by use of priority,
see chapter 4). A request is granted immediately if sufficient of the resource
is free and no other entity is blocked. Otherwise the requester is itself blocked
and is held in a hidden resource queue q (ref(queue)q, see chapter 5) local
to the res object. There it remains until it is first in the queue and there is
sufficient of the resource available for it to proceed.

When a current user releases its share, it sends a signal to the resource,
e.g. tugs.release(2); jetties.release(1); A call on release not only
increments the resource pool, but also unblocks any waiting entities whose
request can be granted. Each unblocked entity leaves the resource queue q and
enters the event list behind its unblocker and at the same clock time (see figure
3.3) at times 2.0 and 18.0).

More detail on acquire and release is supplied when priority queueing is
introduced in chapter 4.

We can now complete our model description in Demos:

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(res)tugs, jetties;

entity class boat;

begin

jetties.acquire(1);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

hold(14.0);

tugs.acquire(1);

hold(2.0);

tugs.release(1);

jetties.release(1);

end***boat***;

jetties :- new res("jetties", 2);

tugs :- new res("tugs" , 3);
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new boat("boat").schedule(0.0);

new boat("boat").schedule(1.0);

new boat("boat").schedule(15.0);

hold(36.0);

end;

Remarks on Example 1

We create the first boat object by executing new boat("boat"). This gives us a
carbon copy of the class declaration as depicted in figure 3.6. The entity prefix
contains the user-accessible procedure schedule and text title. You supply
the class name when the object is created (new boat("boat")) and the Demos
system automatically gives each fresh boat object its serial number, shown.
Also shown in figure 3.4 are the extra attributes evtime and nextev which we
will not need to use in any of our examples in the text, but are essential to our
full trace in section 3.4. evtime records the time of this entity’s next scheduled
event and nextev the next entity after this one in the event list.

boatv

-

procedure schedule(t)

title "boat 1"

evtime 0.0

nextev none

jetties.acquire(1);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

hold(14.0);

tugs.acquire(1);

hold(2.0);

tugs.release(1);

jetties.release(1);

Figure 3.6: The first boat object

Because of a command within its entity prefix, a freshly created boat
object is frozen with its LSC referring to the first user-written action. It will
not start executing this action until it is scheduled. In our program, all three
boat objects are scheduled as soon as they are created by the calls on schedule.
Thus they enter their user-written action sequences at simulation clock times
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0.0, 1.0, and 15.0 respectively. Thereafter, their lives are sequences of resource
requests with implied waits of locally unpredictable (but possibly zero) length,
and holds of known duration.

Objects which have been scheduled by a schedule or hold are chained to-
gether behind the scenes in an event list. Associated with each such object
is the known time of its next event — the time at which it is due to be first
released into the simulation, or the time at which its current activity is due
to finish. (Objects awaiting the availability of resources cannot be members
of the event list.) Scheduled objects are ranked according to the real value
of their next event time. Scheduling is framed so that the object at the head
of the event list (the one with the least event time) is active. It has the stan-
dard reference ref(entity)procedure current and its event time is always
available through a call on the standard real procedure time.

3.3 Trace of the Port System

We now illustrate how Demos’s scheduling operates by tracing out the changes
in the event list as the program is executed. The important points to watch
out for are:

1. there are 4 entities in this model. Only one will be executed at any given
time.

2. the entity being executed is always the one at the head of the event list,
named current

3. the next command to be executed is always current.LSC and the time
at which it is executed is current.evtime

4. X.schedile(dt);

5. a hold(dt) command reschedules current in the event list delayed by dt
(at current.evtime + dt)

6. an acquire command will be carried out in zero time if enough of the
resource is free; if not, current will be blocked. It is removed from the
event list and queued on the resource until its request can be satisfied.

7. a release command always takes zero time and always leaves current ac-
tive. The release command will awaken any blocked entities that can
satisfy their acquisition request. This will move them from the resource
queue and into the event list at the current clock time, but after current.

8. When an object has exhausted its useful actions and is no longer required,
it will be automatically deleted. Automatic garbage collection has always
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been a positive feature of Simula; the manual deletion of objects is far
too error prone to be left to humans. Avoid languages that let you do it
like the plague.
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3.3.1 Notation and layout

Space does not permit us to draw out each object in full so we have to make
some compromises. Here is how we would represent the the boat object B1 in
the event list scheduled to carry out its next action at clock time 2.0.

s B1:boat

evtime 2.0

nextev B3

jetties.acq(1);

tugs.acq(2);

hold(2.0);

tugs.rel(2);

hold(14.0);

.......

-

Figure 3.7: B1 scheduled to release 2 tugs at clock time = 2.0

We fudge the heading by giving the object reference and the class name, e.g.
B1:boat, D:Demos; contract inconveniently “long” names (j’ties for jetties,
acq for acquire, rel for release); and use dots ...... to de-emphasize uninteresting
code.

To gain more insight into the behind-the-scenes-mechanisms, for each object
we also note its

• LSC gives the next action to be carried out by B1 when active, here
tugs.release(1);.

• evtime gives the time of an entity’s next scheduled event, (here 2.0) when
in the event list

• nextev is used to chain entities scheduled in the event list and when
blocked waiting on a resource. Here B3 will be scheduled behind B1 in
the event list.

When drawing such figures by hand, you will probably put in the nextevs
as arrows. It looks a bit too cluttered if we do it here. Sorry.
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Snapshots of the system state follow a fixed format, typified by figure 3.8 below,
which show the entities scheduled for action in the event list and those blocked
queued on the appropriate resource.

EVENT LIST TUGS:1 JETTIES:0

qB1:boat

evtime 2.0

nextev B3
.......

tugs.rel(2);
hold(14.0);
.......

-

qB3:boat

evtime 15.0

nextev D

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

qB2:boat

evtime
nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.8: Snapshot layout: event list plus resource queues

In figure 3.8, B1, B3 and D are scheduled to carry out their next events at times
2.0, 15.0 and 36.0 respectively; and B2 has blocked as 2 tugs are not available.
The entities in the event list are sorted by evtime and the object with the
smallest evtime, known as current, is always at its front end. Scheduling is
so framed that the object active now is always current. The simulation clock
time is always taken to be current.evtime.

In figure 3.8,

• B1 is current and is about to carry out the action referenced by its LSC
and release two tugs. The simulation clock time is 2.0.

To avoid clutter, we will not specially mark the current entity nor the
simulation clock time but pick them up implicitly from the object at the
front of the event list.

• B3 is scheduled to start its actions at time 15.0.

• The Demos block is scheduled to resume its actions at time 36.0 when it
will carry out a standard default coda: first a hold(0.0) which will give
the opportunity for any other events scheduled at that time to complete.
It will then issue a standard final report and shut down the simulation.

• B2 is blocked awaiting the availability of 2 tugs.

In the headings to the resource columns, it is handy to note how much of
each is currently free (here 1 tug and 0 jetties).

In the next section we give a full trace of the port system. The trace is
a sequence of snapshots taken at those critical times when current changes or
when a blocked entity is awakened.
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3.4 A full trace of the prort system

Snapshot 1: simulation start up. Once the Simula system is loaded, it
enters our program at the Demos level. There standard initialisation code sets
up the event list and enters the Demos object, D, into it with its evtime set to
0.0.

EVENT LIST

r D:Demos

evtime 0.0

nextev none

jetties :- new res(”jetties”, 2);

tugs :- new res(”tugs”, 3);

new boat(”boat”).schedule(0.0);

new boat(”boat”).schedule(1.0);

new boat(”boat”).schedule(15.0);

hold(36.0);

hold(0.0);

report;

-

Figure 3.9: Clock time = 0.0; current == Demos; initialisation commences

That done, we are ready to execute the user-written code prefixed by Demos.
Snapshot 1 shows the Demos block with its LSC pointing to its first command
jetties :- new res("jetties", 2); Control enters current (the first entity
in the event list) and starts executing from its LSC.

Snapshot 2: the Demos block about to create B1. After executing the
first two commands, our next snapshot is:

EVENT LIST TUGS:3 JETTIES:2

r D:Demos

evtime 0.0

nextev none

jetties :- new res(”jetties”, 2);

tugs :- new res(”tugs”, 3);

new boat(”boat”).schedule(0.0);

new boat(”boat”).schedule(1.0);

new boat(”boat”).schedule(15.0);

hold(36.0);

hold(0.0);

report;

-

Figure 3.10: Clock time = 0.0; current == Demos; resources established
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in which the the LSC of the Demos block has moved on past the creation of the
resources jetties and tugs. We fill out the resource columns in the tableau
and note how much of each resource is currently free. D is still current and the
clock time is still 0.0.

The next command to be executed is new boat("boat").schedule(0.0);
which enters a fresh boat object into the event list at the current clock time
delayed by 0.0. The entity will be given a serial number automatically. In
practice this would be "boat 1", which is here shortened to "B1". B1 is inserted
into the event list at clock time 0.0 but behind the Demos block.

Snapshot 3: D about to create B2 and B3. D is still current and the
clock time is still 0.0.

EVENT LIST TUGS:3 JETTIES:2

r D:Demos

evtime 0.0

nextev B1

jetties :- new res(”jetties”, 2);

tugs :- new res(”tugs”, 3);

new boat(”boat”).schedule(0.0);

new boat(”boat”).schedule(1.0);

new boat(”boat”).schedule(15.0);

hold(36.0);

hold(0.0);

report;

-

r B1:boat

evtime 0.0

nextev none

j’ties.acq(1);

tugs.acq(2);

hold(2.0);
..........

-

Figure 3.11: Clock time = 0.0; current == Demos; B1 now scheduled

The Demos block continues by scheduling B2 at clock time 1.0 and B3 at clock
time 15.0 in turn.
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Snapshot 4: D about to set the run length. D is still current and the
clock time is still 0.0.

EVENT LIST TUGS:3 JETTIES:2

qD:Demos

evtime 0.0

nextev B1
.......

hold(36.0);
hold(0.0);
report;

-

qB1:boat

evtime 0.0

nextev B2

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB2:boat

evtime 1.0

nextev B3

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB3:boat

evtime 15.0

nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.12: Clock time = 0.0; current == Demos; initialisation complete

With all the resources and entities in place, the Demos block is about to delay
until the run is to terminate.

Note the “slimline” version of the Demos object which enables us to jam
all future snapshots in one page width.

Do it now exercise: What would the snapshot be had we scheduled the 3
boats in reverse order ? i.e. by

new boat("boat").schedule(15.0);

new boat("boat").schedule( 1.0);

new boat("boat").schedule( 0.0);

Answer: just a renaming of the boats B3 and B1.

The next action by D is hold(36.0) which removes it from the head of the
event list and inserts it at the end of the event list.



42 CHAPTER 3. MODELLING WITH ENTITIES

Snapshot 5: B1 starts to dock. B1 becomes the new current and we
continue from its LSC. The simulation clock time becomes the evtime of B1,
i.e. the clock time remains at 0.0.

EVENT LIST TUGS:3 JETTIES:2

qB1:boat

evtime 0.0

nextev B2

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB2:boat

evtime 1.0

nextev B3

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB3:boat

evtime 15.0

nextev D

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.13: Clock time = 0.0; current == B1; B1 about to dock

B1 seizes 1 jetty and 2 tugs and then executes hold(2.0). This causes B1 to
be re-inserted in the event list at time 2.0.

Snapshot 6: B2 starts to dock. B2 becomes the new current and the
simulation time moves up to B2.evtime, which is 1.0. We continue from the
LSC of B2.

EVENT LIST TUGS:1 JETTIES:1

qB2:boat

evtime 1.0

nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB1:boat

evtime 2.0

nextev B3
.......

tugs.rel(2);
hold(14.0);
.......

-

qB3:boat

evtime 15.0

nextev D

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.14: Clock time = 1.0; current == B2; B2 starts to dock

B2 seizes a jetty, but is then blocked as 2 tugs are not currently available.
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Snapshot 7: B1 completes docking. B2 has been removed from the event
list is blocked on resource tugs and until (at least) 2 are available. B1 is the
new current and the simulation clock time moves up to 2.0.

EVENT LIST TUGS:1 JETTIES:0

qB1:boat

evtime 2.0

nextev B3
.......

tugs.rel(2);
hold(14.0);
.......

-

qB3:boat

evtime 15.0

nextev D

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

qB2:boat

evtime
nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.15: Clock time = 2.0; current == B1; B1 completes entering

B1 now releases 2 tugs. The release command will automatically awaken B2.

Snapshot 8: B1 starts to unload. B2 returns to the event list at once,
but behind B1. Notice that the number of available tugs is still 1, and
that the awakening handshake has nudged the LSC of B2 past the completed
tugs.acquire(2); onto its next command hold(2.0). B1 is still current and
the simulation clock time remains at 2.0.

EVENT LIST TUGS:1 JETTIES:0

qB1:boat

evtime 2.0

nextev B2
.......

tugs.rel(2);
hold(14.0);
.......

-

qB2:boat

evtime 2.0

nextev B3

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB3:boat

evtime 15.0

nextev D

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.16: Clock time = 2.0; current == B1; B1 awakens B2

B1 continues by entering its docking phase (hold(14.0)) and is rescheduled in
the event list at time 16.0.
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Snapshot 9: B2 continues docking. B2 is the new current and the simu-
lation clock time remains at 2.0.

EVENT LIST TUGS:1 JETTIES:0

qB2:boat

evtime 2.0

nextev B3

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB3:boat

evtime 15.0

nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB1:boat

evtime 16.0

nextev D
.......

tugs.acq(1);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.17: Clock time = 2.0; current == B2; B2 enters

B2 has seized 2 tugs and starts to dock by executing hold(2.0).

Snapshot 10: B2 completes docking and starts to unload. B2 remains
current but the simulation clock time moves up to 4.0.

EVENT LIST TUGS:1 JETTIES:0

qB2:boat

evtime 4.0

nextev B3
.......

tugs.rel(2);
hold(14.0);
.......

-

qB3:boat

evtime 15.0

nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB1:boat

evtime 16.0

nextev D
.......

tugs.acq(1);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.18: Clock time = 4.0; current == B2; B2 completes entry

B2 releases 2 tugs and then starts to unload by executing hold(14.0).
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Snapshot 11: B3 tries to dock. B2 is entered into the event list at time
18.0. B3 becomes the new current and the simulation clock moves up to 15.0.
All 3 tugs are now available.

EVENT LIST TUGS:3 JETTIES:0

qB3:boat

evtime 15.0

nextev B1

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB1:boat

evtime 16.0

nextev B2
.......

tugs.acq(1);
hold(2.0);
.......

-

qB2:boat

evtime 18.0

nextev D
.......

tugs.acq(1);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.19: Clock time = 15.0; current == B3; B3 starts to enter

Poor old B3 is immediately blocked as no jetties are free. It is removed from
the event list and queued on the jetties resource.

Snapshot 12: B1 starts to leave. B1 becomes the new current and the
clock time advances to 16.0.

EVENT LIST TUGS:3 JETTIES:0

qB1:boat

evtime 16.0

nextev B2
.......

tugs.acq(1);
hold(2.0);
.......

-

qB2:boat

evtime 18.0

nextev D
.......

tugs.acq(1);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

qB3:boat

evtime
nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.20: Clock time = 16.0; current == B1; B1 starts to leave

B1 seizes one tug and then starts to leave (hold(2.0);).
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Snapshot 13: B2 starts to leave. B1 is rescheduled in the event list at
time 18.0, but behind B2. N.B. In general, tie breaks in the event list are
resolved on the ’first scheduled for that event time, first taken’ principle. A
hold thus re-inserts the caller in the event list behind all other entities with
events due to take place at the same time (if any). B2 is now current and the
simulation clock time moves up to 18.0.

EVENT LIST TUGS:2 JETTIES:0

qB2:boat

evtime 18.0

nextev B1
.......

tugs.acq(1);
hold(2.0);
.......

-

qB1:boat

evtime 18.0

nextev D
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

qB3:boat

evtime
nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.21: Clock time = 18.0; current == B2; B2 starts to leave

B2 seizes 1 tug and starts leaving by executing (hold(2.0);).

Snapshot 14: B1 releases its resources. B2 is re-entered into the event
list at time 20.0. B1 becomes the new current and the simulation clock time
remains at 18.0.

EVENT LIST TUGS:1 JETTIES:0

qB1:boat

evtime 18.0

nextev B1
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qB2:boat

evtime 20.0

nextev D
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

qB3:boat

evtime
nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

Figure 3.22: Clock time = 18.0; current == B1; B1 starts to leave

B1 now releases 1 tug and then 1 jetty. This last action awakens B3.
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Snapshot 15: B1 is about to complete. Having seized a jetty, B3 joins
the event list behind B1 and at the current simulation clock time. Notice that
the LSC of B3 has been nudged past jetties.acquire(1) and that the number
of free jetties is zero (B3 already owns a share). B1 remains current and the
simulation clock time remains at 18.0.

EVENT LIST TUGS:2 JETTIES:0

qB1:boat

evtime 18.0

nextev B1
.......
.......

tugs.rel(1);
j’ties.rel(1);

-

qB3:boat

evtime 18.0

nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB2:boat

evtime 20.0

nextev D
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.23: Clock time = 18.0; current == B1; B1 awakens B3

B1 has completed its actions and is automatically deleted from the simulation
run.

Snapshot 16: B3 enters. The event list is now down to 3 live entities. B3
becomes the new current and the simulation clock time remains at 18.0.

EVENT LIST TUGS:2 JETTIES:0

qB3:boat

evtime 18.0

nextevnone

j’ties.acq(1);
tugs.acq(2);
hold(2.0);
.......

-

qB2:boat

evtime 20.0

nextev D
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.24: Clock time = 18.0; current == B3; B3 enters

B3 now seizes 2 tugs and executes a hold(2.0) simulating the docking activity.
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Snapshot 17: B2 completes. B3 is rescheduled in the event list at time
20.0 but after B2. B2 becomes the new current.

EVENT LIST TUGS:0 JETTIES:0

qB2:boat

evtime 20.0

nextev B3
.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qB3:boat

evtime 20.0

nextev D
.......

tugs.rel(2);
hold(14.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.25: Clock time = 20.0; current == B2; B2 leaves

B2 releases 1 tug and 1 jetty, and is deleted from the event list as its actions
are exhausted.

Snapshot 18: B3 completes docking and starts to unload. The event
list is now down to two objects. B3 is the new current and the simulation clock
time is 20.0;

EVENT LIST TUGS:1 JETTIES:1

qB3:boat

evtime 20.0

nextev D
.......

tugs.rel(2);
hold(14.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.26: Clock time = 20.0; current == B3; B2 unloads

B3 now releases 2 tugs and enters its unloading phase by executing hold(14.0).



3.4. A FULL TRACE OF THE PRORT SYSTEM 49

Snapshot 19: B3 completes unloading and starts to leave. B3 remains
current but the clock time advances to 34.0.

EVENT LIST TUGS:3 JETTIES:1

qB3:boat

evtime 34.0

nextev D
.......

tugs.acq(1);
hold(2.0);
.......

-

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.27: Clock time = 20.0; current == B3; B3 leaves

B3 now seizes 1 tug and starts leaving, rescheduling itself for clock time 36.0.

Snapshot 20: Making sure that all boats complete. B3 is entered into
the event list at clock time 36.0 but is behind the Demos block D.

EVENT LIST TUGS:2 JETTIES:1

qD:Demos

evtime 36.0

nextev B3
.......

hold(36.0);
hold(0.0);
report;

-

qB3:boat

evtime 34.0

nextevnone

.......

hold(2.0);
tugs.rel(1);
j’ties.rel1;

-

Figure 3.28: Clock time = 36.0; current == Demos; Demos pauses

If the simulation were to end now, it would not be quite complete as B3 has
not yet released its resources. To allow for this circumstance, the Demos block
has been coded to execute an extra hidden hold(0.0) before it closes down the
simulation. This simple trick causes the simulation run to end at the expected
simulation clock time, but in effect gives all other events scheduled for that
time precedence.
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Snapshot 21: now B3 completes. B3 becomes current again.

EVENT LIST TUGS:2 JETTIES:1

qB3:boat

evtime 34.0

nextevnone

.......

hold(2.0);
tugs.rel(1);
j’ties.rel(1);

-

qD:Demos

evtime 36.0

nextev B3
.......

hold(36.0);
hold(0.0);
report;

-

Figure 3.29: Clock time = 36.0; current == B3; B3 leaves

B3 continues its actions by releasing 1 tug and 1 jetty. It is then deleted from
the event list.

Snapshot 22: issuing a final report. Now D is current and the simulation
clock time is 36.0.

EVENT LIST TUGS:3 JETTIES:2

qD:Demos

evtime 36.0

nextevnone

.......

hold(36.0);
hold(0.0);
report;-

Figure 3.30: Clock time = 36.0; current == Demos; final report

Finally then, the Demos block is re-entered. It automatically issues a final
report before closing down the simulation.

Coda. Once an entity has been created and scheduled, it decides for itself
what to do next until its action pattern has been exhausted. It is then said to be
terminated and can never be scheduled again. If not referenced (the attributes
of referenced terminated objects may be accessed, e.g. tugs and jetties),
the object is automatically deleted from the model. Thus boat objects are
automatically deleted at clock times 18.0, 20.0, and 36.0.

Notice that the scheduling style, which is inherited from Simula, focusses
our attention on current. We have not needed to reference any of the boat
objects in the model explicitly. They are found implicitly either in the event
list as current, or at the head of a resource queue.
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EXERCISES 3 (continued)

Exercise 3.5 Give Demos code for the barber’s shop model given as exercise
3.2.

Exercise 3.6 Give Demos code for the factory model given as exercise 3.4.

Exercise 3.7 Give a frame by frame snapshot of the changes in the event
list as your program for exercise 3.6 above is executed.

Exercise 3.8 Notice that all the boat objects in the port system (also
customer objects in exercise 3.5 and van objects in exercise 3.6) are created at
clock time zero. This may be tolerable in a small simulation involving only a few
entities, but in larger models this method of dealing with transient entities is
not acceptable. As an example, consider running our model of the port system
over 10,000–20,000 time units. Perhaps 1000 boats will pass through, but no
more than 5 or 6 may be in contention at any one time. To create all the boat
objects at time zero wastes much space in the computer and clutters up the
event list. What can be done to improve matters if we know the distribution
of inter-arrival times of the boats?

Example 2: Port system revisited

Model data

Timings in hours:
docking constant:2.0
unloading normal:mean=14.0,st.dev.=3.0
leaving constant:2.0
boat inter-arrival negexp:mean=0.1/hour

Resources:
tugs res:limit=3
jetties res:limit=2

We have followed through the construction of one model in Demos and its
execution by hand. The task was simplified by our choice of ’easy’ numbers.
We now repeat the exercise with more realistic data, and use standard Demos
mechanisms to introduce random behaviour into the simulation. We also take
the opportunity to show a standard method of dynamically generating a stream
of transient entities whose inter-arrival pattern is known (exercise 3.8), and
introduce event tracing.

As before, docking and leaving are fixed length activities of duration 2
hours. Unloading is a sample from a normal distribution with mean 14.0 and
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standard deviation 3.0. The inter-arrival times are drawings from a negative
exponential (negexp) distribution with a mean inter-arrival time of one boat
every 10 hours. The simulation model is run for 28 days.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(res)tugs, jetties;

ref(rdist)next, discharge;

entity class boat;

begin

new boat("boat").schedule(next.sample);

jetties.acquire(1);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

hold(discharge.sample);

tugs.acquire(1);

hold(2.0);

tugs.release(1);

jetties.release(1);

end***boat***;

tugs :- new res("tugs", 3);

jetties :- new res("jetties", 2);

next :- new negexp("next boat", 0.1);

discharge :- new normal("discharge", 14.0, 3.0);

trace;

new boat("boat").schedule(0.0);

hold(28.0*24.0);

end;

OUTPUT

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************

time/ current and its action(s)

0.000 demos schedules boat 1 now

holds for 672.000, until 672.000

boat 1 schedules boat 2 at 26.574

seizes 1 of jetties

seizes 2 of tugs

holds for 2.000, until 2.000
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2.000 releases 2 to tugs

holds for 16.385, until 18.385

18.385 seizes 1 of tugs

holds for 2.000, until 20.385

20.385 releases 1 to tugs

releases 1 to jetties

***terminates

26.574 boat 2 schedules boat 3 at 33.116

seizes 1 of jetties

seizes 2 of tugs

holds for 2.000, until 28.574

28.574 releases 2 to tugs

holds for 14.724, until 43.298

33.116 boat 3 schedules boat 4 at 41.836

seizes 1 of jetties

seizes 2 of tugs

holds for 2.000, until 35.116

35.116 releases 2 to tugs

holds for 16.287, until 51.403

41.836 boat 4 schedules boat 5 at 56.849

awaits 1 of jetties

43.298 boat 2 seizes 1 of tugs

holds for 2.000, until 45.298

45.298 releases 1 to tugs

releases 1 to jetties

***terminates

boat 4 seizes 1 of jetties

seizes 2 of tugs

holds for 2.000, until 47.298

clock time = 672.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

next boat 0.000 64 negexp 0.100 33427485

discharge 0.000 58 normal 14.000 3.000 22276755

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

tugs 0.000 114 3 0 3 17.063 2.854&-002 1

jetties 0.000 56 2 0 0 78.566 5.498 6
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Remarks on Example 2

The input to the program is the specification of the two random streams. The
output from the program is an event trace followed by a standard report on
the use of user-created Demos facilities. In the report, two distributions (next
and discharge) and two resources (tugs and jetties) are detailed.

The report first details the distributions used in the simulation:

• TITLE, TYPE, and A and B echo back the user given name for the distri-
bution, its type and argument(s)

• OBS records the number of calls on the distribution

• (RE)SET gives the simulation time at which the object was created or
reset (resetting is described in chapter 8)

• SEED quotes the automatically determined value for each distribution.
These come out in a mechanically predetermined sequence which can be
overridden (see further remarks in chapter 8).

Then resource usages are detailed.

• TITLE and (RE)SET are obvious

• OBS gives the number of calls on release

• LIM echoes the initial value of the resource

• MIN the minimum level of the resource reached in the observation period
— 0 <= min <= lim

• NOW is the currently available level of the resource

• % USAGE is the time weighted average of the portions of the resource
seized expressed as a percentage of the maximum possible usage

• AV. WAIT is the average wait time of entities which have completed calls
on acquire. It includes zero waits.

• QMAX is the maximum attained length of the queue of blocked requesters.
Instant seizes — zero waits — ARE included).

N.B. Real values in reports are usually printed to 3 decimal places, but
any real values which are too large to fit their allotted field or give only two
significant places or less are printed floating point (see the AV. WAIT column
for tugs. 2.854E-02 is interpreted as 2.854×102
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3.5 Event tracing

Event tracing is initially off. It is switched on by a call trace, and continues
to be on until switched off by a call notrace. trace and notrace are global
routines which can be called from within entities as well as from the Demos
block. Notice that the Demos system itself numbers the entities in the order of
their creation. The user supplies a text (here ”boat”) and the Demos system
appends to that text its serial number (taken modulo 100). In programs with
several different entity classes, Demos will give each class its own sequence of
serial numbers.

Because the Demos block itself behaves very much like an entity, it is simple
to trace over a selected period. For example, should we wish to trace only the
first 24 hours of the simulation, we replace the coding sequence

trace;

hold(28.0*24.0);

by the sequence

trace;

hold(24.0);

notrace;

hold(27.0*24.0);

With this coding, the Demos block sets tracing on after initialising the system,
places itself into the event list at the close of the first day. When it becomes
current again, it switches tracing off, and then places itself in the event list
27 days later. We will take full advantage of this flexibility in several later
examples.

3.6 Pseudo-random number generation

The program contains two of Demos’s random sampling mechanisms; several
more will be met later.2

Any simulation based on random behaviour naturally requires mechanisms
for generating sequences of random numbers from various probability distribu-
tions. It is sufficient to have a sequence of random numbers from a uniform
distribution available; for from it, by suitable mathematical transformations,
it is possible to generate sequences of random numbers for other distributions.

2A proper account of random number generation techniques is beyond the scope of this
little book — see instead Fishman [32], Knuth [35], or Shannon [37].
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In turn, to obtain a sequence of uniform random numbers, it is sufficient to be
able to generate a sequence Xk of integers in the range [1, M-1] as the sequence
Xk/M is approximately uniformly distributed over (0,1). The simple examples
below indicate how this can be done in Simula. Consider the sequences s1 =
7, 3, 6, 1, 2,.... and s2 = 4, 8, 5,10, 9,..... Can you work out which number
comes next in either sequence? In fact, both sequences have been produced
mechanically by repeated application of the formula

Xo = any number in the range 1 through 10
Xk+1 = 2×Xk modulo 11 (k = 0, 1, 2, ...)

Clearly, X0 = 9 for s1 and X0 = 2 for s2. The full sequence starting with
X0 = 2 is 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4 (repeats). The sequence is said to
have a cycle of length 10. It contains all the integers in the range 1 through
10, although in “random” order.

The program segment below implements a uniform distribution based on
this generator.

class random(u); integer u;

begin

real procedure next;

begin

u := 2*u;

if u > 11 then u := u-11;

next := u/11;

end***next***;

if u < 1 or u > 10 then ERROR; ! *** check the argument ***;

end***random***;

ref(random)s1, s2;

s1 :- new random(9);

s2 :- new random(2);

Successive calls on s1.next produce the numbers 0.636, 0.273, 0.545,...; and
successive calls on s2.next the numbers 0.364, 0.727, 0.455,...

Notice that if by ill luck we had chosen 7 as the starting value for s2, calls
on s2.next would have produced the sequence 0.273, 0.545, 0.091 .. which
are too closely related to the outputs from s1.next for comfort. The problem
is less acute in proper generators as their cycle lengths are enormous; but it
should not be ignored.

Variates for a wide variety of theoretical and empirical distributions can be
generated by building on the output from next. We give three examples to
illustrate the method:

1. randint which generates integer values
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2. negexp which generates real values, and

3. draw which generates boolean values

class randint

To generate random integers in the range [A, B], we declare

random class randint(a, b); integer a, b;

begin

integer procedure sample;

begin

sample := a + entier((b-a+1)*next);

end***sample***;

if a > b then ERROR;

end***randint***;

ref(randint)r;

r :- new randint(9, 2, 5);

The first argument (9, above) is inherited from the prefix random and sup-
plies the start seed., The second two arguments (2 and 5) fix the range of the
drawings. Successive calls r.sample produce the sequence — 4, 3, 4, 2, ... —
randomly distributed integers in the range [2, 5].

class negexp

A negative exponential distribution may be implemented by

random class negexp(m); real m;

begin

real procedure sample;

begin

sample := -ln(next)/m;

end***sample***;

if m <= 0.0 then ERROR;

end***negexp***;

ref(negexp)n;

n :- new negexp(2, 0.1);

Successive calls on n.sample produce the sequence of values 10.116, 3.185,
7.885, ... — a negative exponential distribution with a mean of 10.0. Following
the precedent set by the Simula host, we supply 1/mean as the actual argument.
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class draw

Finally, we define a simple truth distribution

random class draw(p); real p;

begin

boolean procedure sample;

begin

sample := p > next;

end***sample***;

end***draw***;

ref(draw)heads, sixthrown;

heads :- new draw(9, 0.5);

sixthrown :- new draw(9, 0.1667);

while not sixthrown.sample do

.........

Successive calls on heads.sample produce the sequence of values false, true,
false, true, true, .... — boolean values with a 50% chance of being true.
Successive calls on sixthrown.sample produce the sequence of values false,
false, false, true, false, ... — boolean values with a 16.67% chance of
being true.

3.6.1 The Demos random number generators

The basic random number generator used in Demos is a Lehmer generator
published by Downham and Roberts [31]. It is

Xo = some seed generated by Demos
Xk+1 = 8192×Xk modulo 67099547

and has a cycle length of 67099546. By noting that 8192 = 32×32×8, the
generator can be coded in Simula in such a way as not to overflow on a 32 bit (or
longer) word computer since 67099547 < 226. Such random number generation
algorithms produce predictable sequences of numbers since each number is fixed
by its predecessor. Thus all numbers in a sequence are completely determined
by the initial value. To emphasise their predictable character, they are called
pseudo-random numbers. But if the basic algorithm is carefully chosen, the
numbers possess sufficient of the properties of random sequences to be capable
of use as random sequences for many practical purposes.

Three groupings of distribution are defined in Demos.

• six return real values and are sub-classes of rdist:
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constant, empirical, erlang, negexp, normal, uniform,

• two return integer values and are sub-classes of idist:

poisson, randint

• one returns boolean values and is a sub-class of bdist:

draw

More details are found in appendix C.

To assist the inexperienced, the selection of appropriate well-separated ran-
dom seeds is done automatically by a special routine in the Demos system. The
routine is based on work by Mats Ohlin [36]; for the theory behind the method,
see Fuller [34]. As noted before, these default values may be overridden.

It can be shown that 8192120633 = 36855 modulo 67099547 (and 36855 =
34×5×7×13), and so we can derive a stream of seeds from the generator

U0 = 907
Uk+1 = 36855×Uk modulo 67099547

which has cycle of length 33549773 = 67099546/2. We can thus take over
120000 drawings before one stream starts to overlap with its successor, and
this separation holds for more than 300 distributions.

3.7 Dynamic entity generation

Notice how the boats are generated and scheduled (see in the trace at clock
times 0.000 (twice), 26.574, 33.116, ...) and that they are automatically num-
bered sequentially. The first boat object is generated in the Demos block;
thereafter, the first action of each boat object is to generate the next in se-
quence delay T (T = 26.574, 6.542, 8.720, ... in turn) before continuing with
its own actions. The values in the sequence T (the boat inter-arrival times) are
drawings from a negative exponential distribution with a mean rate of 1 boat
every 10 hours. Using this device, we need keep only one as yet unentered boat
object in the event list at a time.

3.8 Deadlock

One has to be careful about the order in which entities are allowed to request
resources. For example, if we have two resources A and B each of limit 1, and
entities P and Q which execute



60 CHAPTER 3. MODELLING WITH ENTITIES

a) P: a.acquire(1); Q: b.acquire(1);
hold(t1); hold(t2);

b.acquire(1); a.acquire(1);

then the following sequence of actions could occur: P seizes A and holds; then
Q seizes B and also holds. Now both P and Q are blocked forever as each has
the very resource the other one needs in order to continue. This situation is
known as deadlock. It can be induced into Example 2 (page 40) if instead of
the correct

b) jetties.acquire(1); tugs.acquire(2);

we code

c) tugs.acquire(2); jetties.acquire(1);

The distribution report at time 672.0 then reads

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

next boat 0.000 64 negexp 0.100 33427485

discharge 0.000 10 normal 14.000 3.000 22276755

which shows that while 64 boats have arrived only 10 have discharged. The
resource report reads

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

tugs 0.000 18 3 0 1 60.654 0.111 55

jetties 0.000 8 2 0 0 96.787 0.862 1

and reveals that many boats are blocked waiting for a tug. Deadlock has been
caused by boats which own jetties and wish to leave blocking boats which own
tugs (or have a prior claim) and want jetties.

A good account of deadlock, containing several examples, is found in Shaw
[38]. The Demos system does not prevent deadlock occurring nor attempt to
recover from it if it sets in. Deadlocked entities just grind to a halt while other
entities continue. In certain elementary situations, the possibility of deadlock
can be checked in advance using a simple graphical technique (see Shaw [38,
chapter 8] for a more general method based on Petri nets). We represent the



3.8. DEADLOCK 61
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Figure 3.31: Deadlock: resource graphs

state of the system by a graph in which the nodes are resources and an arc from
node A to node B implies that an entity which holds resource A can request
node B. The node empty represents the initial empty state of an entity. Figure
3.31 gives resource graphs for the situations labelled a), b), and c) above. The
deadlock condition is revealed by a closed loop in the resource graphs. Thus
possible deadlocks can be detected quickly and corrected prior to coding a
program. There is no way a context can do this for you, but either a compiler
or a pre-processor for Demos could.

EXERCISES 3 (continued)

Exercise 3.9 Write a sub-class to class random which implements the
normal distribution. For suggestions on the algorithm, see Fishman [32], Knuth
[35], Pritsker and Kiviat [28], or Shannon [37].
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Exercise 3.10 Two types of customer arrive at a one chair barber’s shop.
Customers wanting a haircut only arrive at a mean rate of one every 40 minutes
(negexp distributed), and customers wanting both a haircut and a shave arrive
at a mean rate of one every 60 minutes (again negexp distributed). The barber
serves on the first-come, first-served principle (FCFS). It takes him from 12-
24 minutes (uniformly distributed) to give a haircut only, and from 20-36
minutes (uniformly distributed) to give both a haircut and a shave. The first
haircut-only customer arrives at opening time, the first customer who wants
both arrives 10 minutes later. Model the barber’s shop and run it for 8 hours
of simulated time.

HINT: model the barber as a resource, and declare entity classes for both
types of customer.

Exercise 3.11 A tool crib is manned by two clerks who check out tools
to mechanics. Mechanics use the tools to repair failed machines. The time
to process a tool request depends on the type of tool. Requests fall into two
categories

Type Mechanic inter-arrival time Service times in seconds
1 negexp:mean=0.005/sec uniform:100.0→200.0
2 negexp:mean=0.008/sec uniform: 75.0→150.0

At time 0.0, there is one request of each type pending. The clerks serve
the mechanics in FCFS fashion independent of the type of request. Run the
simulation model for 8 hours.

Exercise 3.12 A small grocery store has three aisles and two checkout
counters. Shoppers arrive at the store with a mean inter-arrival time of 100
seconds, negexp distributed. on arrival, each takes a basket and may go down
one or more of the three aisles selecting items for purchase as she/he proceeds.
The probability of going down an aisle, the time required to shop an aisle and
the number of items selected for purchase in the process are

Aisle Prob Time in seconds No. of items
1 0.75 uniform: 60.0→180.0 randint:2→4
2 0.55 uniform:120.0→180.0 randint:3→5
3 0.82 uniform: 75.0→165.0 randint:6→8

When shopping has been completed, the customers queue up FCFS fashion at
one of two checkout counters. Here each chooses another 1→3 impulse items
(randint distributed). A customer’s checkout time depends on the number
of items she/he has bought and is 10 seconds per item, plus 15→35 seconds
(uniformly distributed) to pay and get the change. Run the model for 8 hours.

HINTS: the ALGOL 60 construction

if condition then begin statements; end
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is also a part of Simula and hence Demos.

Also, you may care to use the global text procedure edit which accepts
a text t and an integer n as actual parameters, and combines them into a
single text (e.g. edit("aisle", 17) returns "aisle17". If the text t is more
than 10 characters long then it is stripped down to the first 10; if the integer
value of N is not in the range 0 through 99 then abs(n)//100 is accepted. It
is commonly used with res etc. arrays which share the same text as title.

Exercise 3.13 Consider the program below which models a doctor’s
surgery.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(res)doctor;

entity class patient;

begin

new patient("p").schedule(NEXT);

doctor.acquire(1);

hold(CONSULTATION);

doctor.release(1);

end***patient***;

hold(540.0); comment***start at 9 o’clock***;

doctor :- new res("doctor", 1);

new patient("p").schedule(0.0);

hold(90.0);

end;

The program has the first patient arriving at 9.00, and the doctor starting work
at the same time. It closes abruptly at 10.30 whether the doctor is engaged in
a consultation or not. Modify the program so that the surgery doors are locked
at 10.30 (no more patients can then be admitted - arrange to cut off the arrival
stream at this time), and let the doctor finish off his current consultation (if
any) and also consult with any patients who are waiting but arrived before
10.30.

Exercise 3.14 Suppose in exercise 3.13 above we have as initial conditions
that ‘n’ patients are already waiting at time 9.00 when the doctor begins his
work. It is not correct to replace the single statement

new patient("p").schedule(0.0)

in the Demos block by

for k := 1 step 1 until n do [ integer k ]

new patient("p").schedule(0.0);



64 CHAPTER 3. MODELLING WITH ENTITIES

because then each of the n patients has as its first action the generation of
another. Thus this code would model n separate streams of patients instead of
the one stream required. Give a correct solution.



Chapter 4

Entity-resource
synchronisations

The main task of this chapter is to show how minor resources are handled
in Demos. Resource synchronisations are classified into one or other of two
types: mutual exclusion and producer/consumer. In mutual exclusion syn-
chronisations, items from a pool of resources are requested and released by the
same entity. In producer/consumer synchronisations, producer entities make
resources available to consumer entities (in the manner of relay runners handing
on a baton).

Separate classes res and bin are defined in Demos to handle these cases.
Although not absolutely necessary, this is desirable as it allows better error
control and more explicit reporting. These two classes have much in common
and we will often call items modelled by res or bin objects ’resources’.

4.1 class res

We have already seen how to use resources. Here we go straight into a second
example intended to reinforce our understanding of mutual exclusion.

We tackle this and the remaining problems in this text with a standard
divide-and-conquer methodology. We first present the problem and its data,
then show a top-level decomposition into entities. We then decide how the
entities are to interact. Once this has been decided, they can be developed
separately.

Example 3: Readers and writers

A file is used to record the current status of elements in a dynamic system.
It could, for example, be flight records for an airport. The file is periodically
updated by writer processes, each of which must have sole access to the file
when carrying out an update. The file is also read from time to time by reader
processes, any number of which may access the file at the same time.

65



66 CHAPTER 4. ENTITY-RESOURCE SYNCHRONISATIONS

This model reinforces our newly acquired knowledge of Demos. It contains
two entity classes contending for a resource and introduces priority queuing.

Structure of the model

We describe this model with two entities — readers and writers.

reader writer

read

use info

?

gather info

write

?

"!
# 

file

3

?

-
???

66
6

Figure 4.1: Readers and writers activity diagram

The structure of the reader objects is basically a loop comprising a period
of access to the file to read the latest information, followed by a sequence of
actions based on that information.

Writers have a similar structure: within their behavioural loop, they first
gather information, and then write it to the file.

These lead us to initial class outlines of:

reader = read; use info; repeat;

writer = gather info; write; repeat

The activities read and write are critical code sections — we want to prevent
several writers writing at the same time, and readers trying to read when a
writer is writing. As a first attempt we protect file access by a resource file
of size 1 and enforce the protocol that readers may not read and writers may
not write without first acquiring the resource. It is easy to see that reader and
writer code
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reader = file.acquire(1); read; file.release(1); use info; repeat;

writer = gather info; file.acquire(1); write; file.release(1); repeat;

is sufficient but too stringent in that it permits only one reader to read at
a time. Given that there are r readers and w writers, we can solve the file
accessing problem very simply by means of a res object of limit r, say

file :- new res("file", r);

As before a reader object gains access to the file by

file.acquire(1); read; file.release(1);

which permits several readers at a time, but a writer object gains access to the
file by acquiring all of the resource

file.acquire(r); write; file.release(r);

Thus reader objects do not block each other, but block any writer object; a
writer object will not only block other writer objects, but reader objects too.

The activity diagram for the model is given in figure 4.1 (notice how we
represent the cyclic nature of these objects by a simple loop).

A complete program for 3 readers and 2 writers is listed below. The read,
use info, gather info, and write timings are explicitly listed in the program. The
program introduces a new data collection device — the count. count objects
are used to record incidences.

c.update(n); [ref(count) c;]

increments a counter local to C by n. As can be seen from the program text,
count objects have but one parameter, a text title. This title, the reset
time, and the sum of the n’s are recorded in the final report.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(res)file;

ref(count)reads, writes;

entity class reader;

begin

file.acquire(1);

hold(2.0);

file.release(1);

reads.update(1);
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hold(5.0);

repeat;

end***reader***;

entity class writer;

begin

hold(5.0);

file.acquire(3);

hold(3.0);

file.release(3);

writes.update(1);

repeat;

end***writer***;

reads :- new count("reads");

writes :- new count("writes");

file :- new res("file", 3);

trace;

new reader("r").schedule(0.0);

new writer("w").schedule(0.0);

new reader("r").schedule(0.0);

new reader("r").schedule(2.0);

new writer("w").schedule(1.0);

hold(25.0);

end;

OUTPUT

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************

time/ current and its action(s)

0.000 demos schedules r 1 now

schedules w 1 now

schedules r 2 now

schedules r 3 at 2.000

schedules w 2 at 1.000

holds for 25.000, until 25.000

r 1 seizes 1 of file

holds for 2.000, until 2.000

w 1 holds for 5.000, until 5.000

r 2 seizes 1 of file

holds for 2.000, until 2.000

1.000 w 2 holds for 5.000, until 6.000
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2.000 r 3 seizes 1 of file

holds for 2.000, until 4.000

r 1 releases 1 to file

holds for 5.000, until 7.000

r 2 releases 1 to file

holds for 5.000, until 7.000

4.000 r 3 releases 1 to file

holds for 5.000, until 9.000

5.000 w 1 seizes 3 of file

holds for 3.000, until 8.000

6.000 w 2 awaits 3 of file

7.000 r 1 awaits 1 of file

r 2 awaits 1 of file

8.000 w 1 releases 3 to file

holds for 5.000, until 13.000

w 2 seizes 3 of file

holds for 3.000, until 11.000

9.000 r 3 awaits 1 of file

11.000 w 2 releases 3 to file

holds for 5.000, until 16.000

r 1 seizes 1 of file

holds for 2.000, until 13.000

r 2 seizes 1 of file

holds for 2.000, until 13.000

r 3 seizes 1 of file

holds for 2.000, until 13.000

13.000 w 1 awaits 3 of file

r 1 releases 1 to file

holds for 5.000, until 18.000

r 2 releases 1 to file

holds for 5.000, until 18.000

r 3 releases 1 to file

holds for 5.000, until 18.000

w 1 seizes 3 of file

holds for 3.000, until 16.000

16.000 w 2 awaits 3 of file

w 1 releases 3 to file

holds for 5.000, until 21.000

w 2 seizes 3 of file

holds for 3.000, until 19.000

18.000 r 1 awaits 1 of file

r 2 awaits 1 of file

r 3 awaits 1 of file

19.000 w 2 releases 3 to file

holds for 5.000, until 24.000

r 1 seizes 1 of file

holds for 2.000, until 21.000

r 2 seizes 1 of file

holds for 2.000, until 21.000

r 3 seizes 1 of file

holds for 2.000, until 21.000

..............................

24.000 w 2 awaits 3 of file

w 1 releases 3 to file

holds for 5.000, until 29.000

w 2 seizes 3 of file

holds for 3.000, until 27.000
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clock time = 25.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

c o u n t s

***********

title / (re)set/ obs

reads 0.000 9

writes 0.000 5

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

file 0.000 14 3 0 0 88.000 1.000 3

Remarks on Example 3

In the report on file, the statistic % USAGE = 88.000 is made up of nine
completed reads of chunk size 1 and duration 2 plus five completed writes of
chunk size 3 and duration 3 (the fourteen completed usages recorded under
OBS) plus one part write (W 2 at time 24.0) of duration 1. The total number of
space×time units comes to be 9×1×2 + 5×3×3 + 1×3×1 = 66 which is 88%
of the maximum possible usage 3×25.

A call on repeat (a procedure local to class entity) causes the actions
of the calling object to be repeated. The procedure has to be more subtle than
revealed in this example, for very often the actions of an entity body take the
form

begin

initialising actions;
repeated actions;

end;

A call on repeat in an entity body must not cause all the actions of such
a body to be repeated, including the initialising actions. To avoid this, place a
label LOOP on the first statement of the actions to be repeated.
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begin

initialising actions;
LOOP:

repeated actions;
repeat;

end;

Note that the label identifier must be LOOP, and LOOP can have no other
meaning within an entity body. Should the entity body contain no initialising
actions, no explicit occurrence of LOOP is needed.

Example 4: Readers and writers with priority

Example 3 gave neither readers nor writers priority. Should this be required,
we can make use of a hitherto unmentioned attribute of class entity, namely
integer priority. A local variable, it is initially zero. When an entity enters
any queue, it is always ranked according to its current value of priority (larger
values in front of smaller values, but after all other entities in the same queue
with the same value). In the first version of the readers and writers problem,
readers and writers were queued on the FCFS principle as each and every
priority was zero.

We can give reader objects priority by altering the actions in the body of
their declaration to (recording essential actions only)

entity class reader;

begin

priority := 1;

LOOP:

file.acquire(1);

hold(2.0);

file.release(1);

hold(5.0);

repeat;

end***reader***;

and leaving the declaration of class writer unaltered. The following segment
from the trace shows its effect. There is no change until time = 8.000 when W2,
R1, and R2 are blocked in the resource file, W2 since 6.000, R1 since 7.000, and
R2 since 7.000. At time 8.000, W1 releases 3 units back to the file. In example
3, W2 was promoted as it had been waiting longest. In this example, R1 and
then R2 are promoted since they have higher priority.

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *
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* *

**********************************************************************

time/ current and its action(s)

....................................

6.000 w 2 awaits 3 of file

7.000 r 1 awaits 1 of file

r 2 awaits 1 of file

8.000 w 1 releases 3 to file

holds for 5.000, until 13.000

r 1 seizes 1 of file

holds for 2.000, until 10.000

r 2 seizes 1 of file

holds for 2.000, until 10.000

9.000 r 3 seizes 1 of file

holds for 2.000, until 11.000

10.000 r 1 releases 1 to file

holds for 5.000, until 15.000

r 2 releases 1 to file

holds for 5.000, until 15.000

11.000 r 3 releases 1 to file

holds for 5.000, until 16.000

w 2 seizes 3 of file

holds for 3.000, until 14.000

The report the counts remains the same; the report on the resource file is

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

file 0.000 14 3 0 0 84.000 0.941 3

Remarks on Example 4

As expected, with the shortest jobs getting priority (reading is faster than
writing), the average wait time has decreased. Priority can be dynamically
reassigned as often as desired. For example, we could give boat objects in
Example 2 priority when entering the port by writing (informally)

entity class boat;

begin

priority := 1;

dock;
unload;
priority := 0;

leave;
end***boat***;

Now that we have met priority, we can present a more complete picture
of release and acquire. (See Appendix B for their semi-formal algorithms.)
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acquire

A call r.acquire(n) does not delay current should sufficient of resource r
be available (r.avail >= n) and current (who is making the request) have
greater priority than any entity awaiting a share in r. In this case, r.avail
is decremented by n and current continues on. Otherwise, current is deleted
from the event list and enters the queue for r (r.q for short) in priority order.

release

A call on r.release(n) increments r.avail by n and enters E1 the entity
(if any) at the head of r.q (E1 == r.q.first) into the event list at the cur-
rent clock time, but as last entity scheduled for that time. When E1 becomes
current, it tests to see if it can proceed (current == r.q.first and r.avail
>= n). If not, it is deleted from the event list and remains blocked in r.q.
Otherwise, E1 leaves r.q, decrements r.avail, and promotes E2 (the new first
entity in r.q, if any) into the event list, but after itself. E1 then continues on as
current. When E2 becomes current, it goes through the same exercise. Thus,
waiting entities which can now proceed are peeled off the front end of r.q in
priority order after E1. Note that a call on release does not delay current
nor cause it to lose its position at the head of the event list.

EXERCISES 4

Exercise 4.1 Manufacturing widgets involves a relatively lengthy assembly
process followed by a short fixing time in an oven.

Model data

Timings in minutes:
Assemble widget uniform : 25.0→35.0
Fire in oven normal : mean=8.0,st.dev.=2.0

Several assemblers share a single oven which can hold only one widget at a
time. An assembler cannot begin assembling a new widget until he has removed
the old one from the oven. Assume that there are 3 assemblers and that there
is an infinite supply of raw widgets.

Run your model for a 40 hour week assuming no discontinuities within a
day or in moving between consecutive 8 hour days.

Exercise 4.2 A machine is used to polish castings. The steps required to
polish a casting are shown below (the timings are in minutes and all distribu-
tions are uniform).
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1. fetch a raw casting from the storage area (9.0→ 15.0). Assume an infinite
supply of unpolished castings.

2. load raw casting on to the polishing machine (6.0 → 14.0).

3. polish the raw casting (60.0 → 100.0).

4. reposition the casting on the machine for a final polishing (8.0 → 22.0).

5. carry out the final polishing (80.0 → 140.0).

6. unload and store the finished casting (15.0 → 30.0).

7. Repeat from 1).

The castings are too heavy to be handled by an operator. He requires the
use of an overhead crane for each of the steps (1), (2), (4), (6) above. There is
but one overhead crane which is also used to perform other tasks. Such tasks
occur in the mean every 50 minutes (negexp distributed), and the time taken
to service each call is normally distributed with a mean of 25.0 and a standard
deviation of 5.0. Run your model for 400 hours of simulated time assuming no
discontinuities, that the one polisher starts work at step (1) at time 0.0, and
that the first other task for the overhead crane occurs at time 20.0.

Exercise 4.3 Assembled TV sets move through a number of testing stations
in the final stages of their production. At the last of these, the vertical control
is tested. If it is wrong, the offending set is rerouted for adjustment (the setting
is modified). After adjustment, the set is returned to the inspection station
where it queues for retesting (with increased priority each time it fails, if more
than once). After passing the test, the sets move on to a packing area.

Model data

Timings in minutes:
set arrivel rate negexp : mean=0.2/minute
inspection time uniform : 6.0 → 10.0
readjustment time normal : mean=30.0,st.dev.=5.0

Resources:
inspectors res:limit=2
adjusters res:limit=1

The chance of a set passing the inspection is 90% whether it be for the first,
second, ... attempt. Run your model for 40 hours and estimate the staging
space (space for waiting sets) required ahead of both the stations.

Exercise 4.4 Faulty units are sent for repair to a special section in a
factory. Repairs are carried out in two stages - first the unit is stripped down,
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and then it is rebuilt. Each operation has its own work station. Work station 1
(stripping) can work on two units at a time, work station 2 (rebuilding) on one
unit at a time. But storage is limited, and at most four units can be queued in
front of work station 1, and at most two in front of work station 2. If four units
are already queued in front of work station 1, a newly arrived faulty unit is
subcontracted. When a strip job is completed, the unit is automatically moved
to the area in front of work station 2 when there is room (it takes 0.2 hours
should the area be empty, and 0.1 hours should there be one unit already there)
and a new strip job is started. Should the storage area in front of work station
2 be full, work station 1 is blocked until a space is freed.

Model data

Timings in hours:
unit arrival rate negexp : mean=4/hour
strip down normal : mean=0.50,st.dev.=0.05
rebuild normal : mean=0.25,st.dev.=0.1
between stations constant : 0.2 if area empty, 0.1 if not

At the start of the day, both work stations are idle, and two repair jobs are
waiting. The next unit arrives at 0.5 hours. Run the model for a working week
of 136 hours assuming no discontinuities and report on how many units were
subcontracted.

Exercise 4.5 Repeat exercise 4.4 above with the following twist. Arrange
for units arriving at the end of the week (after 134 hours) to be blocked. They
are not subcontracted, but left as ’starters’ for the following week. At this
time, any other work in hand or pending is completed.

Exercise 4.6 A production line involves 5 servers stationed along a conveyor
belt. Items to be serviced arrive at a mean rate of 4 per minute (negexp
distributed). If unserviced they are carried along the conveyor passing a server
every minute. If an item reaches an idle server, the item is picked off the
conveyor, serviced (which takes uniform 0.8 → 1.2 minutes) and stored away.
If an item passes all the servers, then it is recirculated and reappears in front
of server 1 after a delay of 5 minutes. Run the simulation for 480 minutes, and
note the work rates of the servers and the number of recirculated items.

Exercise 4.7 Repeat exercise 4.6 with the following change. Items are
not recirculated. There is sufficient storage space allocated in front of server
5. Server 5 thus services all items that get past the other servers. Give an
estimate of the storage space necessary in front of server 5.
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� ref(bin) itemsbin

title "items"

avail 2

q

procedure take(n)

procedure give(n)

Figure 4.2: A bin object

4.2 class bin

We now introduce the second basic synchronisation, commonly called the ’pro-
ducer/consumer’ synchronisation. A simple manifestation occurs when we have
two cooperating entities, the first of which produces items for the second one
to consume. Typical code skeletons for a producer and a consumer are

producer = make item; give item; repeat;

consumer = take item; use item; repeat;

The point is that the consumer is blocked if no item is currently available when
one is needed, i.e. it is consuming items faster than they are being produced.

In Demos, we represent such a pool of available items by a bin object (see
figure 4.2. For this example, we could create an initial pool of two items by

items :- new bin("items",2); [ref(bin) items;]

The first parameter text title (passed as "items") is used in reports and
in traces; the second parameter integer avail gives the initial size of the
pool (here 2, as shown in figure 4.2). Thereafter, as with class res, avail is
maintained to record the current level of the available pool. Note however that
this avail has no upper limit (0 <= avail).

The consumer obtains an item from the pool by items.take(1); If the
pool is empty (avail = 0), the consumer waits in a hidden queue q local to
items. When permission is granted, the consumer reduces the pool size by the
amount requested, leaves the queue and is entered into the event list at the
current clock time, but behind current (the producer).

When the producer has completed an item, it updates the size of the pool
by items.give(1); This command also awakens the consumer should he be
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blocked and allows it to continue now (at the current clock time, but behind
current). Then the producer makes a start on the next item.

N.B. Of course bin portions larger than unity may be taken and given. The
rules for take and give follow the pattern of those for acquire and release.
Their semi-formal algorithms are given in appendix B.

The skeleton outlines for the producer and the consumer entities become
simply:

producer = make item; items.give(1); repeat;

consumer = items.take(1); use item; repeat;

The activity diagram for this simple model together with corresponding De-
mos code is given in figure 4.3. Notice how the bin object has been represented
in that figure: by convention, its initial value is drawn inside a “bucket”.

make item consume item

? ?

2

items

6

?

entity class consumer;

begin

hold(make item);

items.give(1);

repeat;

end;

entity class producer;

begin

items.take(1);

hold(process time);

repeat;

end;

Figure 4.3: Producer/consumer activity diagram.

Example 5: Car ferry

Motorists wishing to cross the strait between the mainland and a small island
have to use a ferry. The ferry ties up on the mainland overnight and starts
work promptly each day at 7.00. It shuttles to and fro between the mainland
and the island until approximately 22.00 hours when the service closes down
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for the night. The ferry has a capacity limit of six cars. When the ferry
arrives at a quay, the cars on the ferry are driven off, and then any waiting
cars (up to the maximum of six) are driven on. When the ferry is fully loaded,
or the quay queue is empty, the ferry leaves that side of the strait and starts
another crossing. When the ferry has completed a round trip and deposited
any passengers on the mainland, the captain checks the time. If it is 21.45
hours or later, he closes down the service for the night.

Model data

Timings in minutes:
car inter-arrival:

on mainland negexp : mean = 0.15/min
on island negexp : mean = 0.15/min

crossing time normal : mean = 8.0, st.dev. = 0.5
drive on constant : 0.5 (per car)
drive off constant : 0.5 (per car)

Run the model for 1 working day under the following initial conditions: at
time 7.00, there are 3 cars waiting on the mainland and 1 on the island.

Compute the average number of cars per trip, the number of fruitless
(empty) crossings, and the average waiting time per car on each side.

Structure of the model

We exploit the symetry in the model by using arrays. Let the quantities on the
mainland side have index 1, and corresponding quantities on the island side
have index 2.

Since we are interested in how many cars are waiting, and not in how
individual cars arrive, cross, and continue, we need not model cars as entities
Instead we can use objects to record the current queue length on each side of
the strait. Thus we can model this problem with one main entity representing
the car ferry. Besides the ferry, we need minor entities to generate car arrivals
at appropriate times. An outline of these entities is:

ferry = load1; cross; unload2;
load2; cross; unload1;
if ok then repeat; shutdown;

arrival 1 = hold(car interarrival); generate car on mainland side; repeat

arrival 2 = hold(car interarrival); generate car on island side; repeat
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Now that we have the program decomposition, we examine the details of
their roles separately.

car arrivals

Taking NEXT(1) and NEXT(2) as the car inter-arrival distributions, and CQ(1)
and CQ(2) as bins for the car queues, car arrivals can be taken care of by a
pair of objects (one for each side) of class arrival.

entity class arrival(side); integer side;

begin

hold(NEXT(side).sample);

Q(side).give(1);

repeat;

end***arrival***;

class ferry

The ferry starts from the mainland and sails to and fro until it is time to shut
down. A skeleton of class ferry is expressed neatly using a for-loop

entity class ferry;

begin

integer side, c;

for side := 1, 2 do

begin

load;
crossing time;
unload;

end;

if time < 21.45 o’clock then repeat;

shutdown;
end***ferry***;

We now examine in turn the activitities load and unload, and the shutting down
of the simulation model.

load

We consider a number of options on our way to acceptable coding.

• First we reject

Q(side).take(6);

hold(6*0.5);
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since it waits until the queue length is 6 before permitting a loading.

• As a second attempt,

for k := 1 step 1 until 6 do

begin

Q(side).take(1);

hold(0.5);

end;

loads the cars as they arrive but still waits for a full load before crossing.

• Our third attempt maintains a count of the number of cars onboad in c
and uses the bin attribute avail to quit loading if the queue is empty.
We assume a variable integer c local to class ferry (we may wish to
extend the model to several ferries, and then each ferry will keep its own
count). Loading takes place while there is at least one car in the queue
and the ferry capacity limit of 6 has not been reached. Assuming that c
= 0 initially, this is

while c < 6 and Q(side).avail > 0 do

begin

Q(side).take(1);

hold(0.5);

c := c + 1;

end;

This we accept.

• Aside: A fourth real-life strategy might be to wait 30 minutes before
loading. This too is easy to express (assuming c = 0 initially):

hold(30.0);

while c < 6 and Q(side).avail > 0 do

begin

Q(side).take(1);

hold(0.5);

c := c + 1;

end;

unload

Unloading is easier. It merely consists of letting all the cars (and there are c
of them) drive off. This is the appropriate place to set c, the count of cars on
board the ferry, to zero.

hold(c*0.5);

c := 0;
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Shutting down the simulation

Finally, this is the second case (see also exercise 3.13) when the closing down
time of the simulation cannot be predicted in advance. We synchronise via
another bin object, named shutdown which is initially zero. After initialising
the system, the Demos block calls shutdown.take(1) and is blocked. It is left
to the ferry object to decide when to shut down the system. This it does by
executing shutdown.give(1) as its last action. This awakens the Demos block
at precisely the right instant.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(bin)array Q(1:2);

ref(rdist)array NEXT(1:2);

ref(bin) shutdown;

ref(rdist)crossing;

ref(tally)load;

ref(count)trips, empties;

entity class ferry;

begin

integer side, c;

for side := 1, 2 do

begin

while c < 6 and Q(side).avail > 0 do

begin

Q(side).take(1);

hold(0.5);

c := c + 1;

end;

load.update(c);

if c = 0 then empties.update(1);

hold(crossing.sample);

hold(c*0.5);

c := 0;

end;

trips.update(1);

if time < 1305.0 then repeat;

shutdown.give(1);

end***ferry***;

entity class arrival(side); integer side;

begin

hold(NEXT(side).sample);

Q(side).give(1);

repeat;

end***arrival***;

hold(420.0); comment***start at 7.00;
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Q(1) :- new bin("mainland", 3);

Q(2) :- new bin("island", 1);

shutdown :- new bin("shutdown", 0);

NEXT(1) :- new negexp("mainland", 0.15);

NEXT(2) :- new negexp("island", 0.15);

crossing :- new normal("crossing", 8.0, 0.5);

trips :- new count("trips");

empties :- new count("empty trips");

load :- new tally("av. load");

new arrival("arr", 1).schedule(0.0);

new arrival("arr", 2).schedule(0.0);

new ferry("ferry").schedule(0.0);

shutdown.take(1);

end;

OUTPUT

clock time = 1315.296

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

c o u n t s

***********

title / (re)set/ obs

trips 420.000 39

empty trips 420.000 2

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

mainland 420.000 133 negexp 0.150 33427485

island 420.000 146 negexp 0.150 22276755

crossing 420.000 78 normal 8.000 0.500 46847980

t a l l i e s

*************

title / (re)set/ obs/ average/est.st.dv/ minimum/ maximum

av. load 420.000 78 3.487 1.634 0.000 6.000

b i n s

*******

title / (re)set/ obs/init/ max/ now/ av. free/ av. wait/qmax

mainland 420.000 132 3 6 2 1.678 0.000 1

island 420.000 145 1 7 7 1.705 0.000 1

shutdown 420.000 1 0 1 0 0.000 895.296 1
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Remarks on Example 5

The output echoes the distribution definitions, then the counts and tallies, and
finally the BIN usages are listed. The bin report columns are headed

• TITLE and (RE)SET are both obvious

• OBS records the number of completed calls on GIVE

• INIT records the initial level of this bin

• MAX records the maximum level of this bin,

• NOW records the current level of items available for taking

• AV. FREE records the time-weighted average number of items available
since the creation of this bin

• AV. WAIT records the average time spent queueing by entities blocked on
this bin including zero waits, and finally

• QMAX records maximum number of blocked entities including zero waits

The program introduces another data collection device — the tally. tally
objects are used to record time independent variables. Observations are
recorded by

T.update(x); [ ref(tally) T;]

Various statistics are maintained over the readings x1, x2, ..., xn, as the report
"t a l l i e s" shows. They include the number of observations (OBS), their
mean, their estimated standard deviation, their minimum, and their maximum.

EXERCISE 4 (continued)

Exercise 4.8 This simulation follows the (much simplified) progress of a
billet through a steel mill. Billets are long, thickly sectioned steel bars which
arrive at the mill from another factory (we assume an inexhaustible stockpile).
The job of the mill is to convert each billet into steel plate. To accomplish
this, the billets are heated one at a time in a furnace until they have reached
a ’suitable’ temperature. Each billet is then transported on a railway bogie to
a soaking pit area (if no bogies are available, the current billet is kept inside
the furnace). The billet is unloaded with the help of a crane. This frees the
bogie which is then shunted back to the furnace. Note that a billet will be
loaded straight from its bogie into a soaking pit should one be free; otherwise
the crane dumps it in the soaking pit area and loads it later when a pit is free.
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The billet is left in the soaking pit until it has reached a uniform temperature
throughout. It then becomes eligible to be rolled, but is kept in the soaking pit
until a rolling mill is free. A crane is also needed for the unloading operation.
The billet passes through the rolling mill several times and is shaped a little
more on each pass. Eventually it is squeezed into the desired shape of a flat
plate.

Use lower case letters to denote informally the activity durations. Assume
that bogie movements do not interfere with each other and take a negligible
time. Simulate with 12 soaking pits, 2 cranes, 9 bogies and 1 rolling mill.

Exercise 4.9 A small production line has three stages: the first assembles
the inner and outer rings of bearings, the second greases the assemblage, the
third packs them two to a box (the packers take two greased assemblages at a
time). There are 3 assemblers, 1 greaser, and 2 packers.

Model data

Timings in minutes:
inner arrival rate negexp : mean=6/min
outer arrival rate negexp : mean=6/min
assembling normal : mean=0.5,st.dev.=0.1
greasing constant : 0.15
packing normal : mean=0.6,st.dev.=0.1

Initially there are 10 inners and 10 outers. Run the model for 8 hours.

Exercise 4.10 A machine uses a type of part which fails periodically.
Whenever this happens, the machine must be switched off. The faulty part
is then removed by its operator and wheeled by him to the repair shop. The
operator then takes a replacement part (queueing if none are there) and wheels
it back to his machine. The operator then installs the replacement part, and
starts a fresh run.

Faulty parts are repaired by a repairman. He also has a never failing sup-
ply of other jobs which occupy him when there are no faulty parts to repair.
Although these other jobs have a lower priority, once started they cannot be
interrupted.

Model data

Timings in hours:
part life time normal : mean=36.0,st.dev.=7.0
removal time constant : 0.4
repair time normal : mean=2.0,st.dev.=0.5
replacement time constant : 0.4
other job time uniform : 0.5→1.5
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The removal and replacement times include the time spent wheeling the
parts to and from the repairman. There are sufficient wheelbarrows in the
factory for them not to cause delays.

Run the model for a four week month assuming that there are no discontinu-
ities between shifts. Let there be three machines (initially all in working order).
At time 0.0, there is one faulty part awaiting repair. Arrange for the machines
to break down at approximately 6 hours, 18 hours and 30 hours respectively.

Exercise 4.11 Two processes communicate with each other via a buffer of
capacity L. The sender process, S, deposits messages of uniform size into one
of the L buffer slots. The receiver process, R, extracts the messages one by one
and decodes them. R and S may not access the buffer at the same time.

Model data

Timings in minutes:
message arrival rate negexp : mean=1/min
deposit a message constant : 0.05
extract a message constant : 0.05
decode a message uniform : 0.6→1.4

Write Demos programs to model this system under the assumptions

1. the buffer has an infinite capacity. S puts the messages into buffer slots
1, 2, 3, ... etc.

2. the buffer has a finite capacity and is organised cyclically. S puts messages
into buffer slots 1, 2, ..., L, 1, 2, ..., L, 1, etc. Be careful to ensure that S
does not overwrite a previous message before R has extracted it.

Exercise 4.12 A garage is open from 9.00 until (about) 17.00 weekdays
and from 9.00 until (about) 13.00 on Saturdays for the maintenance and repair
of motor cars. The garage has 5 service bays each of which can deal with one
car at a time. Two classes of car are serviced by the garage

1. private cars which are booked-in in advance and left by their owners
outside the garage on the appointed day at or before 9.00.

2. police cars which are repaired by the garage under a special contract.
Police cars are in use 24 hours a day. When one is in trouble it is brought
to the garage at once for an unscheduled but high priority repair.

The simulation runs over a four week period. Each weekday the garage tries
to shut at 17.00 hours. Any work then in progress is completed, but work not
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yet started is suspended until 9.00 the following day (and this includes work
on police cars). On saturdays, the garage completes outstanding services on
all vehicles booked in before 13.00 before closing for the weekend. Any police
cars arriving while the garage is still open servicing this backlog will also be
serviced. Notice that if a private car is kept overnight it takes precedence over
the next day’s intake of private cars, but it may be overtaken the following
workday morning by a police car which has arrived overnight.

Model data

Timings in hours:
Scheduled maintenance uniform : 1.5→2.5
Police car inter-arrival negexp : mean=1/12 per hour
Police car repair normal : mean=2.5,st.dev.=1

Resources:
Bays res : limit=5

Scheduled bookings:
Private car group size randint : 12→20 weekdays

(halved on saturdays)



Chapter 5

Entity-entity cooperations

In the simulations we have described so far, an activity has always involved
one entity and one or more minor components modelled by resources (res or
bin objects). Sometimes this is not possible and an activity must be described
as the coming together of two or more entities. We illustrate the problem with
a sequence of examples ranging from a simple modification to the car ferry
example to some which are quite hard.

5.1 Master/slave synchronisations

Consider a ferry service similar to that of Example 5, except that this time
we are interested in modelling the behaviour of the cars as they cross to the
island, deliver goods, and finally return to the mainland. So that we can focus
upon this new issue, we introduce some simplifications. Specifically, we allow
only one car per trip on the ferry, we let the ferry operate a 24 hour service
round the clock, and insist that the ferry wait for a car should now be queued
for a loading. The crux of the problem is that we cannot now model the cars
as resources; they must be modelled as entities. Informal declarations of class
car and class ferry are taken as

car = load; cross; unload; deliver; load; cross; unload

ferry = load; cross; unload; load; cross; unload; repeat

The sequence of activities load; cross; unload; (which occurs twice) cannot
take place without both a car and a ferry and the question is how to make two
(or more) entities do — or at least think they are doing — the same thing at
the same time.

87
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entity class car;

begin

CROSS:

await ferry;

load;

cross;

unload;

DELIVER:

deliver goods;

RETURN:

await ferry;

load;

cross;

unload;

end***car***;

synchronise

synchronise

entity class ferry;

begin

CROSS:

await car;

load;

cross;

unload;

RETURN:

await car;

load;

cross;

unload;

repeat;

end***ferry***;

Figure 5.1: Entity-entity synchronisation

Representing two entities doing the same thing at the same time by writing
code which has both of them moving down the event list is rather prone to
error. Instead, we arrange for one of the entities to dominate and let it treat
the other as an item to be coopted, retained as a passive slave throughout the
period of cooperation, and then be released for independent progress at the
end of this period of cooperation. In figure 5.2 we have arbitrarily made the
ferry the master and the cars slaves.

entity class car;

begin

CROSS:

await ferry;

DELIVER:

deliver goods;

RETURN:

await ferry;

end***car***;

synchronise

synchronise

entity class ferry;

begin

CROSS:

await car;

load;

cross;

unload;

RETURN:

await car;

load;

cross;

unload;

repeat;

end***ferry***;

Figure 5.2: Master/slave descriptions

Only the master entity appears in the event list, and there will be a corre-
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sponding hole in the life history of the slave entity for each such period of
cooperation. Thus there are “holes” in the life history of a car for both the
task sequence labelled CROSS and the task sequence labelled RETURN.

5.2 class waitq

A new synchronisation mechanism is supplied — the waitq. The synchroni-
sation is interesting in that not only are slave entities blocked until after the
common work period but master entities are also blocked if no slaves are avail-
able at the time of the request. Thus each waitq object has two local queues: a
masterq which hold blocked masters and a slaveq which holds blocked slaves.

A waitq (see figure 5.3) has the following attributes:

� ref(waitq) CQ(1);waitq

title "mainland"

slaveq

masterq

ref(entity)procedure last

ref(entity)procedure first

integer procedure length

procedure coopt

procedure wait

procedure find(E, cond)

boolean procedure avail

Figure 5.3: Result of CQ(1) :- new waitq(”mainland”);

• two subsidiary queues — slaveq holds potential victims (here, cars),
masterq holds potential masters when the slaveq is empty. Both queues
contain entities which are ordered according to their priority.

• coopt and wait are reviewed below (see also Appendix B)

• length returns the current length of the queue of slaves

• first and last return references to the first and last slave entities re-
spectively.
If the value of length is zero, first and last return none;
if the value of length is 1, then they return the same value.
first, last and length are short for slaveq.first, slaveq.last, and
slaveq.length respectively. There is no short access to the the corre-
sponding attributes of the masterq: they are available as masterq.first,
masterq.last, and masterq.length respectively.
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• find is a synchronisation is which the master is blocked until a slave with
specific characteristsics is available. It is dealt with fully in section 5.3.

• avail is the means of checking the slaveq for slaves with specific char-
acteristics. Its usage is deferred until chapter 6.

Structure of the model

In our model, we synchronise affairs by means of two waitq objects, CQ(1)
representing the mainland car queue and CQ[2] the car queue on the island.
We depict waitq’s in our activity diagrams by solid black boxes. Figure 5.4
shows that part of the activity diagram concerned with the ferry loading a car
on the mainland side, crossing the strait, and then unloading the car on the
island side.

E :- CQ(1).coopt;

hold(load);

hold(cross);

hold(unload);

E.schedule(0.0);

ferry

load

cross

unload

etc

car

deliver

?

?

CQ(1).wait;

hold(deliver);

Figure 5.4: Ferry/car synchronisation

coopt

The ferry awaits on the mainland side by calling E :- CQ(1).coopt. There
are two cases to consider:

1. the slaveq of CQ(1) is not empty.
The call on CQ(1).coopt removes the first entity from CQ(1).slaveq and
returns a reference to it in E. The master entity is not delayed.
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2. the slaveq of CQ(1) is empty.
The would-be coopter (the ferry) is blocked in CQ(1).masterq until such
a time as a slave enters CQ(1).slaveq. When this happens, the ferry is
awakened and re-enters the event list, removing as it does so the slave
entity, and naming it E. Notice that repeated calls on coopt do not return
the same victim, since each call on coopt removes some slave object from
the slaveq.

wait

A car signals its readiness for this crossing by a call CQ(1).wait which puts it
to sleep (out of the event list) in CQ(1).slaveq. Again there are two cases to
consider:

1. the masterq of CQ(1) is empty.
The car waits passively (out of the event list) in CQ(1).slaveq.

2. the masterq of CQ(1) is not empty.
The car leaves the event list, enters CQ(1).slaveq, and awakens the first
entity in CQ(1).masterq (who will now complete its coopt action).

Reawakening a slave

The car E remains passive during the ferry’s subsequent

hold(load); hold(crossing); hold(unload);

The ferry’s next action, E.schedule(0.0), causes E to be placed in the event
list, at the current clock time, but as the last entity scheduled for that time.
Notice that the simulation clock time is where it should be for both the car
and the ferry. Thus as “seen” by the car, it will then have crossed the strait,
and its actions are re-entered at the action hold(deliver). Thus the ferry will
now start a fresh load and the car is about to start delivering goods. The
synchronisation on the island side is, of course, very similar. More complete
declarations for car and ferry are:

Notice that should CQ[n] be empty — n = 1 or 2 — the ferry awaits the
arrival of a car as the request was made as CQ(n).coopt and a call on coopt
implies a delay if no victim is waiting in the CQ(n).slaveq. Should the ferry
be required to leave at once if no cars are waiting, we have to put in a test
before calling coopt, e.g.
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entity class car;

begin

CQ(1).wait;

hold(deliver);

CQ(2).wait;

end***car***;

entity class ferry;

begin

integer side;

ref(car)L;

for size := 1, 2 do

begin

L :- CQ(side).coopt.

hold(load);
hold(cross);
hold(unload);
L.schedule(0.0);

end;

repeat;

end***ferry***;

if CQ[n].length = 0 then hold(crossing) else

begin

E :- CQ(n).coopt;

hold(load + cross + unload);
E.schedule(0.0);

end;

5.3 class queue

Consider a revamping of the ferry problem in which instead of allowing just
one car per crossing, we may accommodate up to six. We now have an instance
of the general case of one master and several slaves. Coopting several slaves
one by one is no trouble, the question is how can we keep tabs them all. It is
most convenient to place them in a queue (see figure 5.5).

� ref(queue) CARGOQ;queue

title "cargoq"

slaveq

ref(entity)procedure last

ref(entity)procedure first

integer procedure length)

Figure 5.5: Result of CARGOQ :- new queue(”cargoq”).

Some of the attributes of class queue are shared with class waitq. As might
be expected, class queue is used as prefix to class waitq.

In this case, we keep the cars in ref(queue)CARGOQ declared local to class
ferry. (Again should we have several ferries in an extended model, we would
want each ferry to have its own queue. We create the queue by
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CARGOQ :- new queue("cargoq");

Any coopted car object E can be placed in the queue (in priority order, of
course) by E.into(CARGOQ) and removed from it and scheduled by E.out;
E.schedule(delay). into and out are attributes of class entity. We let the
cars queue for the ferry in waitqs CQ(1) and CQ(2). Thus the car and ferry
class outlines are

ref(queue) CQ ( 1:2 );

entity class car;

begin

CQ(1).wait;

hold(tour island);

CQ(2).wait;

end***car***;

entity class ferry;

begin

integer side;

ref(queue) CARGOQ;

ref(entity) E;

CARGOQ :- new queue("cargoq");

LOOP:

for side := 1, 2 do

begin

while CARGOQ.length < 6 and CQ(side).length > 0 do

begin

E :- CQ(side).coopt;

E.into(CARGOQ);

hold(load);

end;

hold(crossing);

while CARGO.length > 0 do

begin

hold(unload);

E :- CARGO.first;

E.out;

E.schedule(0.0);

end;

end;

.....repeat;

end***ferry***;

Since we can get the current length of a queue object at any time through its
attribute integer procedure length, we have no need to maintain a count
of the current number of cars on board. Should the cars be unloaded according
to the last-on-board, first-off rule we would replace the seventh last line above
by E :- CARGOQ.last.
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Example 6: Information system

This problem has been used in several papers and books and so provides an
interesting comparison (see for example, Pritsker and Kiviat [28]). The model
represents an information retrieval system with a number of remote terminals
each capable of interrogating a single processor (cpu). A customer with a query
arrives at one or other of the terminals. It may be necessary to queue for a
terminal — the terminals are far apart physically and no queue jumping is
possible. When the terminal is free, the request is keyed in, and its presence
signalled to the system. The customer then awaits a reply.

Queries are detected by a scanner which looks at each terminal in turn.
If there is no query outstanding, the scanner rotates on to the next terminal.
If there is a query, the scanner locks on to that terminal and does not rotate
further the query has been forwarded to a buffer unit capable of holding three
queries at a time. Copying is blocked if no buffer slot is available. When the
copying has been completed, the scanner starts to rotate again leaving a cpu
to deal with the query.

The cpu processes the query and places the answer in the same buffer
slot (overwriting the query). The answer is returned to the terminal by the
buffer unit (without using the scanner) and then that buffer slot is freed. The
customer reads the reply and then releases the terminal. Conveniently, the
distribution given for the processing time ref(rdist)process takes account
of how the requests share the cpu (it is not our data) and we can abstract away
the need for a cpu. That is instead of the (perhaps) expected

[ ref(res}cpu; ]

cpu.acquire(1);

hold(process.sample);

cpu.release(1);

we need not model the cpu at all and our description of this phase simplifies to

hold(process.sample);

Structure of the model

By dispensing with a separate class describing customers we may describe the
model in terms of just two entity classes.

class query describes the history of a query as it is posed by a customer,
passed to the buffer, processed, returned to the customer, and scrutinised. Its
outline is:

keyin; transfer; process; reply; read;
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class scanner describes the actions of the scanner as it rotates from ter-
minal to terminal. If the current terminal has no request pending, the scanner
moves on. If a query is detected, it locks on and does not rotate on until the
query has been transferred to the buffer. Its outline is:

rotate; if request then transfer; repeat;

What remains for us to settle is which process is to be the master and which the
slave in for the transfer task. We have arbitrarily chosen to make the query the
master and use ref(waitq)RQ[k] to synchronise a query at terminal k with
the scanner. The class outlines become:

entity class query; entity class scanner;

begin begin

keyin; rotate;
S :- RQ(k).coopt; if request then RQ(k).wait;

transfer;
S.schedule(0.0); repeat;

process; end***scanner***;

reply;
read;

end***query***;

Now that we have outlined the roles to be played by scanner and query
objects and decided upon their interactions, we can tackle their declarations
separately once given the model data.

Model data

Timings in minutes:
inter-customer arrivals negexp:mean=5/min
keyin a query uniform:0.3→0.5
transfer query to buffer constant:0.0117
process a query on CPU uniform:0.05→0.10
transfer reply back constant:0.0397
scanner rotation constant:0.0027
scanner to test a terminal constant:0.0027
customer to read reply uniform:0.6→0.8

Resources:
buffers res:initially 3
TERM( 1:6 ) res:limit=1,terminals
RQ( 1:6 ) waitq:scanner requests

Assuming no blocking, the expected average terminal occupation by a cus-
tomer will be the mean time for each task plus the time average time for the
scanner to rotate to the terminal, i.e.
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0.400 + 0.0117 + 0.0750 + 0.0397 + 0.7000 + (0.0027+0.0027)×3
= 1.2426 minutes

As we expect to average 50 users per terminal per hour (1.2 minutes between
arrivals) this shows that the original system design is inadequate and we must
expect queues to build up — as indeed they do. Such rough and ready analyses
should always be performed on simulation models to give an idea of through
times etc. (or at least rough bounds for them) for they pin point expected
bottlenecks and may even as in this case, obviate the need to run the model.

class query

enter query

transfer query

process query

send reply

read reply

buffers

��
��

3

TERMk

��
��

1

6

?

6

?
RQ(k)

S.coopt

?

-
S.schedule(0.0)

Figure 5.6: Activity diagram: class query

In our formulation, a query object:

1. first generates the next query object, notes its arrival time (t := time),
and then chooses its terminal (k). That terminal is then seized by the
action TERM(k).acquire(1), perhaps after a wait. The query is entered
(hold(keyin.sample)) and the query waits for the scanner to turn up
by requesting S :- RQ(k).coopt.
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2. the scanner locks on to that query by RQ(k).wait. Then a buffer is
acquired by buffers.acquire(1) (which may imply a delay), and the
query is transferred to the buffer (hold(0.0117)). After the transfer has
been completed, the scanner freed to rotate on by S.schedule(0.0).

3. the query is processed by hold(process.sample)

4. after processing the reply is returned to the appropriate ter-
minal by hold(transfer.sample) and the buffer slot freed by
buffers.release(1).

5. the reply is read (hold(read.sample)), and then the terminal is vacated
(TERM(k).release(1)), which allows in the next query, if any. Finally,
a histogram of through times (THRU) is updated by the elapsed time of
this query through the system.

Here is the complete Demos code for class query:

entity class query;

begin

integer k;

real t;

ref(scanner) S;

new query("query").schedule(arrivals.sample);

t := time;

k := terminals.sample;

TERM(k).acquire(1);

hold(keyin.sample);

S :- RQ(k).coopt;

buffers.acquire(1);

hold(0.0117);

S.schedule(0.0);

hold(process.sample);

hold(0.0397);

buffers.release(1);

hold(read.sample);

TERM(k).release(1);

THRU.update(time-t);

end***query***;

class scanner

We now turn our attention to the slave entity, the scanner. The scanner rotates
from terminal 1 to terminal 6, and then repeats. These actions are captured
in figure 5.7

1. hold(0.0027) captures the rotatation to the next terminal k
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next terminal

poll for query

�
�
�
��no

query?

yes

RQ(k).wait;

S.schedule(0.0);

-

?

?

Figure 5.7: Activity diagram: class scanner

2. a test (b := RQ(k).masterq.length > 0) to see if a query is pend-
ing takes a further hold(0.0027). ASIDE: RQ(k).masterq.length (or
RQ(k).slaveq.length) is a test on the length of the slave queue of RQ.

3. if a request is pending, the scanner locks on by RQ(k).wait. When
awakened the query will be safely in the buffer.

The full declaration of class scanner is:

entity class scanner;

begin

integer k; boolean b;

for k := 1 step 1 until 6 do

begin

hold(0.0027);

b := RQ(k).masterq.length > 0;

hold(0.0027);

if b then RQ(k).wait;

end;

repeat;

end***scanner***;
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The driving program

The driving program contains these definitions plus the various resources,
queues and distributions and one histogram. It generates the scanner and
the first query and runs for 60 minutes.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(waitq)array RQ(1:6);

ref(res)array TERM(1:6);

ref(res) buffers;

ref(rdist) arrivals, keyin, process, read;

ref(idist) terminals;

ref(histogram) THRU;

integer k;

entity class query........;

entity class scanner......;

arrivals :- new negexp("arr", 5.0);

terminals :- new randint("terminals", 1, 6);

keyin :- new uniform("keyin", 0.3, 0.5);

process :- new uniform("process", 0.05, 0.10);

read :- new uniform("read", 0.6, 0.8);

THRU :- new histogram("thru", 1.0, 11.0, 10);

for k := 1 step 1 until 6 do

begin

RQ(k) :- new waitq(edit("request",k));

TERM(k) :- new res(edit("terminal", k), 1);

end;

buffers :- new res("buffers", 3);

new scanner("scanner").schedule(0.0);

new query("q").schedule(0.0);

hold(60.0);

end;

OUTPUT

clock time = 60.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed
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arr 0.000 300 negexp 5.000 33427485

terminals 0.000 300 randint 1 6 22276755

keyin 0.000 259 uniform 0.300 0.500 46847980

process 0.000 257 uniform 5.000&-002 0.100 43859043

read 0.000 257 uniform 0.600 0.800 64042082

h i s t o g r a m s

*******************

s u m m a r y

title / (re)set/ obs/ average/est.st.dv/ minimum/ maximum

thru 0.000 253 4.459 3.469 1.131 18.529

cell/lower lim/ n/ freq/ cum :

I------------------------------

0 -infinity 0 0.00 0.00 I

1 1.000 72 0.28 28.46 I******************************

2 2.000 44 0.17 45.85 I******************

3 3.000 30 0.12 57.71 I*************

4 4.000 24 0.09 67.19 I**********

5 5.000 20 0.08 75.10 I********

6 6.000 15 0.06 81.03 I******

7 7.000 11 0.04 85.38 I*****

8 8.000 7 0.03 88.14 I***

9 9.000 11 0.04 92.49 I*****

10 10.000 3 0.01 93.68 I*

11 11.000 16 0.06 100.00 I*******

I------------------------------

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

terminal 1 0.000 40 1 0 0 83.553 4.345 15

terminal 2 0.000 46 1 0 0 96.128 6.928 18

terminal 3 0.000 45 1 0 0 94.196 1.828 4

terminal 4 0.000 42 1 0 0 88.847 2.135 6

terminal 5 0.000 37 1 0 0 78.770 0.647 3

terminal 6 0.000 43 1 0 0 89.603 3.315 7

buffers 0.000 257 3 0 3 18.084 0.000 1

w a i t q u e u e s

*********************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

request 1 0.000 41 1 0 1.205&-002 0 1.763&-002

request 1 * 0.000 41 1 0 0.000 41 0.000

request 2 0.000 46 1 0 1.674&-002 0 2.183&-002

request 2 * 0.000 46 1 0 0.000 46 0.000
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request 3 0.000 45 1 0 1.642&-002 0 2.190&-002

request 3 * 0.000 45 1 0 0.000 45 0.000

request 4 0.000 43 1 0 1.293&-002 0 1.804&-002

request 4 * 0.000 43 1 0 0.000 43 0.000

request 5 0.000 38 1 0 1.338&-002 0 2.113&-002

request 5 * 0.000 38 1 0 0.000 38 0.000

request 6 0.000 44 1 0 1.291&-002 0 1.760&-002

request 6 * 0.000 44 1 0 0.000 44 0.000

Remarks on Example 6

The report on each wait queue details the delays caused to the masters wishing
to coopt victims (line 1) and to the victims (in the starred line, line 2). In line
1 (referring to the masterq:

1. TITLE and (RE)SET are obvious

2. OBS gives the number of completed wait/coopt handshakes for the waitq

3. QMAX gives the maximum length of the masterq (which includes zero waits)

4. QNOW gives the current length of the masterq

5. Q AVERAGE gives the time weighted average length of the masterq

6. ZEROS gives the number of zero waits (instant coopts) in the masterq

7. AV. WAIT gives the average wait time of each master including zero waits

In the same manner, the second line reports on the way slaves are delayed
in the slaveq. OBS must be the same for both lines.

As expected, the scanner is never delayed in a RQ (see line 1 reports) as it
makes sure a query is ready before calling wait.

We have used a histogram — THRU — to collect and display the elapsed
through times for each query. Having entered the system, each query makes
a local note of the current clock time by t := time. The last action of each
query object is to update THRU by a call THRU.update(time - t). As can be
seen from the report on THRU, a summary of the update readings is printed
followed by the histogram itself. Each histogram object requires 4 parameters:

1. a text TITLE

2. a real lower bound for the update values



102 CHAPTER 5. ENTITY-ENTITY COOPERATIONS

3. a real upper bound for the update values, and

4. an integer giving the number of recording cells.

Each cell has the same width = (upper bound – lower bound)/number of cells.
Thus

THRU :- new histogram("thru", 1.0, 11.0, 10);

establishes a histogram entitled THRU with 10 cells for recording values in the
ranges

[1.0→2.0), [2.0→3.0), ..., [10.0→11.0)

There are also two extra cells for recording underflow (here updates less than
1.0) and overflow (here 11.0 or greater). In this case, the underflow cell has
no entries recorded and the overflow cell 15 entries. The summary records
the minimum (here 1.080) and the maximum (here 17.292) through times and
these could be used in later runs to reset the histogram bounds should this be
desired.

Example 7: Aluminium plant

� �� �weighbridge

lorry loading bays

production lines

vans

unload

here

Figure 5.8: Factory layout

A factory has one entrance guarded by a weighbridge over which all incom-
ing and outgoing vehicles must pass. Only one vehicle can move in this area at
a time. Aluminium sheets are delivered to the factory in vans and loaded into
hoppers. The hoppers are fed onto production lines, their contents formed into
cans, filled, capped and then placed in containers. The containers are removed
by lorries. Van and lorry movements within the plant are of comparatively
short duration and are omitted from the model.
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Model data

Timings in minutes:
van

inter-arrival 98 + negexp:mean=0.1
at weighbridge constant:2
fill a hopper normal:mean= 5.0, st.dev.=1.0

lorry
inter-arrival negexp:mean=0.1/min
at weighbridge constant:3

production-line
fill a hopper constant:25

Resources:
weighbridge res:limit=1
vanspaces res:limit=4
crane res:limit=1
bays res:limit=6
full hoppers bin:initially 3
empty hoppers bin:initially 5

Structure of the model

We model the plant with three classes of entity — van, production, and lorry
with life cycles:

van = enter; unload; leave; reload; repeat

lorry = enter; load; leave

production = fst batch; snd batch; repeat

Since there is interplay amongst all three entities, we present the process
interactions in two gentle iterations.

The vans and lorries interact only at the plant entrance where they compete
for the weighbridge on the way in and on the way out. We ignore any time
spent by van and lorry movements within the plant. As shown below, this
interaction is modelled by making the weighbridge a resource of size 1.

Van/production line interplay is also straightforward. Van require empty
hoppers to unload (each van fills three hoppers) full hoppers are passed to the
production lines. The production line empties a full hopper per batch and
returns it back to the van unloading area. We assume instantaneous hopper
movements between vans and production lines. Below we show just this inter-
action which is achieved through two bins, emptyhopper and fullhoppers.

The production line/lorry interplay is the hardest to understand. Once
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van = w’bridge.acquire(1); enter; w’bridge.release(1);

unload;
w’bridge.acquire(1); leave; w’bridge.release(1);

reload;
repeat

lorry = w’bridge.acquire(1); enter; w’bridge.release(1);

load;
w’bridge.acquire(1); leave; w’bridge.release(1);

van = enter;
emptyhoppers.take(3); unload; fullhoppers.give(3);

leave; reload;
repeat

production = emptyhoppers.take(1); fst batch; fullhoppers.give(1);

emptyhoppers.take(1); snd batch; fullhoppers.give(1);

repeat

started each batch takes 25 minutes to complete, but it takes 10 minutes before
the first crate emerges. There is no storage space at the end of a production
line — crates are put straight onto lorries. Thus production is halted unless
a lorry is there. Once a lorry has been “claimed” it is filled with two hoppers
worth of crates. We use the master/slave synchronisation with production lines
as masters and lorries as slaves, cooperating through ref(waitq)BAYQ. Here is
a sketch of just this interaction:

lorry = enter; BAYQ.wait; leave

production = hold(10.0); L :- BAYQ.coopt; hold(15.0);

hold(25.0); L.schedule(10.0);

repeat

Once started, each batch takes 25 minutes. We delay the coopting of a lorry
until one is necessary, which is 10 minutes later. Once coopted, the lorry is kept
as a slave until the second batch has been completed which is 35 minutes after
it started (25 minutes to unload a full hopper and 10 minutes for the last crate
to clear). If there are free empty hoppers, a production line is permitted to
start another run whilst the last one is clearing. Notice that we are neglecting
lorry movement times by assuming zero interference as one lorry clears the bays
and another moves in.

We are now in position to refine these outlines and we develop the entity
descriptions one by one.

class van

The vans arrive at the plant periodically. Once across the weighbridge (which
takes two minutes in or out), each van goes to the rear of the factory to an
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enter

get crane

unload

return crane

leave

reload
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Figure 5.9: Van activity diagram

unloading area where its load is removed with the assistance of a crane. The
load of aluminium sheets fills three empty hoppers one by one. (Full hoppers
are then fitted onto the production lines.) Each van then leaves, again passing
over the weighbridge. To prevent congestion, at most four vans are allowed in
the factory grounds at a time.

A pool of seven vans serves the factory. A res vanspaces is used to limit
the number in the factory grounds to 4 at any one time. Unloading takes place
when the crane and empty hoppers are available (an unloading, which fills
three hoppers, may start even if only one or two are free; but the crane is only
released by its owning van when three hoppers have been filled. The filling of
each hopper takes about 5 minutes (normal, mean = 5, standard deviation =
1). After exiting, the van returns with a new load in about 108 minutes (98 +
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negexp(0.1)).

entity class van;

begin

integer k;

vanspaces.acquire(1);

weighbridge.acquire(1);

hold(2.0);

weighbridge.release(1);

crane.acquire(1);

for k := 1 step 1 until 3 do

begin

emptyhoppers.take(1);

hold(fill.sample);

fullhoppers.give(1);

end;

crane.release(1);

weighbridge.acquire(1);

hold(2.0);

weighbridge.release(1);

vanspaces.release(1);

hold(98.0 + nexttrip.sample);

repeat;

end***van***;

class lorry

A full hopper fits onto a production line (of which there are five). The alu-
minium sheets are removed from the hopper and processed one by one. As the
sheets pass down the line, they are formed into cans, filled with liquid X and
capped. It takes two hoppers to fill one container. If all goes smoothly, the
processing time per hopper is 25 minutes.

The containers are loaded onto articulated trucks. The trucks wait outside
the factory until a loading bay is free. They take three minutes to cross the
weighbridge (in and out) and then manoeuvre into a loading bay. When the
lorry is loaded, it departs via the weighbridge.

Lorries arrive roughly every 10 minutes (negexp(1/10)). They enter the
factory grounds when they have a bay (there are 6 bays in the model) and the
weighbridge. Once in, they accept two containers and then leave.

entity class lorry;

begin

new lorry("lorry").schedule(nextlorry.sample);
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Figure 5.10: Lorry activity diagram

bays.acquire(1);

weighbridge.acquire(1);

hold(3.0);

weighbridge.release(1);

BAYQ.wait;

weighbridge.acquire(1);

hold(3.0);

weighbridge.release(1);

bays.release(1);

end***lorry***;

class production

When a hopper is put on the line, the plant starts producing cans. The first
can is ready ten minutes later. If there is no waiting container, production
is halted but can continue without penalty when one arrives. After a further
fifteen minutes, the hopper has to be replaced with another possible production
line halt. Twenty five minutes later the second hopper will have been emptied,
but the last can will not arrive at the end of the production line until another
five minutes have elapsed.

A second container load can be started on the production line immediately
after the first if required, there being no need to wait for the final can of the
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Figure 5.11: Production line activity diagram

first load to be ready before the first can of the second can be started.

entity class production;

begin

ref(lorry) L;

fullhoppers.take(1);

hold(10.0);

L :- BAYQ.coopt;

hold(15.0);

emptyhoppers.give(1);

fullhoppers.take(1);

hold(25.0);

emptyhoppers.give(1);

L.schedule(10.0);

repeat;

end***production line***;

The driving program

The driving program includes distribution, resource and entity declarations and
initialisations. Initially there are five empty hoppers and three full hoppers.
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The first lorry arrives at time zero; each lorry schedules the next. A seven-
strong van fleet is established, weakly spaced in time, and five production lines
are ready for action. The model is run for 8 hours with a cold start and an
abrupt end.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(rdist) nextlorry, fill, nexttrip;

ref(res) weighbridge, crane, bays, vanspaces;

ref(bin) fullhoppers, emptyhoppers;

ref(waitq) BAYQ;

entity class van.............;

entity class lorry...........;

entity class production......;

integer k;

nextlorry :- new negexp("next lorry", 0.1);

fill :- new normal("fill hopper", 5.0, 1.0);

nexttrip :- new negexp("van return", 0.1);

weighbridge :- new res("weighbridge", 1);

vanspaces :- new res("van spaces", 4);

crane :- new res("crane", 1);

bays :- new res("bays", 6);

fullhoppers :- new bin("full hoppers", 3);

emptyhoppers :- new bin("empty hoppers", 5);

BAYQ :- new waitq("await container");

new lorry("l").schedule(0.0);

for k := 1 step 1 until 7 do

new van("v").schedule((k-1)*14.0);

for k := 1 step 1 until 5 do

new production("P-line").schedule(0.0);

hold(480.0);

end;

OUTPUT

clock time = 480.000

**********************************************************************

* *

* r e p o r t *

* *
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**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

next lorry 0.000 41 negexp 0.100 33427485

fill hopper 0.000 74 normal 5.000 1.000 22276755

van return 0.000 24 negexp 0.100 46847980

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

weighbridge 0.000 121 1 0 1 65.417 1.168 4

van spaces 0.000 24 4 0 3 40.525 0.000 1

crane 0.000 24 1 0 0 81.393 8.943 2

bays 0.000 33 6 0 0 88.570 12.900 4

b i n s

*******

title / (re)set/ obs/init/ max/ now/ av. free/ av. wait/qmax

full hoppers 0.000 73 3 3 0 0.516 5.477 5

empty hopper 0.000 71 5 8 2 2.571 0.219 1

w a i t q u e u e s

*********************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

await contai 0.000 38 4 0 0.315 27 3.977

await contai* 0.000 38 3 1 0.578 12 6.743
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5.4 Find

As yet master entity attempting to locate a victim from a waitq by a call
on coopt is always allotted the first available entity without discrimination.
Sometimes we would like the master entity to be able to select and coopt a
victim with specified characteristics. For example, we may wish to select a car
whose external dimensions fit the space left on the ferry. To do this, we need
a more subtle routine than coopt.

This is provided by the routine find, also local to class waitq (see figure
5.3, section 5.2). find parallels coopt in that it locates a suitable victim and
blocks the caller if need be until one is located. find has the heading

procedure find(E, c); name E, c; ref(entity) E; boolean c;

where the arguments are a reference variable E and a condition (boolean expres-
sion) C which usually involves E. This combination enables arbitrarily compli-
cated choices to be expressed, a point which we now illustrate by an example.
Note that both E and c are called by name and are dynamically evaluated each
time they are referenced within the body of find, a trick known as Jensen’s
device.

We illustrate the use of find informally with a small example. Suppose
we are modelling scheduling policies in a computer system model. Jobs are
graded into high and low priorities. The job of the scheduler is to load external
jobs into main memory. Jobs are not taken FCFS but according to a more
complicated formula which favours high priority jobs over low priority jobs.
The scheduler also makes sure that the next job selected will “fit” into main
memory and within a priority group favours small jobs over large jobs. In
addition, the scheduler ensures that at most N jobs are loaded at any given
time.

We model the scheduler as a master entity and programs as slaves. Jobs that
are ready to run wait in the READYQ. Once selected, they are loaded into main
memory and then wait in the CPUQ for service. Various times are recorded for
statistical analysis (time of entry into the model, time when loaded into main
memory, completion time). Jobs are entered into READYQ in priority order, with
high priority jobs at the front. The number of free memory slots is maintained
in ref(bin) slots.

ref(waitq) READYQ;

ref(rdist)load;

ref(bin) slots;

slots :- new bin(memory slots, N);

entity class job(jobP, size); integer jobP, size;

begin
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real entryT, startT, exitT;

priority := jobP;

entryT := time;

READYQ.wait;

startT := time;

hold(load.sample);

CPUQ.wait;

exitT := time;

slots.give(1);

end***job***;

It is up to the scheduler to select the next job for loading. This time it is
not a matter of taking the first job in READYQ, but of finding the first job, if
any, that will fit, but favouring high priority jobs. Instead of using coopt we
use find:

entity class scheduler;

begin

ref(job)J;

slots.take(1);

READYQ.find(J, J.size <= memFree);

memFree := memFree - J.size;

J.schedule(0.0);

repeat;

end***scheduler***;

Jobs are naturally queued accroding to their priority and arrival times, and
the slaveq is searched from first to last. The scheduler will only exit from the
READYQ.masterq of when a suitable job has been located. Then it decrements
free memory and schedules the job J to load itself into main memory.

Mechanics of find

A call on find, say

Q.find(E, condition); [ref(waitq) Q;]

operates as follows. First the slaveq of Q is inspected.

1. Q.slaveq is empty.
The caller (current) is put to sleep in the masterq of Q. It will be re-
wawkened and test again each time a new slave entity enters Q.slaveq.

2. Q.slaveq is not empty.
V is set to reference the entities in it in turn and the condition is tested
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against each. If an E is found for which the condition holds, then that
E is extracted from Q.slaveq, coopted by the caller and control remains
with the caller (current).

Should no victim be found, the caller is put to sleep in Q.masterq in order of its
priority. Each new slave arriving via a call on Q.wait awakens the masters in
turn who test to see if the newcomer satisfies their condition. The first master
with a true find condition seizes the new slave and becomes unblocked. If no
such master can be found, the new slave waits in the Q.slaveq in its priority
order. Notice that E :- Q.coopt is equivalent to Q.find(E, true).

Example 8: Tanker simulation

Tankers arrive periodically at a harbour and discharge their cargo into shore
tanks. When a shore tank is full, or nearly so, its contents are automatically
transferred to the refinery. While this transfer is taking place, a shore tank
may not be filled by a tanker.

Model data

Timings in hours:
Tanker arrival rate negexp:0.125/hour
Setup time for pump constant:0.5 hours
Pumping rate constant:1000 tons/hour
Discharge rate constant:4000 tons/hour

Capacities in 1000 ton units:
Tanker loads 15,20,25 equally likely
Shore tank volume 70

Run the simulation for 1000 continuous hours with 5 shore tanks. Take
as initial conditions that two shore tanks are empty and free, one is currently
discharging and will be free at 8 hours, and that the other two are currently
being loaded and will be freed at times 12 (with 45 units still free) and 3.5
(with 25 units free) respectively. The first tanker arrives at time 0.0.

Structure of the model

We work with 1000 tons as the basic capacity unit.

We split the description of the model into two components requiring entity
declarations — class tanker and class shoretank with life cycles:
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tanker = load shore tank;

shoretank = while not full do load ; discharge; repeat

We have to synchronize the activity load. Since we have cooperation be-
tween entities, we use the master/slave synchronisation and let tankers be the
masters with TANKQ as the named waitq. Our outline unfolds to:

tanker = TANKQ.find(ST, ...); load shore tank; ST.schedule(0.0);

shoretank = while not full do

begin

TANKQ.wait; load;
end;

discharge;
repeat

shoretank tank

ST.find....;

ST.schedule(0.0);�
�
�
�empty?

discharge

pump ashore

?

?

?
�no

?
yes

Figure 5.12: Tanker simulation activity diagram

class tanker

Tankers arrive, find a suitable shore tank (one with enough capacity left to
take their load), pump their load into that shore tank and then depart.
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entity class tanker;

begin

ref(shoretank) ST;

integer load;

load := ...;
TANKQ.find(ST, ST.free >= load);

hold(pumping time);
ST.schedule(0.0);

end***tanker***;

class shoretank

Each shore tank waits passively in TANKQ until selected by a tanker, and is then
its slave whilst being loaded. After each loading, a shore tank decides for itself
what to do next. If it has too little capacity left (taken fairly arbitrarily as less
than 20,000 tons) either to take another load or to make it worthwhile waiting
for another load, it discharges its contents into the refinery. Then it returns
empty to TANKQ. If it has sufficient capacity left for another load, it returns
directly to TANKQ.

entity class shoretank;

begin

..........
LOOP:

while room for another load do

TANKQ.WAIT;

DISCHARGE:

hold(time to empty);
repeat;

end***shoretank***;

The complete program

The complete program fills out the entity sketches above with “suitable” data.
By using priority, we let the shore tanks wait in TANKQ ordered according
to their capacity remaining — least capacity at the front. The priority is
recomputed after each interaction with a tanker.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(waitq) TANKQ;

ref(rdist) arr; ref(idist) size;

real pumprate, drate, setuptime;

entity class tanker;

begin

ref(shoretank)ST;
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integer load;

new tanker("t").schedule(arr.sample);

load := 5*size.sample;

TANKQ.find(ST, ST.free >= load);

hold(setuptime + load*pumprate);

ST.free := ST.free-load;

ST.priority := -ST.free;

ST.schedule(0.0);

end***tanker***;

entity class shoretank(free); integer free;

begin

integer max;

max := 70;

LOOP:

priority := -free;

while free >= 20 do

begin

TANKQ.WAIT;

priority := free;

end;

DISCHARGE:

hold((max-free)*drate);

free := max;

repeat;

end***shoretank***;

trace;

setuptime := 0.5;

pumprate := 1.0;

drate := 0.25;

arr :- new negexp("arrivals", 0.125);

size :- new randint("load", 3, 5);

TANKQ :- new waitq("shoretanks");

new shoretank("s", 70).schedule(0.0);

new shoretank("s", 70).schedule(0.0);

new shoretank("s", 45).schedule(12.0);

new shoretank("s", 25).schedule(3.5);

new shoretank("s", 70).schedule(8.0);

new tanker("t").schedule(0.0);

hold(1000.0);

end;

OUTPUT: Partial trace and full report.

We record a section of the trace recording a wait, a find, and a schedule.

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************
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time/ current and its action(s)

..............................................

21.259 t 2 schedules t 3 at 26.493

coopts s 4 from shoretanks

finds s 4 in shoretanks

holds for 15.500, until 36.759

25.500 t 1 schedules s 1 now

***terminates

s 1 waits in shoretanks

26.493 t 3 schedules t 4 at 33.469

coopts s 1 from shoretanks

finds s 1 in shoretanks

holds for 25.500, until 51.993

33.469 t 4 schedules t 5 at 45.479

coopts s 3 from shoretanks

finds s 3 in shoretanks

holds for 15.500, until 48.969

36.759 t 2 schedules s 4 now

***terminates

s 4 holds for 15.000, until 51.759

45.479 t 5 schedules t 6 at 49.491

coopts s 2 from shoretanks

finds s 2 in shoretanks

holds for 20.500, until 65.979

48.969 t 4 schedules s 3 now

***terminates

s 3 waits in shoretanks

49.491 t 6 schedules t 7 at 58.747

coopts s 3 from shoretanks

finds s 3 in shoretanks

holds for 20.500, until 69.991

51.759 s 4 waits in shoretanks

.......................................

clock time = 1000.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

arrivals 0.000 128 negexp 0.125 33427485

load 0.000 128 randint 3 5 22276755

w a i t q u e u e s

*********************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait
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shoretanks 0.000 128 5 0 0.210 97 1.638

shoretanks * 0.000 128 5 2 1.838 32 14.105

Remarks on Example 8

There is a little interplay between a tanker and the shore tank after the tanker
has discharged its cargo. The tanker sees to the updating of the shore tank’s
current contents by ST.free := ST.free-load before scheduling it (the tanker
knows how much has been pumped). The shoretank resets its priority to the
new value (priority := -free) before re-entering TANKQ.

Exercises 5

Exercise 5.1 A library has an archive section containing specialist books.
Anyone requesting such a book must first fill out a request slip and then present
it to a librarian. The librarian then goes into the archive stacks to locate the
book and return with it. The book is then checked out and handed over to the
reader. Assume that all requests are found in the stack, and that each reader
makes one request at a time. If several readers are waiting, a librarian can pick
up several request slips at a time, up to a maximum of five. The librarians are
quite democratic and if more than one is free, they divide the work amongst
themselves as equally as possible.

Model data

Timings in minutes:
request rate negexp:mean=0.5/min
time to check request constant:0.1
walk to stack uniform:0.5→1.5
locate n books normal:mean=n,st.dev.=n/5
return from stack uniform:0.5→2.0
check out each book constant:0.5

Assume that there are three librarians and that each can handle up to five
requests at a time. Assume that the first request arrives at time 0.0. Run your
model for 8 hours.

HINT: If X is a sample from a normal distribution with mean 0 and standard
deviation 1, then Y = m + sX is a sample from a normal distribution with
mean m and standard deviation s.
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Exercise 5.2 Rewrite exercise 5.1 above with the following new strategy for
the librarians when collecting slips. The librarians are queued for work on the
longest-idle, first-back-to-work principle. When they begin to accept requests,
they take as many as they can up to the maximum of five before allowing the
next free librarian (if any) to accept any remaining requests.

Exercise 5.3 A steel mill furnace melts a load of steel, and then pours
it into batches of moulds. Then the furnace is reloaded and its work cycle
repeated.

Model data

Timings in minutes:
furnace

load and smelt normal:mean=165.0,st.dev.=20.0
pour constant:20 per batch

batch of ingots
set constant:75
load into pit constant:15 per batch
soak normal:mean=160.0,st.dev.=30.0
unload from pit constant:1 per ingot
roll constant:3 per ingot

strippers
strip batch uniform:10.0→16.0
clean moulds uniform:10.0→12.0
reassemble moulds uniform:10.0→12.0

Resources:
BOGIES bin:initially 8
CRANES res:limit=3
PITS res:limit=10 batches
MILL res:limit=2

The molten steel in the moulds is allowed to set (form a solid crust on the
outside so that it is self-supporting). Then the moulds are stripped away and
the ingots removed. The batch is then loaded into a soaking pit where it is
heated until it has achieved a certain uniform temperature. Meanwhile, the
moulds are cleaned, reassembled for further use, and returned to the furnace
area. When a batch has reached the requisite temperature, it is noted as ready
for rolling. Rolling turns the ingots into slabs, the end product of the mill.
The furnace has a capacity of 300 tons which is enough to fill 2 batches of
moulds, one after the other. Each batch of moulds is transported on its own
railway bogie (there are always 15 moulds to a batch). After a pouring, each
batch of moulds is shunted into a siding to set. After setting, the batch can
be moved from the sidings. A team of strippers take the bogie to the soaking
pit area where, with the help of a crane (there is one reserved for each team),
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they remove the moulds and dump the ingots. The ingots await placement in
a soaking pit. Meanwhile the strippers clean the moulds, reassemble them and
put them back on their bogie. The bogie is then shunted back to the furnace
area, and the team of strippers looks for more work. The batch of ingots is
loaded into a soaking pit when one becomes free. The loading requires use of
one of three overhead cranes. Unloading also requires use of one of these cranes,
but in order to maintain their temperature, individual ingots are left in their
pit as long as possible. Thus once a crane has been acquired for unloading, it
is retained and is used to unload the ingots one at a time at a pace dictated by
the rolling mill. Assume that the crane is released when the last ingot in the
batch has been unloaded.

Assume that their are 4 furnaces and two teams of strippers. Assume further
that all bogie movements take a negligible time. The furnaces start up at times
0, 40, 80, and 120 minutes respectively. Run your model for 1500 time units
assuming a cold start. Investigate the effect of priorities in the use of the
soaking pit cranes and estimate a maximum value for the number of setting
places required (the capacity of the siding).

Exercise 5.4 Change the work cycle of a furnace in exercise 5.3 to the one
detailed below. The furnace goes through the cycle

load; melt; refine; tap; clean; repeat

The loading of scrap metal requires the use of a crane, C1. When loaded,
the furnace melts its load using 3 units of electric power. Once melted, two
units of electricity are returned, and one is retained. After melting, the metal
is refined. Then the furnace is tapped (its contents are poured out). A tapping
requires a set of moulds and another crane, C2. (In this case assume that the
furnace discharges all of its load in one go.) After being tapped, the furnace
relinquishes its last unit of electric power. Every ten such cycles, the furnace
lining is inspected by a group of asbestos clad brickies who repair any cracks
or faults. Use italics to denote the activity durations informally.

Exercise 5.5 A newspaper has an office for receiving advertisements placed
by telephone. There are n telephone trunks, and M telephone operators. A
call is accepted at once should an operator be free. Otherwise, an incoming
call is kept in a queuing system (FCFS). This consists of two arrays each with
a capacity of k calls. The calls are always entered into a background queue,
Q1. Whenever the foreground queue, Q2, is empty all the entries in Q1 are
automatically transferred into Q2 (assume this takes zero time). When an
incoming call has been accepted and completed, an operator spends a little
time completing notes about it before looking for a fresh task. Then he/she is
free to accept a call from Q2. The operator continues taking calls from Q2 in
this manner until Q2 (and hence Q1) is empty. Not all calls can be accepted. If
all n trunks are engaged, then an incoming call is rejected. A call must also be
rejected if Q1 is full. Run your model for 8 simulated hours.
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Model data

Timings in minutes:
call inter-arrival negexp:mean=1/min
advert placing normal:mean=4.0,st.dev.=1.0
complete notes normal:mean=1.25,st.dev.=0.5

System sizing:
n the number of trunks 15
k the capacity of Q1 and Q2 9
m the number of operators 6

Exercise 5.6 The model of example 6 would be badly behaved if the
request rate were low (it isn’t in this case except right at the start). For then
the scanner, which has a fine grain of time compared to other entities, would
do much fruitless rotating and testing. It is instructive to modify the program
in such a way that the scanner will go to sleep if there are no requests.

HINT: You may wish to use the scheduling routine cancel which is an attribute
of class entity. A call E.cancel (ref(entity)E) removes E from the event
list if there, and has no effect if E is not in the event list. current.cancel (of
course passivate suffices — make sure you understand why) puts current to
sleep out of the event list and resumes the actions of the new entity at the head
of the event list. If, because of this, the event list becomes empty, then the call
on cancel causes a run time error.

Demos.cancel removes the main program (the Demos block) from the event
list. This may be useful in situations where the length of the simulation run is
to be determined from internal conditions rather than predicted in advance.
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Chapter 6

Waits until

In the models we have examined so far, we have been able to express the action
histories of entities as sequences of activities, usually of the form

acquire R1; acquire R2; ... acquire Rn;
hold(activity duration);

release R’1; release R’2; ... release R’m;

where the extra resources required (R1, R2, ..., Rn), be they modelled as res,
bin or entity objects, have been requested and acquired one at a time. In
this chapter, we consider models in which wanted resources are acquired at
the same instant. Such situations arise frequently in the real world and it
is important that a simulation language can handle them. We illustrate two
classes of problem informally and sketch their style of solution in Demos.

1. An entity competes with other entities from a pool of resources, and is
not allowed to start its next activity unless all the resources required for
its commencement are available. For example, given resources R1, R2 and
R3, and several entities Ek which use one or more of these resources to
carry out a tasks. Suppose E1, requires R1 and R2 to start a task. The
coding

R1.acquire(1);

R2.acquire(1);

hold(task time);
........

is manifestly undesirable as E1 may seize R1 and wait a long time before
R2 is available. Whilst E1 holds resource R1, it is preventing other enti-
ties which require R1 but not R2 from progressing. What we need is a
synchronisation which lets E1 know when all the resources it requires for
its next activity are available and allows E1 to seize them all at once. In
Demos this is the condq. Informal code for E1 takes the shape:

Q.waituntil(R1 available and R2 available);
R1.acquire(1); R2.acquire(1);

hold(task time);
........

in which we have used ref(condq) Q to delay E1 until all the resources
it requires are available until it commits to seizing them.

123
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2. An entity can handle several types of request and waits to see what
turns up next and examines the current availability of resources before
committing to a task and acquiring the appropriate resources. Again we
use a condq and informal code takes the form:

Q.waituntil(all resources for task1 available
and all resources for task2 available);

if all resources for task1 available then

begin

seize all resources for task1;
hold(task1 time);
release unwanted resources1;

end else

begin

seize all resources for task2;
hold(task2 time);
release unwanted resources2;

end;

Notice that we can make use of existing Demos facilities to express many of
the waituntil conditions (using attributes like avail, find, and length).

6.1 Condition queues

Example 9: Port system with tides

Consider an extension to the port system of Example 2 which takes account of
the state of the tide. Boats arrive laden and depart empty. We now place the
extra constraint that boats may only dock if the tide is not low. As before, they
may leave whatever the state of the tide. It is still fair for a boat to request a
jetty on arrival, but the following partial coding

entity class boat;

begin

jetties.acquire(1);

tugs.acquire(2);

wait until the tide is not low;
hold(2.0);

tugs.release(2);

...............

end***boat***;

is not satisfactory because a significant period of time may elapse before a boat
actually uses the tugs if it acquires them while the tide is low. During this
interval, one or other or both these tugs could perhaps be gainfully employed
by boats wishing to leave the port.
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Notice that reversing the order of the tug and tide requests does not help
because the tide may have gone out before two tugs are available. Boats wishing
to leave their jetty must wait until such a time as two tugs are available and it
is not low tide.

Dealing with the periodic setting and resetting of the state of the tide is
quite straightforward. Let low tides occur every 13 hours and last for 4 hours.
We can represent the state of the tide by a global boolean lowtide (initially
false) and arrange to set its value appropriately by an object of class tide

[ boolean lowtide; ]

entity class tide;

begin

lowtide := true;

hold(4.0);

lowtide := false;

hold(9.0);

repeat;

end***tide***;

The statement new tide("tide").schedule(1.0); (when executed at
simulation time zero) corresponds to low tides starting at time = 1.00, 14.00,
27.00, ... We can now express the condition for docking in Demos by

tugs.avail >= 2 and not lowtide

We have not modelled low tide as a resource: in no sense should a boat be able
to seize the tide!

Demos allows entities awaiting a particular condition to arise to be detained
in a condition queue (of class condq, see figure 6.1) by a waituntil command.
For example, the docking activity of class boat will now read

[ ref(condq) DOCKQ;]

jetties.acquire(1);

DOCKQ.waituntil(tugs.avail >= 2 and not lowtide);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

The synchronisation works as follows: let entity E (or indeed, the Demos
block itself) issue the request

Q.WAITUNTIL(condition); [ ref(condq) Q;]
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� ref(condq) DOCKQ;condq

title "dockq"

condition queue

ref(entity)procedure last

ref(entity)procedure first

integer procedure length

procedure waituntil(cond)

boolean procedure signal

procedure all false

Figure 6.1: Result of DOCKQ :- new condq(”dockq”)

The condition can be any (arbitrarily complicated) boolean valued expression
The condition is dynamically re-evaluated each time it is tested — it is called
by name — and is best considered as being local to E the maker of the request
rather than the condition queue Q. The caller E continues straight on as current
without delay should the condition evaluate to true and E have priority over
any entities waiting in the Q.condition queue. If the condition evaluates to
false, then E is removed from the event list and passivated (put to sleep) in
Q.condition queue (in priority order, of course). There it remains until it is
awakened, tested and its condition is found to be true.

Arranging to reawaken such dormant entities at the appropriate moment
can be implemented in several ways and is the subject of much debate in
the discrete event world. In Demos, the responsibility is put squarely on the
shoulders of the programmer himself (an aproach which follows the philosophy
of the host language Simula. See Nygaard and Dahl [41, section 2.3.5]).

In this example, several boats may be blocked at a given time due to insuf-
ficient tugs and/or the state of the tide. The only possible times at which they
can be unblocked are a) when another boat releases some tugs, and b) when
the tide turns from being low. Thus the programmer has to ensure that DOCKQ
is signalled (by a call DOCKQ.signal) whenever tugs are released or lowtide is
reset to false. The intent of a call on signal, e.g.

Q.signal; [ ref(condq) Q;]

is to unblock those entities waiting until at the front end of Q.condition queue
that can now go (there may be several). It operates as follows.
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1. if the condition queue of Q is empty, it has no effect.

2. Otherwise, denote the entities waiting until in Q.condition queue
E1(== Q.FIRST), E2, ..., En. Then Q.signal enters E1 into the event
list at the current clock time, but as last entity at that time. When
E1 becomes current, it tests its own condition. If this evaluates to
false, E1 drops out of the event list and falls asleep again at the head
of Q.condition queue. If the condition of E1 evaluates to true, then E1
leaves the condition queue and promotes E2 into the event list immedi-
ately behind itself. E1 now continues on as current, usually acquiring
resources whose availability was tested in the condition, and thus dimin-
ishing the total pool of resources. E.g.

DOCKQ.waituntil(tugs.avail >= 2 and not lowtide);

tugs.acquire(2);

When E1 steps down as current, the new first entity in the event list is
E2. If E2’s condition evaluates to true, then E3 is promoted into the event
list directly behind E2, and E2 acquires the resources it wants; otherwise
E2 is dropped from the event list back to the head of the condition queue
and E3 is not tested at all. Thus Q.signal activates entities at the head
of Q.condition queue in turn either until the queue is exhausted or else
an entity condition fails. See appendix B for semi-formal algorithms for
waituntil and signal.

Complete program

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(res) tugs, jetties;

ref(condq) DOCKQ;

ref(rdist)next, discharge;

boolean lowtide;

entity class boat;

begin

new boat("boat").schedule(next.sample);

jetties.acquire(1);

DOCKQ.waituntil(tugs.avail >= 2 and not lowtide);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

DOCKQ.signal;

hold(discharge.sample);

tugs.acquire(1);

hold(2.0);
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tugs.release(1);

jetties.release(1);

DOCKQ.signal;

end***boat***;

entity class tide;

begin

lowtide := true;

hold(4.0);

lowtide := false;

dockq.signal;

hold(9.0);

repeat;

end***tide***;

trace;

tugs :- new res("tugs", 3);

jetties :- new res("jetties", 2);

DOCKQ :- new condq("dockq");

next :- new negexp("next boat", 0.1);

discharge :- new normal("discharge",14.0,3.0);

new tide("tide").schedule(1.0);

new boat("boat").schedule(0.0);

hold(28.0*24.0);

end;

OUTPUT: Partial Trace and the final report.

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************

time/ current and its action(s)

....................................

53.000 tide 1 holds for 4.000, until 57.000

53.403 boat 3 releases 1 to tugs

releases 1 to jetties

signals dockq

***terminates

56.849 boat 5 schedules boat 6 at 61.864

seizes 1 of jetties

w’until in dockq

57.000 tide 1 signals dockq

holds for 9.000, until 66.000

boat 5 leaves dockq

seizes 2 of tugs

holds for 2.000, until 59.000

....................................
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clock time = 672.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

next boat 0.000 64 negexp 0.100 33427485

discharge 0.000 58 normal 14.000 3.000 22276755

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

tugs 0.000 114 3 0 3 17.064 0.000 1

jetties 0.000 56 2 0 0 81.396 6.343 7

c o n d i t i o n q u e u e s

*******************************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

dockq 0.000 58 2 0 7.683&-002 36 0.890

Remarks on Example 9

We pick up the trace at time 53.0, when the fifth low tide period is setting in.
The trace shows lowtide being set at time 53.0 and reset at time 57.0. At
time 56.849, boat 5 seizes 1 jetty and then enters DOCKQ to await its condition
being set. At time 57.0, the tide is reset and a signal is sent to DOCKQ. This
awakens boat 5 which continues on its way seizing two tugs.

The partial report shows that the extra constraint has caused a little more
congestion (the average wait for a jetty is up to 6.343 from 5.498, and for a tug
is 1.006 instead of 0.0285; compare with the results for Example 2). The column
headings in the condition queue reports have been explained in connection with
waitqs (see section 5.2) but this time we require only one line per queue as the
master/slave situation does not obtain.

In this example, boats leaving and boats arriving compete for tugs. Boats
arriving never actually queue for tugs on the resource tugs itself: when they
escape from DOCKQ two tugs are available. But boats leaving do queue on the
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resource tugs and it is important to realise that the calls which release tugs
and signal DOCKQ, e.g.

tugs.release(2); DOCKQ.signal;

in effect give boats leaving priority because boats queueing on the resource
tugs (all of which are waiting to leave) are tested before DOCKQ.signal has a
chance to test any wait until conditions. Perhaps this is as it should be, but if
not the priority can be changed simply by reversing the order of the calls

DOCKQ.signal; tugs.release(2);

Make sure you understand why (follow through the examples using the semi-
formal algorithms in appendix B).

Another way of doing the same sort of thing is to introduce a second condq
(here OUTQ) for boats leaving. We create it by

OUTQ :- new condq("LEAVING"); [ ref(condq) OUTQ;]

The condition for boats leaving could be quite simple as

OUTQ.waituntil(tugs.avail > 0);

We also need to signal OUTQ at appropriate times: times at which tugs are
released. Thus the lines DOCKQ.signal; inside class boat are to be replaced
by

DOCKQ.signal; OUTQ.signal;

(reverse the order of the calls if you wish boats leaving to have priority). Note
that there is no point at all in signalling OUTQ when the tide turns — it is
of no concern to entities waiting in that condq. In general, when resources
are released, some, but not all, condqs need to be be signalled. It is enough
to signal only those condqs containing entities waiting on the freshly released
resources.

Example 10: Tanker simulation revisited

As an extension to the basic model of Example 7, we assume that tankers now
carry one of five types of oil. The grade of oil is indicated by integer type
which takes values in the range 1 through 5, a higher value indicating a better
grade of oil. In order to unload when docked, they need a shore tank which (in
order of preference):
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1. has the same type of fuel and sufficient capacity to take all that the tanker
is carrying

2. has the same type of oil but not enough capacity to accept the full load

3. is empty and previously held either the same or a better type of fuel

4. is empty and previously held an inferior type of oil. In this case, the shore
tank must first be cleaned. This takes a long time and is the last resort.

In this new situation it is much harder to express the search by using find,
although it could perhaps be done by devious use of priority within class
shoretank. Even so it would lead to a non-transparent program text and in
cases like this we really need another mechanism so that we can express the
program logic clearly. It is best to have all the decisions at one point in the
program instead of scattered over several entities. This is where the hitherto
unexplained boolean procedure avail local to waitq (see figure 5.3) comes
into its own. A call

Q.avail(E, condition); [ ref(waitq) Q;]

tries to locate an entity E satisfying the condition (just like find), but does
not coopt the entity E if found nor block the caller if an entity E satisfying the
condition cannot be found. It returns true and sets E to refer to the found
entity if one can be located; if not, it returns false and sets E to none.

In this variation of Example 7, it is convenient to use two waitqs to hold
available shore tanks. We place completely empty shore tanks in EMPTYQ and
partly full shore tanks in TANKQ. Note that in this description, a shore tank will
discharge its contents into the refinery when less than 5 units of volume are
available.
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[ ref(waitq) EMPTYQ,TANKQ; ]

entity class shoretank(free); integer free;

begin

integer type, max;

type := an appropriate type;
max := 70;

if free = max then goto EMPTY;

LOOP:

while free >= 5 do

begin

Q.signal;

TANKQ.wait;

end;

hold(time to empty);
EMPTY:

priority := -type;

Q.signal;

EMPTYQ.wait;

priority := 0;

repeat;

end***shoretank***;

The body of class shoretank consists of an initialisation (setting type and
max: free, as a parameter, is already set) and then the main loop is entered
at EMPTY if the initial value of free = max; otherwise at PART FULL. We use
priority only in EMPTYQ where shore tanks are ranked with those containing
the least quality oil at the front. A shore tank is coopted by several tankers
in turn who part fill it (then it returns to TANKQ). When the shore tank is full,
or very nearly so (less than 5 free units of capacity remain), then it does not
return to TANKQ, but discharges its contents into the refinery and joins EMPTYQ.
A shore tank coopted from EMPTYQ under conditions (3) or (4) may have its
TYPE reset; under condition (4), it will also have to be cleaned.

A tanker looks first for a shore tank in TANKQ of the same type and with
sufficient capacity

1. TANKQ.avail(ST, ST.type = type and ST.free >= load)

if this search fails, it then tries to locate a shore tank which is available
for loading and contains the same type of oil

2. TANKQ.avail(ST, ST.type = type)

notice that testing first on condition a) and then on condition b) implies
two sweeps through TANKQ unless the shore tanks have been ideally sorted
first (and they haven’t - try to do so as an extra exercise). Further if a)
fails then we need not express condition (2) as
ST.type = type and ST.free < load

If this second search fails, then the tanker turns its attention to EMPTYQ.
It now tries to locate a shore tank in EMPTYQ which contained oil of the
same or of a better quality.
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3. EMPTYQ.avail(ST, ST.type >= type)

Since we have queued shore tanks in EMPTYQ ranked according to type,
we automatically return the shore tank of least quality passing the test.
Finally if all else fails, then any shore tank in EMPTYQ will do.

4. EMPTYQ.avail(ST, true)

If all of these tests fail, then a tanker must wait until a suitable shore
tank does appear in either TANKQ or EMPTYQ. We thus require a condq
(here Q) and make the request via a wait until statement of the form

Q.waituntil(or4(a, b, c, d));

where we have used our own boolean procedure or4 (defined below;
see also exercise 6.1).

ASIDE: the reader should be able to convince his- or her-self that the
formulation

Q.waituntil(a or b or c or d);

does not work because each of the part conditions a, b, c, and d is called
in turn before any or operation is carried out. Each one not only re-
turns true or false but also sets ST. Thus the test on b overwrites the
assignment to ST in a, the test on c that in b, and the test on d that in c.

Notice also that find is restricted to searching down just one waitq and is
inappropriate here. This is unfortunate in that find/wait are self-reawkening
and one does not need to reawaken via signal.

class tanker now has the form:

boolean procedure or4(a,b,c,d); name a,b,c,d; boolean a,b,c,d;

or4 := if a then true else

if b then true else

if c then true else

d;

entity class tanker;

begin

integer type, load, l;

ref(shoretank) ST;

new tanker("t").schedule(arr.sample);

type := Ttype.sample;

load := Tload.sample;

while load > 0 do

begin !*** get shore tank ***;

Q.waituntil

(or4 ( TANKQ.avail(ST, ST.type = type and ST.free >= load),

TANKQ.avail(ST, ST.type = type),

EMPTYQ.avail(ST, ST.type >=type),

EMPTYQ.avail(ST, true)
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) );

ST.coopt;

if ST.type < type then hold(clean.sample);

ST.type := type;

!*** pump ***;

l := if ST.free >= load then load else ST.free;

hold(setuptime + l*pumprate);

ST.free := ST.free - l;

ST.schedule(0.0);

load := load - l;

priority := priority + 1;

end;

end***tanker***;

The main body of class tanker consists of a loop in which it remains
until it has discharged all of its cargo (until LOAD = 0). While a tanker does
try to discharge all of its cargo in one go (conditions a), c) and d)), a shore
tank seized under condition b) has not enough capacity left and in this case
the tanker will have to queue again in Q (it is given increased priority each
time). When its wait until condition is true, a tanker leaves Q with its local
variable ST referencing the most suitable storage tank thanks to the call on
avail. But ST is still in its waitq and hasn’t yet been coopted. To cater for
this case (coopting an explicitly named entity) there is a procedure coopt
local to class entity. A call ST.coopt removes ST from its current queue
(if any) and places it under the bondage of current (in this case, a tanker).
The tanker then causes it to be cleaned if it was empty and contained inferior
quality oil is transferred. Then the type of ST is reset, a quantity l of oil is
transferred from the tanker to the shore tank and ST is rescheduled. ST decides
for itself what to do next (join TANKQ or discharge). Finally the tanker’s own
priority is incremented (it may loop again).

EXERCISES 6

Exercise 6.1 In Simula and ALGOL 60, compound conditions, such as a
and b and a or b, are evaluated by first finding the value of a, then the value
of b, and then performing the and or the or operation. If we wish to drop out
of a compound evaluation with a minimum of testing, we can code

if a then b else false instead of a and b
if a then true else b instead of a or b

Write boolean procedure and2 and boolean procedure or2 to perform
these optimisations.
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Exercise 6.2 Customers with a predetermined thirst — taken as 1 to 6
pints — arrive at a pub, queue for a beer, drink it, and then either rejoin the
beer queue or else (if their thirst has been assuaged) leave the pub.

Model data

Timings in minutes:
Customer arrival negexp:mean=0.2/min
Waiter (re)entry constant:30
Pouring constant:1
Drinking uniform:15.0→25.0
Washing constant:0.5

A barmaid serves the customers giving each a clean glass for his beer every
time. Her other task is to wash empty glasses (these are collected from the
customer and placed within her orbit by a waiter). While neither of these
tasks is interruptible once started, the task of serving a customer naturally
takes precedence. The waiter enters the bar every 30 minutes, collects all the
empties, and places them on the bar top for the barmaid. He then retires
to perform his other duties. Run your model for 4 hours with 15 glasses, all
initially clean.

Exercise 6.3 Repeat the Port System of Example 8 with the following
different tidal constraints: boats can dock only at high tide and may leave only
if it is not low tide.

Exercise 6.4 Consider the following (very simplified) model of a single lane
of cars at a four way traffic intersection in which we ignore possible interference
from other lanes. Cars arriving at the junction can turn left, continue straight
on or turn right when the lights ahead are green and the car ahead is sufficiently
clear.

Model data

Timings in seconds:
Car inter-arrival negexp:0.15/second
Lights green constant:20
Lights red constant:24
Time to clear normal:mean=2.0,st.dev.=0.5

Simulate for two hours under the initial conditions that at time 0.0 the lights
are just turning green and the first car arrives.

Exercise 6.5 Sketch a solution to the following problem. Consider a junc-
tion consisting of a single lane side road joining a main road. The main road
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has one lane in each direction. Traffic is not allowed entry from the main road
into the side road. Traffic moving from the side road on to the main road may
filter right when the near lane is clear; or may turn left on to the main road
only when both the near lane and the far lane of the main road are free.

Exercise 6.6 Boats arrive periodically at both ends of a long, narrow canal.
For this exercise, we ignore such complications as tugs, storms, etc. (which
can easily be added) and concentrate on deciding which direction should have
control of the canal. The canal is narrow (so boats may not pass each other in
either direction), and long (so that several boats are allowed to travel along it
in the same direction). Let the time taken to pass through the canal be ctime.
To reduce the risk of collision, boats travelling in the same direction must be
well separated. Once a boat has entered the canal, no other boat may follow it
until at least ctime/3 has elapsed. Model the system when the canal direction
is switched according to the fixed time slot rule. Here each direction has a time
slot of fixed length in rotation. When the time slot is up, any boats currently
in the canal are cleared, but boats not actually in the canal are blocked. When
all the boats are clear, the direction of allowed travel is switched.

Exercise 6.7 Repeat exercise 6.6 switching canal direction when the length
of the blocked queue has reached a certain limit, say L. N.B. in conditions of
overload, it is possible to get at least L boats in queueing for each direction.
To prevent the switching mechanism from looping, give each direction a certain
minimum burst, say l*ctime/3.

Exercise 6.8 Repeat exercise 6.6 switching control of the canal only when
the queue for the direction in control is empty. N.B. the switching mechanism
may have to go into “neutral” if both queues are empty.

Exercise 6.9 Repeat exercise 6.6 switching when the blocked queue is
longer than the queue in control.

Exercise 6.10 Remind yourself of exercise 4.8, page 72. As billets queue for
a soaking pit they lose heat. Newcomers are clearly warmer than those blocked
earlier. Modify exercise 4.8 so that when a fourth billet joins the queue for
the pits, the first billet in the queue is removed and deposited outside. It will
only be brought back when there are no billets waiting for a pit and 5 pits are
empty. Assume that such billet movements also require the use of a soaking
pit crane.

6.2 Condition queues with all set

This section deals with the case when the entities in a condition queue are
waiting on different conditions. In this case we want a call on SIGNAL to test
each and every member of the queue and not to drop out if one entity condition
fails.
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Example 11: Dining philosophers

Five philosophers are seated round a circular table which contains an inex-
haustible supply of spaghetti within easy reach of all at its centre. Between
each pair of adjacent philosophers is a fork. The philosophers have a simple
life style

LOOP:
think;
eat;
REPEAT;

In order to eat, a philosopher requires both the fork on his left and the fork
on his right. Each thus competes for resources with his immediate neighbours.
The orgy is to last for 3 hours.

Model data

Timings in minutes:
think randint:20→30
eat constant:10→20

Resources:
fork ref(res)array fork[ 1:5 ]:limit=1 each

In this model we represent the forks by ref(res)array fork [ 1:5 ] and
initialise them by

for k := 1 step 1 until 5 do [ integer k; ]
fork[k] :- new res(edit("fork", k), 1);

We number the forks so that philosopher n finds fork[n] on his or her left
and fork[n+1] on his or her right (fork[1] in the case of philosopher 5). Then
class philosopher can be written

entity class philosopher(n); integer n;

begin

ref(res) L, R;

L :- fork(n);

R :- fork(if n=5 then 1 else n+1);

LOOP:

hold(think.sample);

Q.waituntil(L.avail > 0 and R.avail > 0);

L.acquire(1); R.acquire(1);
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hold(eat.sample);

L.release(1); R.release(1);

Q.signal;

repeat;

end***philosopher***;

The new facet of this example lies in the fact that each philosopher has a
different wait until condition (no two philosophers await the availability of the
same pair of forks) and this causes some problems. If we let them all wait in the
same queue, then we must remember that signal is coded (as so far revealed)
to stop testing queue members when the condition of one member (the current
first) fails. Thus if the condition of an earlier queue member is false, the
remainder will not be tested even though their conditions, being different, may
yield true. Giving each philosopher his own queue doesn’t really help in this
case either (although in general it may be a useful idea) as we then have to
decide which queue gets priority.

To solve this and similar problems, we have given condq another attribute —
boolean all — which is initially false. When all is false, signal operates
as previously explained. When all is set to true by such an assignment as

Q.all := true; [ ref(condq) Q;]

a call on Q.signal will test the condition of each and every entity waiting
until in the condq. This gives us what we want: by using a single condq with
all set, philosophers are queued ranked according to their time of entry (their
priorities are all zero) and every member of the condition queue will be tested.
The complete program reads

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin integer k;

ref(res)array fork(1:5);

ref(idist) think, eat;

ref(condq) Q;

entity class philosopher(n); integer n;

begin

ref(res) L, R;

L :- fork(n);

R :- fork(if n=5 then 1 else n+1);

LOOP:

hold(think.sample);

Q.waituntil(L.avail > 0 and R.avail > 0);

L.acquire(1); R.acquire(1);

hold(eat.sample);

L.release(1); R.release(1);

Q.signal;

repeat;

end***philosopher***;
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Q :- new condq("await eat");

Q.all := true;

think :- new randint("think", 20, 30);

eat :- new randint("eat" , 10, 20);

for k := 1 step 1 until 5 do

fork(k) :- new res(edit("fork", k), 1);

trace;

for k := 1 step 1 until 5 do

new philosopher("p", k).schedule(0.0);

hold(180.0);

end;

OUTPUT. Partial trace and full report.

Starting at time 24.0 when P1 and P4 are eating, and P2, P3, and P5 are
thinking.

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************

time/ current and its action(s)

...................................

24.000 p 3 w’until in await eat

25.000 p 2 w’until in await eat

26.000 p 5 w’until in await eat

34.000 p 4 releases 1 to fork 4

releases 1 to fork 5

signals await eat

holds for 23.000, until 57.000

p 3 leaves await eat

seizes 1 of fork 3

seizes 1 of fork 4

holds for 18.000, until 52.000

37.000 p 1 releases 1 to fork 1

releases 1 to fork 2

signals await eat

holds for 27.000, until 64.000

p 5 leaves await eat

seizes 1 of fork 5

seizes 1 of fork 1

holds for 12.000, until 49.000

49.000 releases 1 to fork 5

releases 1 to fork 1

signals await eat

holds for 23.000, until 72.000



140 CHAPTER 6. WAITS UNTIL

52.000 p 3 releases 1 to fork 3

releases 1 to fork 4

signals await eat

holds for 25.000, until 77.000

p 2 leaves await eat

seizes 1 of fork 2

seizes 1 of fork 3

holds for 15.000, until 67.000

...................................

clock time = 180.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

think 0.000 23 randint 20 30 33427485

eat 0.000 20 randint 10 20 22276755

r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

fork 1 0.000 7 1 0 0 62.778 0.000 1

fork 2 0.000 7 1 0 0 60.556 0.000 1

fork 3 0.000 7 1 0 0 67.222 0.000 1

fork 4 0.000 8 1 0 1 68.333 0.000 1

fork 5 0.000 7 1 0 0 62.222 0.000 1

c o n d i t i o n q u e u e s

*******************************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

await eat * 0.000 20 3 1 0.489 8 4.400

Remarks on Example 11

At time 26.0, P3, P2, and P5 (in that order) are waiting until in Q. When P4
releases his forks at time 34.0, P3 can proceed. When P1 releases his forks at
time 37.000, P2 is tested first but is still blocked. P5 is allowed to proceed.

The only other thing worth remarking on is that the condition queues with
all set are specially marked in reports with an asterisk following their title
(see await eat above).
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EXERCISES 6 (continued)

Exercise 6.11 Unsealed containers are placed on a conveyor belt every
cycle seconds. The belt moves with a regular but jerky action past a row of
N sealing machines. The movement of the belt is such that the containers are
stationary for pause seconds in front of each machine. The movement into the
next position takes move seconds (cycle = move+pause). During each pause,
a fresh container is added at one end of the belt, and the ’oldest’ container is
removed from the other. It is also during part of this time interval that an
unsealed container may be sealed. Sealing takes seal seconds and a sealing
is not allowed to be started if the belt is moving or if less than seal seconds
remain of the current pause period.

The sealing is done by a complicated machine which has two parts: a picker
which dips into an inexhaustible supply of seals and returns with one, and a
capper which accepts a seal from its picker partner (thus sending it off for
another seal) and then waits its chance to seal. It will seal the next unsealed
container that pauses in front given enough time to perform the operation.
Then it collects a new seal from its picker.

Assume that each picker starts primed with a seal and at time 0.0 the first
unsealed container is placed on the belt (it will be in position in front of the
first sealing machine at time = cycle). Run your model for 8 simulated hours
with n = 6 sealing machines, pause = 5 seconds, move = 3 seconds, seal = 2
seconds,and the time for a picker to fetch a seal at 7.0→11.0 seconds, uniformly
distributed. Report on the number of unsealed containers that get through.
Experiment further with n.

Exercise 6.12 Metal plates arrive periodically at a plate cutting yard to
be cut into shape. The yard’s cutting shop contains two cutters C1 and C2,
each of which has its own buffer area for up to three uncut plates. Plates are
typed on arrival into those requiring cutting by C1 and those by C2 (equally
likely). If the appropriate buffer is full, freshly arriving plates are dumped on
one side in the yard. They are brought in from the cold only when there is
buffer space and the arrival area is empty. Plate movements are carried out by
a crane which can handle one at a time.

Model data

Timings in minutes:
Plate inter-arrival negexp:0.1 per minute
Cutting time normal:mean=8.0,st.dev.=2.0
Crane movement times

arrival-buffer constant:1
arrival-dump constant:0.5
dump-buffer constant:1
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N.B. wherever plates are stacked they are picked up in last-come, first-
served order since they are piled one on top of the other. Assume that when
dumped outside the plates are sorted into 2 piles - one awaiting C1, the other
C2.

6.3 Waits until: signal versus snoopy

There are two main approaches for dealing with entities which are waiting
until. One places the responsibility on the programmer; the other leaves it
to the system itself to do the reawakenings. The second method was used in
SIMON 75 (Hills and Birtwistle [16]) and used a special entity object named
snoopy. Transferred to the context of Demos, a rough outline of the SIMON
75 snoopy is

[ref(watchdog) snoopy; ]

entity class watchdog;

begin

ref(condq) Q;

for each condq Q do

Q.signal;

hold until next event time;
repeat;

end***watchdog***;

snoopy is meant to operate as follows. When it becomes current, it signals
the user-created condqs in some predetermined order (perhaps, the order in
which they were created by new condq ...). When all the condqs have been
tested in this manner, snoopy holds until the next event time, reappearing as
the last entry scheduled for that time. snoopy thus becomes current again
when all the resources to be freed at that clock time have been released and
can now set about testing the conditions of any blocked entities.

Notice that the wait until routine associated with snoopy differs from the
one used in Demos in some details. An entity E executing a wait until should
now always be put to sleep in the appropriate condq and left to be awakened
by snoopy. Otherwise, some waiting entities may be by passed; for example,
those already waiting on the same condition as E. Notice also that snoopy
need only be active when it has work to do (not all the condqs are empty). If
snoopy is passive when a wait until call is made, then that call is responsible
for activating it (a technique similar to that used in awakening the scanner in
exercise 5.6.

However this rough outline for snoopy is certainly not fool proof. For an
entity unblocked from a later condq, Qm say, may alter conditions which enable
entities blocked in one or more earlier condqs to go; indeed, these entities may
even test the value of Qm.length as a part of their condition. A way round this
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is to force snoopy out of its depicted for-loop and make it repeat again from
the beginning whenever it unblocks one entity from the current condq that it
is testing (there are many simple variations on this theme). This is clearly a
slower algorithm than the original one, and it is less transparent.

Vaucher [39] also discusses a “generalised wait until statement” (read Franta
[33, pages 188-194] for a more accessible account). Instead of having user-
defined condqs, Vaucher’s algorithm makes use of a single system defined queue
in which all entities waiting until are queued. Vaucher’s snoopy also reappears
alternately in the event list which can give rise to certain subtle differences
in performance. It is instructive to compare Vaucher’s algorithm and its cor-
responding wait until routine with the ones sketched in this chapter and find
ways in which they can break.

The decision to implement wait until with signal rather than snoopy was
based on the following points:

• waits until usually cover complicated situations. In order to show that a
program is correct, it is desirable to be able to argue from the program
text exactly what should happen next. The algorithm for signal is very
simple and is under direct user control; snoopy has a rather more com-
plicated algorithm and operates more remotely behind the scenes. It is
correspondingly more difficult to ensure that the correct synchronisations
take place. See Palme [42] for an interesting paper on a similar theme.

• because Demos contains res, bin, and waitq facilities which automati-
cally test and promote any waiting entities when incremented, the number
of condqs in Demos programs is quite small. (In SIMON 75 and ECSL
programs, every non-bound activity has an associated condq.) Further
the condqs to test when resources are released, etc., are directly available
from the activity diagrams and so the calls on signal are not all that
difficult to get right. Remember that when a condition is reset, only those
condqs containing entities waiting on that condition need be tested, and
not all of them. It is surprising that most compilers for activity based
languages simply throw away this information; otherwise they could be
quite competitive with event or process based discrete event simulation
languages.

• signal is more efficient than snoopy; usually of the order of 2 or 3 times,
but in pathological cases this factor can increase unboundedly.

• and last, but not least, it follows the approach of the host language Simula
(see Nygaard and Dahl [41]).

So it is not just an argument about ease of use (snoopy) against efficiency
(signal). It should also be borne in mind that waits until are often quite
complicated and in these situations there is no substitute for clear thought and
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well-defined tools. One of the dangers is that it is all too easy to write down
and accept a model “works” (in the sense that it is not obviously wrong), and
accept it without proper checking.

Health warning: waituntil/signal synchronisations are hard to get
right. Unless you have an automated front end, we recommend that
you implement and use a version of snoopy until satisfied that the
model is working correctly, and only then remove it and insert in-line
signal calls. This is based upon personal experience — practically every
error noted in developing the examples for this book was a missing call
on signal!

EXERCISES 6 (continued)

Exercise 6.13 Why is it usually preferable to code

hold(t-time);

Q.waituntil(condition);

instead of

Q.waituntil(time >= t and condition);



Chapter 7

Interrupts

In this chapter, we investigate a few models in which the expected action
history of an entity is not followed due, perhaps, to equipment failure or to
interruptions by another entity.

In the very simplest cases, the disturbance merely imposes an unexpected
delay on the victim. For example, should a machine part fail, then the machine
operator may well be able to continue on with his current task as soon as a
repair has been carried out. But all too often interrupts cannot be cast into such
a simple mould. For an interrupt usually means: “Stop what you are doing now
and get on with something else”. For example, a hospital doctor doing his/her
morning rounds may be interrupted to deal with an emergency case. While the
doctor is away, the rounds must go on under some one else’s supervision, and
will probably have been completed before the doctor has finished dealing with
the emergency. So there is no compunction for the doctor to return to his/her
previous task.

The possibilities are many and various and instead of trying to be all things
to all men, Demos provides a few simple tools which can be applied to cover
a wide range of problems. As usual, these tools are motivated by particular
examples.

7.1 Simple breakdowns

A stream of orders is processed on a lathe L. If we assume that there are always
orders waiting, then we can sketch the actions of the lathe by

lathe = hold(process time); done.update(1); repeat;

We now throw in the complication that the lathe is subject to periodic break-
downs. Each breakdown requires a halt in the current job for a spare part to
be fitted (by the lathe operator himself). Then the lathe continues on with the
same order and from where it left off.

As seen by the lathe, a breakdown is an unpredictable event. Accordingly
we prepare a separate entity description for each type of breakdown along the
lines of:

145
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breakdown = hold(time to next breakdown);
stop lathe;
repair lathe;
restart lathe;
repeat

Thus we view a breakdown as the coming together of two entities in the style
of coopt/wait except that the slave (here the lathe) is located in the event list.

Strategy 1

As a first try we might try the strategy

1. the breakdown agent, say B, schedules itself for the next breakdown

2. B notes how much time the lathe L has left in its current activity and
then removes L from the event list

3. B then re-schedules L in the event list delayed by the time of the repair
plus what was left of its original activity plus perhaps an extra delay for
setting-up.

4. B itself holds for the repair time and then repeats its actions.

This interplay may be summarized by:

entity class lathe; entity class breakdown(V); ref(lathe) L;

begin begin

hold(process time); hold(time to next breakdown);
repeat; L.cancel;

end***lathe***; L.schedule(repair time + time left + setup);
hold(repair time);
repeat;

end***breakdown***;

When cancelled the LSC of L will be pointing to the statement hold(process
time) so that when it again becomes current it will execute the statement
after. What we have to ensure is that this statement is not completed at time
T, but at time T + repair time + setup, hence the arithmetic involved in the
scheduling statement.

Strategy 2

But there is a flaw with the style of strategy 1. When a breakdown occurs, we
will usually not be able to predict how long the repair will take as the resources
required to effect the repair may not be available (although that is not the case
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here). Even worse, perhaps the repairman’s gear may need a sudden repair!
Instead we prefer to arrange things so that the breakdown agent keeps the
victim until the repair has been carried out before rescheduling it. This makes
it very much easier to deal with complicated breakdowns.

1. B schedules itself for the next breakdwon

2. B notes how much time the victim L has left in its current activity and
then removes L from the event list

3. B carries out the repair

4. B re-schedules L in the event list delayed by what was left of its original
activity plus perhaps an extra delay for setting-up.

5. B repeats its actions.

which is summarized by:

entity class lathe; entity class breakdown(V); ref(lathe)L;

begin begin

hold(process time); hold(time to next breakdown);
repeat; L.cancel;

end***lathe***; hold(repair time);
L.schedule(time left + setup);
repeat;

end***breakdown***;

The arithmetic computations are straightforward. Let a breakdown occur
at time t and the lathe’s current job be timed to finish at time T (T >= t).
At time t, L will be scheduled in the event list with an associated event time of
T. Now the event time of a scheduled entity E is accessible via a call E.evtime
(real procedure evtime is an attribute of all entity objects.) It follows that
that the amount of time left in the lathe’s current task is simply L.evtime -
t).

A semi-formal outline of class breakdown is now:

entity class breakdown(L); ref(lathe) L;

begin

real tleft;

hold(time to next breakdown);

tleft := L.evtime - time;

L.cancel;

hold(repair time for L);

L.schedule(tleft + setup);
repeat;

end***breakdown***;
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EXERCISES 7

Exercise 7.1 Write a complete Demos program for the model described in
this section.

Model data

Timings in minutes:
lathe processing time normal:mean=15.0,st.dev.=3.0
between breakdowns negexp:mean=1/300 mins
repair time normal:mean=30.0,st.dev.=5.0

This time, after the lathe has been repaired it must be reset before it can
continue. Let the reset time be a constant 5 minutes. Run your model for four
weeks of simulated time assuming no discontinuities.

Exercise 7.2 Repeat exercise 7.1 above with the following twist: when a
breakdown occurs, the current order is spoiled. Keep track in another count
spoiled. Assume that it takes 6 minutes to reset the lathe and discard a
spoiled order.

HINT: You may care to send a signal to the lathe and schedule it immediately
the repair has been carried out. The signal is to indicate which alternative has
cropped up and we then let the lathe itself sort out which count to update and
which extra delay is needed over and above tleft.

Exercise 7.3 A machine shop contains six identical lathes. A continous
stream of orders arrives at the machine shop carefully timed to ensure that
there are always orders waiting. Each lathe is subject to periodic breakdown,
but this time the repairs are to be carried out by a specialist repairman. The
solitary repairman has other duties to perform when not repairing a lathe.
Although these other duties are of a lower priority, they cannot be interrupted
once started.

Model data

Timings in minutes:
lathe processing time normal:mean=10.0,st.dev.=2.0
between breakdowns negexp:mean=1/300 mins
lathe reset time constant:5
repair time constant:30
other duty constant:15

Run your model for 4 weeks assuming no discontinuities between shifts.
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7.2 Interrupts

It doesn’t require many extra complications before the cancel/schedule mech-
anism of section 7.1 proves to be inadequate. But we have learned one impor-
tant lesson — that of writing the interrupting agent as a separate entity.

In the next example, the victim has to drop its resources when interrupted
and try to regain control of them in competition with other entities. For secu-
rity reasons, a share in a resource can only be released by the entity holding
it, i.e. an interrupted victim has to be activated in order to relinquish its own
resources. Thus we require a different technique from the cancel/schedule of
section 7.1 where the victim lay passively out of the event list throughout the
breakdown. It turns out to be easiest to let the interrupt be sent across just
as a signal and to let the victim sort out its own reaction to it (as in exercise
7.2) instead of being imposed upon from without.

Example 12: Coal hopper

Consider a coal depot where coal is loaded by gravity from a hopper into one
lorry at a time.

Model data

Timings in minutes:
lorry arrival rate negexp:mean=1/12 per minute
loading rate constant:0.1 tons/min

Capacities:
lorry load 5,10,15 tons,equally likely
priority randint:1→4

If the lorries are served FCFS, then we can model class lorry by

[ ref(res) hopper; ]

entity class lorry;

begin

hopper.acquire(1);

hold(load time);
hopper.release(1);

end***lorry***;

We now alter the rule for who is to be loaded. Lorries are now allocated a
priority in the range 1 through 4. A freshly arriving a lorry can interrupt the
lorry currently being loaded if it has a greater priority than the latter. The
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interrupted entity has its priority increased by one each time it is interrupted
— an attempt to see that a lorry with a low initial priority cannot be delayed
too long. Then it rejoins the queue for the hopper and tries again.

Notice that this is not just a simple pushdown effect. For if Lp displaces Lr,
Lr does not necessarily acquire the hopper again when Lp quits. For in the mean
time, a third lorry Lq may arrive with priority in between those of the other
two (priorityp >= priorityq > priorityr). When Lp quits, Lq seizes the
hopper. When Lr is displaced, its incremented priority ensures that it becomes
the first entity queueing for the hopper. But it will be pushed back down the
queue by a later arrival with higher priority or should its own interrupter be
interrupted. Notice that a lorry may be interrupted several times before being
fully loaded.

The synchronisation is achieved in Demos as follows: at time t, let Lr be
loading and Lp deliver an an interrupt. The key statements executed by Lp and
Lr at time t are

Lp Lr

1 Lr.interrupt(1);
2 hopper.acquire(1);
3 hopper.release(1);
4 priority:=priority+1;
5 interrupted := 0;
6 hopper.acquire(1);
7 hold(load time);

1. procedure interrupt is local to class entity and takes an integer
parameter n (should there be several interrupts, each can be given a
distinguishing number). A call E.interrupt(n) operates as follows:

(a) the routine saves the value of n in an integer variable interrupted
local to E (integer interrupted is another entity attribute)

(b) E is placed in the event list, at the current clock time but as last
entity scheduled for this time.

(c) when the ongoing active phase of current finishes (here with a
hopper.acquire(1)), E is promoted to be the new current.

2. Lp attempts to gain control of the hopper, but must wait; by the nature
of the problem, it will be inserted at the head of the queue for the hopper.

3. Lr is now current and finds its own local integer variable interrupted
set to n. It releases the hopper (which will be seized by Lp), and then

4. Lr increases its own priority
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5. sets its own interrupted to zero, and then

6. attempts to regain control of the hopper. It joins the hopper queue behind
Lp.

7. Lp now gains control of the hopper and a fresh loading starts.

The complete program for an eight hour run (in simulation time!) reads:

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

real rate;

ref(entity) USER;

ref(res) hopper;

ref(idist) p, vol;

ref(rdist) next;

boolean procedure and2(a, b); name a, b; boolean a, b;

and2 := if a then b else false;

entity class lorry;

begin

real tleft, load, start;

new lorry("l").schedule(next.sample);

priority := p.sample;

load := 5*vol.sample;

tleft := load/rate;

if and2(USER =/= none, priority > USER.priority)

then USER.interrupt(1);

while tleft > 0.0 do

begin

hopper.acquire(1);

!*** loading_starts ***;

USER :- current;

start := time;

hold(tleft);

!*** done_or_interrupted ***;

USER :- none;

hopper.release(1);

if interrupted = 0 then tleft := 0.0 else

begin

interrupted := 0;

tleft := tleft - (time-start);

priority := priority + 1;

end;

end***of while loop***;

end***lorry***;

trace;

rate := 1.0;

p :- new randint("priority", 1, 4);

vol :- new randint("lorry load", 1, 3);
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next :- new negexp("next lorry", 1/12);

hopper :- new res("hopper", 1);

new lorry("l").schedule(0.0);

hold(480.0);

end;

OUTPUT

clock time = 0.000

**********************************************************************

* *

* t r a c i n g c o m m e n c e s *

* *

**********************************************************************

time/ current and its action(s)

0.000 demos schedules l 1 now

holds for 480.000, until 480.000

l 1 schedules l 2 at 7.358

seizes 1 of hopper

holds for 15.000, until 15.000

7.358 l 2 schedules l 3 at 88.690

interrupts l 1, with power = 1

cancels l 1

awaits 1 of hopper

l 1 releases 1 to hopper

awaits 1 of hopper

l 2 seizes 1 of hopper

holds for 5.000, until 12.358

12.358 releases 1 to hopper

***terminates

l 1 seizes 1 of hopper

holds for 7.642, until 20.000

20.000 releases 1 to hopper

***terminates

.................................

clock time = 480.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

priority 0.000 44 randint 1 4 33427485

lorry load 0.000 44 randint 1 3 22276755

next lorry 0.000 44 negexp 8.333&-002 46847980
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r e s o u r c e s

*****************

title / (re)set/ obs/ lim/ min/ now/ % usage/ av. wait/qmax

hopper 0.000 51 1 0 0 82.252 17.978 8

Remarks on Example 12

The trace shows L 1 starting an expected 15 minute load at time 0.0. When
interrupted at time 7.358 by L 2, L 1 relinquishes the hopper and tries again.
When L 1 eventually regains control of the hopper at time 12.358, it has 15.0-
7.358 = 7.642 minutes worth of loading left. This time no interruptions are
made (L 3 does not enter the system until well after L 2 has quit).

As to the program itself, the global variable USER always references the
current occupier of the hopper (or none). A freshly arriving lorry sends an
interrupt only if the hopper is occupied (user =/= none) and its priority is
greater than that of the hopper (priority > USER.priority). By writing
the interrupt in the form if condition then interrupt(1) we only disturb
the occupier when it has to give up the hopper.

The victim is at once rescheduled in the event list with its local variable
interrupted set to 1 signifying that an interrupt has been made. N.B. After
an interrupt has been dealt with, remember to reset interrupted to zero (or
some other suitable neutral value) to signify that no interrupt is now pending.

It is up to the lorry concerned to remember how much loading remains.
This has been done in a rather special way by computing the length of the
loading time straight away and recording it in tleft. Each time the lorry has
a spell on the hopper and is interrupted, tleft is decremented by the time just
spent (time - start). If no interrupt occurs, tleft is set straight to zero.
The next time the lorry gains control of the hopper, it will try to retain it for
the full expected period, namely tleft.

Example 13: Quarry

A quarry contains a narrow seam of high quality stone on the edge of a broad
front of average quality stone. Early each day the site is blasted producing
sufficient rock of both qualities to meet the days demand. Two types of truck
arrive: large trucks which take the average quality stone, and small trucks for
the high quality stone. The site has three mechanical diggers: two large diggers,
L1 and L2, are used to load average quality stone on to the large trucks. They
are too large to manoeuvre near the narrow seam and can thus never be used to
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load the high quality stone. The site geography demands that the high quality
stone be loaded by a third, smaller digger S.

The large diggers can load at a considerably higher rate than the small
digger S. When S has no customer for high quality stone it is allowed to load
a large truck should L1 and L2 be busy. But should a high quality customer
then arrive, S stops loading average quality stone and loads high quality stone.
Meanwhile its previous customer does not necessarily have to wait for the small
digger to become free again — it can be loaded by a large digger if one becomes
free first. S may also be interrupted if it is loading a large truck with average
quality stone when a large digger becomes free. The large digger should take
over the job freeing the small digger as it loads at a faster rate.

Model data

Timings in hours:
Inter-arrival times

large trucks negexp:mean=22/hour
small trucks negexp:mean=10/hour

Loading rates
large digger constant:240 tons/hour
small digger constant: 60 tons/hour

Capacities:
large truck load 20 tons
small truck load 5 tons

Structure of the model I

We first sketch a solution ignoring interrupts and then add in the code for
the interrupts. We model small trucks, large trucks, small diggers, and large
diggers as entities. Our starting point has large and small trucks arriving at
their own rates. The small digger may only load small trucks and the large
digger may only load large trucks. We choose to let the diggers be the masters
and the trucks be the slaves. On arrival, a truck waits for attention in waitq
STQ or LTQ according to its type. At this level of abstraction, the entity outlines
are:

Struck = STQ.wait

Ltruck = LTQ.wait

Sdigger = T :- STQ.coopt; hold(load); T.schedule(0.0); repeat

Ldigger = T :- LTQ.coopt; hold(load); T.schedule(0.0); repeat



7.2. INTERRUPTS 155

Structure of the model II

The small digger can load trucks from either STQ or LTQ. We use ref(condq)
Q suspend the small digger until the appropriate choice can be made, which in
turn means that the trucks must signal Q when they arrive in the system to
make sure that if S is idle it can start loading. The system description unfolds
to

Struck = Q.signal; STQ.wait

Ltruck = Q.signal; LTQ.wait

Sdigger = Q.waituntil(STQ.length > 0 or LTQ.length > 0);

if STQ.length > 0

then service small truck T in STQ

else service large truck T in LTQ;

T :- none; repeat

Ldigger = T :- LTQ.coopt; hold(load); T.schedule(0.0); repeat

When loading, the small digger refers to its companion truck by T. When T has
been loaded and sent on its way (by T.schedule(0.0)), the local variable T of
S is reset to none prior to S re-entering the condq Q. Thus S.T == none is a
sign that S is idle.

Structure of the model III

As yet we have made no attempt to incorporate interrupts — once started a
digger will complete a loading. We now turn our attention to handling the
interrupts.

First consider the possible interrupt when a small truck arrives. If the
small digger S is idle or dealing with another small truck, then no interrupt is
necessary. But if the small truck finds the small digger loading a large truck
(expressed by S.T is Ltruck then is has to force S to stop loading its large
truck at once. S can then allow S.T to rejoin LTQ partly filled (and with higher
priority?), and then S can start loading the interrupting small truck. The
interruption is achieved by coding small truck as

truck class Struck;

begin

schedule small next;
if S.T is Ltruck

then S.interrupt(1)

else Q.signal;

STQ.wait;

end***struck***;

and expanding the code for the small digger to
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entity class Sdigger;

begin

ref(truck) T;

Q.waituntil(STQ.length > 0 or LTQ.length > 0);

if STQ.length > 0 then

begin !*** load small truck ***;

T :- STQ.coopt;

hold(load time);
T.schedule(0.0);

end else

begin !*** load large truck ***;

T :- LTQ.coopt;

hold(load time);
!*** possible interrupt ***;

if interrupted = 0 then T.schedule(0.0) else

begin

note that T is partially filled;
let T rejoin LTQ;
interrupted := 0;

end;

end;

T :- none;

repeat;

end***Sdigger***;

Since it may be loaded in stages instead of all at once, we have to cast the body
of Ltruck in the form of a loop. We assume that the local variable load keeps
track of how much loading there is left to do.

truck class Ltruck;

begin

schedule next;
load := 20.0;

while load > 0.0 do

begin

Q.signal;

LTQ.wait;

end;

end***Ltruck***;

When rescheduled, a large truck quits if its LOAD = 0.0; or else it re-enters LTQ
for another load.

Structure of the model IV

The second type of interrupt occurs when a large digger becomes free and the
small digger is loading a large truck. Since a large digger is so much faster than
the small digger, it seems only sensible that it should take over. Accordingly, a
large digger will issue an interrupt when that situation arises. We tentatively
code
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entity class Ldigger;

begin

ref(truck) T;

T :- LTQ.coopt;

hold(load time);

T.load := 0.0;

T.schedule(0.0);

if LTQ.length = 0 and S.T is Ltruck

then S.interrupt(2);

repeat;

end***Ltruck***;

On the interrupt call, the issuer of the call continues straight on and awaits
the arrival of the large truck T in LTQ. The interrupt stops S from working on
its current large truck. S resets the current load of the truck T and sends it
off to LTQ where it will at once get service (a large digger is waiting). S then
re-enters the condq Q.

The complete program

The complete program gives some hierarchy to the trucks and diggers (hiving
off their common parts) and incorporates details of the loading rates. The
model is run for 10 hours.

external class Demos = "/usr/local/simulabin/demos.atr";

Demos

begin

ref(sdigger) S;

ref(condq) Q;

ref(waitq) LTQ, STQ;

ref(rdist) nextl, nexts;

entity class truck;

begin

real load;

end***truck***;

truck class Ltruck;

begin

load := 20.0;

new Ltruck("Ltruck").schedule(nextl.sample);

while load > 0.0 do

begin

Q.signal;

LTQ.wait;

end;

end***Ltruck***;

truck class Struck;

begin

load := 5.0;
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new Struck("Struck").schedule(nexts.sample);

if S.T is Ltruck

then S.interrupt(1)

else Q.signal;

STQ.wait;

end***struck***;

entity class digger;

begin

ref(truck) T;

real rate;

end***digger**;

digger class Ldigger;

begin

rate := 240.0;

LOOP:

T :- LTQ.coopt;

hold(T.load/rate);

T.load := 0.0;

T.schedule(0.0);

T :- none;

if LTQ.length = 0 and S.T is Ltruck

then S.interrupt(2);

repeat;

end***Ldigger***;

digger class Sdigger;

begin

real start;

rate := 60.0;

LOOP:

Q.waituntil(STQ.length > 0 or LTQ.length > 0);

if STQ.length > 0 then

begin ! *** load small truck ***;

T :- STQ.coopt;

hold(T.load/rate);

end else

begin ! *** load large truck ***;

start := time;

T :- LTQ.coopt;

hold(T.load/rate);

if interrupted = 0 then T.load := 0.0 else

begin

T.load := T.load-(time-start)*rate;

T.priority := 1;

interrupted := 0;

end;

end;

T.schedule(0.0);

T :- none;

repeat;

end***Sdigger***;

nextl :- new negexp("next large", 22.0);
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nexts :- new negexp("next small", 10.0);

Q :- new condq("Sq");

STQ :- new waitq("Struckq");

LTQ :- new waitq("Ltruckq");

S :- new Sdigger("S");

S.schedule(0.0);

new Ldigger("Ldigger").schedule(0.0);

new Ldigger("Ldigger").schedule(0.0);

new Ltruck("Ltruck").schedule(0.0);

new Struck("Struck").schedule(0.0);

hold(10.0);

end;

OUTPUT

clock time = 10.000

**********************************************************************

* *

* r e p o r t *

* *

**********************************************************************

d i s t r i b u t i o n s

*************************

title / (re)set/ obs/type / a/ b/ seed

next large 0.000 215 negexp 22.000 33427485

next small 0.000 100 negexp 10.000 22276755

c o n d i t i o n q u e u e s

*******************************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

Sq 0.000 117 1 0 1.103&-002 113 9.430&-004

w a i t q u e u e s

*********************

title / (re)set/ obs/ qmax/ qnow/ q average/zeros/ av. wait

Struckq 0.000 97 1 0 0.000 97 0.000

Struckq * 0.000 97 5 3 1.110 13 0.113

Ltruckq 0.000 227 3 0 0.372 180 1.640&-002

Ltruckq * 0.000 227 13 8 3.349 55 0.137

Remarks on Example 13

In the final listing, just as entity class truck was used to define the com-
mon attribute load, so have we also included entity class digger which
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contains attributes common to Ldigger and Sdigger. real rate is set to the
appropriate loading rate for each type of digger at the next level; ref(truck)
T references a digger’s current customer or is none.

Besides interrupting an active entity (i.e. one in the event list), one may
also interrupt an entity which is passive (i.e. waiting (until) in a queue, blocked
on a resource, or passivated). In the latter cases, the interrupted entity will
depart from its current explicit or implicit queue (if any) and be placed in the
event list immediately behind its interrupter current with interrupted set.

When a loading by S is interrupted we have to be able to compute how
much S has managed to load before the interrupt. This we do by noting when
an interruptible loading operation starts in start. When an interrupt occurs,
the amount loaded during this operation is given by (time-start)*rate.

7.3 Scheduling with now

The programmed strategy in Example 13 is rather unfair in one respect. Sup-
pose that S is currently loading a large truck Tn, another large truck Tm (m
> n) waits in LTQ and then a large digger, L 1 say, becomes free. Our coding
directs L 1 to coopt Tm. As L 1 loads faster than —tt S, Tm could well be
loaded and away before Tn. It would be fairer to let L 1 interrupt S and take
over responsibility for loading Tn. S would then naturally get on with Tm. If
we alter the coding of the interrupt inside class Ldigger to

if S.T is Ltruck then S.interrupt(2);

then L 1 will still coopt Tm and S picks up Tn again! This is because the actions
of L 1, S and Tn, although all executed at the same clock time, are threaded
so

L 1 S Tn

1 S.interrupt(2);
2 T :- LTQ.coopt;
3 hold(........);
4 T.load := ..;
5 T.priority := ..;
6 T.schedule(0.0);
7 T :- none;
8 interrupted := 0;
9 Q.waituntil(...);

10 LTQ.wait;

Action 2) means that L 1 coopts Tm since Tn does not enter LTQ until action
10). It is essential that S be given the opportunity to release Tn and Tn be
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allowed to enter LTQ (with its increased priority taking it to the front) before
L 1 attempts a coopt. This we can arrange by the insertion of appropriate
holds and by using the rather special real procedure now. now is intended
to express urgency. Whereas E.schedule(0.0) schedules E at the current
clock time but as the last entity at that time, E.schedule(now) is treated as
a priority request and E actually preempts current. When the next phase of
E is over, then the pushed-down previous current will be restored. Thus the
following alterations do trick.

if S.T is Ltruck then S.interrupt(2);

hold(0.0);

repeat;

inside class Ldigger, and

T.schedule(now);

T :- none;

T.interrupted := 0;

hold(0.0);

Q.waituntil(.....);

inside class Sdigger. These extra holds produce the following new threading
of code

L 1 S Tn

1 S.interrupt(2);
2 hold(........);
3 T.load := ..;
4 T.priority := ..;
5 T.schedule(now);
6 LTQ.wait;
7 T :- none;
8 interrupted := 0;
9 hold(0.0);

10 T :- LTQ.coopt;
11 hold(........);
12 Q.waituntil(...);

EXERCISES 7 (continued)

Exercise 7.4 Cars are transported from a harbour and over the water by
a fleet of ferries each with a capacity of 20 cars. The ferry service runs contin-
uously round the clock and a departure is scheduled every hour on the hour.
The ferry due to depart at n o’clock arrives at normal (mean=20, standard
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deviation=5) minutes past (n-1) o’clock, unloads, and then takes on board as
many cars as it can up until its scheduled departure time. At that time, the
ferry will continue to load while the queue is not empty and it is not yet full.

Car arrivals at the ferry point are random (negexp distributed) with dif-
ferent arrival rates according to the time of day. In daytime [ 06.00 → 18.00
), they arrive at a mean rate of 15 per hour; at night time [ 18.00 → 06.00 ),
they arrive at a mean rate of 9 per hour. Season ticket holders get priority in
the queue. The percentage of season ticket holders is 40 in daytime and 25 at
night. Find the mean waiting times of season ticket holders and other cars and
also the mean delay of the ferry by running your model over a 28 day month.
Take as your initial conditions that the first car arrives at time 5 minutes and
the first ferry at time 20 minutes.

Model data

Timings in minutes:
unload ferry randint:6→12
load each car constant:1

Exercise 7.5 Customers queueing for service in a shop are characterised by
their own individual impatience. They leave the queue after a certain time if not
already being served or placed first in the queue. Model the system given that
customers arrive at a mean rate of one per minute (negexp distributed) and
that each service lasts for 40→60 seconds (uniformly distributed). A customer
quits the shop after randint 120→300 seconds if not already being served, or
else he is not the first in the queue.

Run your model for 4 simulated hours assuming that the first customer
arrives at time 0.0.

Exercise 7.6 In Example 12, the validity of an interrupt was tested by the
interrupter instead of by the recipient. Another way is to make the interrupt
and let the recipient decide for himself whether to accept it, ignore it, or reserve
it for later attention. For example, in our formulation of the small digger S
if we altered the interrupt calls to interrupt(n) instead of if conditionthen
interrupt(n) then S would receive interrupts when

1. waiting until in Q (always accepted),

2. loading a small truck (always ignored),

3. loading a large truck (always accepted if n = 1, always ignored if n = 2).

Recode the whole problem according to this suggestion.



Chapter 8

Summing up

8.1 Some loose ends

This primer has introduced the Demos facilities (resource types, queues, dis-
tributions, etc.) by a sequence of examples which usually illustrate the point
at hand but not much more. Here we spend a little extra time on periodic
reporting, starting up simulations and closing them down.

Periodic reports can be issued rather neatly using an object of such a class
as reporter below.

entity class reporter(t); real t;

begin

hold(t);

report;

reset;

repeat;

end***reporter***;

ref(reporter) R;

R :- new reporter("daily report", 24.0);

R.schedule(0.0);

Working in hourly units, R will issue a full report on the last day’s facility
usage every 24 hours. report is a global Demos procedure which prints stan-
dard reports on the usage of all the Demos facilities created by the user. The
report covers their usage since the object’s creation (if not reset) or since its
last reset. (The Demos system itself calls this procedure at the end of each
simulation run.) reset is another global Demos procedure which resets all
Demos facilities created by the user so that they now collect afresh over the
next time period.

procedure reset is also useful in the warm start situation. We have usu-
ally started up our models by letting the first arrivals fall due at time 0.0. It
takes some time before enough entities have worked their ways through the sys-
tem for it to have settled down to approximately normal working conditions.
The cold start naturally biases the facility reports as initially there will be little
interference between entities. Using reset it is easy to let the system settle
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down and then gather data over the desired time slot. We merely change code
in the Demos block from the usual

hold(simulation period);

into

hold(warm up period);
reset;

hold(time slot);

The final report covers a period of duration ’time slot’. The length of the
warm up period is usually chosen by some rule of thumb rather than by a
precise method. Shannon [37, pages 183-186] is particularly informative on
this topic and gives several further references.

Closing down a simulation is less of a problem in Demos as the Demos block
can itself be treated as an entity and acquire resources, wait until in queues,
etc. This neat and very effective idea was borrowed directly from Simula; it
was used in example 5 and exercises 3.13, 4.5, and 4.12. See further remarks
in Appendix B.

8.2 Demos facilities not covered

Besides the global procedures report and reset mentioned above, there are
also procedures report and reset local to classes res, bin, and the various
queues — condq, queue, and waitq. We are able to report and reset all user
created facilities, select those of one class (e.g. all res objects) and even select
single items (e.g. a single bin).

There is a class empirical which can be used to represent empirical data
tabulated as a cumulative probability function.

In connection with the design of experiments, the default values for distri-
bution seeds can be overridden (useful for antithetic drawings) and the Demos-
defined first seed value (33427485 — and hence all the other seeds) can be
changed. In fact, even the random number generators can be replaced.

There are also several snapshot routines which can be called to detail indi-
vidual entities either waiting (until) in queues, awaiting resources, or scheduled
in the event list.

There is a class accumulate which parallels class tally, but for time
dependent variables. And there is a class regression too.

Finally, class entity contains certain additional attributes.
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1. boolean procedure avail which returns true if the entity is not
coopted

2. boolean procedure idle which returns true if the entity is not in the
event list

3. ref(entity)procedure nextev which returns none if the entity is idle
or last in the event list, otherwise a reference to the next entity in the
event list, and

4. real procedure evtime (which returns the entity’s scheduled time if it
lies in the event list. Otherwise, a call on evtime causes a run time error:
if in doubt, check using if not E.idle then .....).

8.3 The Simula implementation

It is worth remarking on how much Demos owes to Simula. Although we have
certainly borrowed ideas from other languages (resource types and reporting
from GPSS, conditions and activity diagrams from CSL and ECSL), Demos
would not exist without the inspiration of its host language which positively
invites the user to write programs in process (= entity) style. All we have done
is add a few user-oriented bells and whistles.

Demos is implemented as a Simula context (prefixed by SIMSET, but not
by SIMULATION) and extends over roughly 2000 lines. Along with language
design, detailed documentation, and testing, Demos was approximately a 9
person-month project. The resulting system is portable and has proved easy
to extend, alter and maintain.

Implementing a Demos compiler from scratch was out of the question be-
cause Demos is Simula plus, and Simula is itself a 10 person-year project.
However a Demos compiler would have certain advantages. It could, for ex-
ample, give error messages written in Demos (rather than Simula) terminology
(although it must be admitted that Simula compilers are pretty good in this
respect anyway), detect the possibility of deadlock at compile time, accept a
Demos program written with waits until and itself insert the correct calls on
Q.signal, give resource usage cross-reference lists, do away with the need for
explicitly titling every Demos object (as in new boat("boat"), etc.). Without
a compiler, the same effect can be achieved by using a pre-processor, which is
much easier to write but more expensive to run.

Clementson [21] and Matthewson [26] have gone further than this and writ-
ten program generators; inter-active programs which ask the user about his
model and then actually write the code! Clementson’s system produces code
for ECSL, but Matthewson’s stores the structure of the model and can then
be persuaded to produce code for several different languages — GASP, ECSL,
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Simula, Demos ... Thus one can develop a program in Simula, say, on a large
machine, and run it in GASP on a small machine. It also reinforces the point
that activity diagrams can be used as a basis for writing simulations in any sim-
ulation programming language. Both a program generator and a pre-processor
for Demos are under consideration.

There are many advantages to coding Demos in Simula. Firstly, Simula
is widely implemented and to a good standard. The implementors of Simula
systems meet regularly in the SSG (Simula Standards Group). The hope being
that this would ensure that Simula systems are compatible now and will remain
so in the future. Experience with porting Demos has been fairly trouble free,
only the CDC implementation [3] giving rise to non-trivial problems. Demos
was implemented on DEC System 10 hardware [6] and has been ported to DEC
System 20 [also 6], IBM 360/370 [8], and ICL System 4 [9], and ICL 2900 hard-
ware with no modifications at all. The UNIVAC 1100 implementation [7] does
not yet support virtual labels, so that version of Demos has to make do without
REPEAT. Both the NDRE [4] and CDC [3] Simula implementations quote key
words. Once that hurdle has been accounted for, the NDRE version supports
neither virtual labels nor functions returning references, so that repeat is out,
and the function ref(entity) procedure nextev has had to be rewritten as
a procedure. The CDC [3] Simula compiler still does not treat virtual quanti-
ties correctly, and the Demos code for the reset and report routines had to be
“bent” to fit. Altogether, the experience has not been too bad (have you tried
porting FORTRAN programs from one machine to another?). The situation
improved in the 1980’s when Lund Software released their Simula implementa-
tions [10] making identical Simula compilers available on an even wider range
of hardware.

Secondly, Simula’s object and context features are considerably ahead of
anything offered by other languages. It is easy to ‘see’ how to implement Demos
facilities as Simula objects. The context feature enables an implementation to
progress in an orderly fashion layer by layer, each new step adding in a few
new interrelated ideas. Simula has very strict security and consistency checks
so that many mistakes are picked up as soon as possible at compile time.

Thirdly, any ideas not built into Demos can be added straightforwardly
(which eases the designer’s dilemma — if in doubt, leave it out!). One easy
addition (should the arguments of chapter 6.3 fail to be convincing) would be
to put in one’s own snoopy. But the area in which advanced users will most
probably want to make changes is in the report routines. Here it is sufficient
to extend the facility concerned and define one’s own report routine, e.g.

res class my_res;

begin

procedure report;..........;

end***my_report***;

and then work with my res objects instead of res objects. The newly writ-
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ten report replaces the standard Demos report thanks to Simula’s virtual
mechanism. For further detail on virtual, see [11, chapter 4] or [15].

Finally, Demos is not the end of the road. A user should proceed in standard
Simula fashion to develop a more specialised contexts for areas of particular
interest, e.g. here is a the skeleton of a link level context for simulating the
X25 long haul network protocol. It contains definitions for frames, and sender,
receiver, and retransmitter processes (whose common characteristics have been
gathered together in a Real Time process declaration). We also predefine a
network node each of which will have n duplex links to other network nodes.
Each node has a trio of processes looking after each network link. Finally we
declare a network composer which automatically buids a specific configuration.

Demos class X25_link_level;

begin

entity class frame; ................. ;

entity class RT_process; ............ ;

RT_process class sender; ............ ;

RT_process class receiver; .......... ;

RT_process class retransmitter ; .... ;

entity class node(nLinks); .......... ;

begin

ref(qeueue) array RTQ, INQ, OUTQ (1:nLinks);

ref(RT_process) S, R, RT (1:nLinks);

integer k;

for k := 1 step 1 until n Links do

begin

RTQ(k) :- new queue("retransmit queue");

INQ(k) :- new waitq("frames in");

OUTQ(k) :- new waitq("frames out");

S(k) :- new sender("S");

R(k) :- new receiver("R");

RT(k) :- new retransmitter("RT");

S(k).schedule(0.0);

R(k).schedule(0.0);

RT(k).schedule(0.0);

end;

end***node***;

procedure read_network; ............. ;

end***X25_link_level***;

For examples of well-used contexts on Simula, study Lie’s SIMWAP [17],
Rogeberg’s TETRASIM [18], and Vaucher’s GPSSS [19].
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Several other simulation packages have been implemented as extensions
to general programming languages. The two best known to the author are
SIMONE and ALGOLSIM. SIMONE (see Kaubisch et al. [24]) is an extension
to PASCAL produced by extending a PASCAL compiler. Its design was heavily
influenced by Simula. ALGOLSIM (Shearn [30]) is an extension to ALGOL
68. Both papers are well written, and it is interesting to compare ALGOL 68,
PASCAL and Simula as extendible languages.

Virjo [40] gives a very thorough comparison of GPSS, SIMSCRIPT, and
Simula. The paper includes several examples coded in all three languages and
run on a variety of machines.

8.4 The distribution of Demos

As stated in the preface, Demos is an ordinary Simula program and will run
on any computer that supports Simula (see references [3-10]). The Demos Ref-
erence Manual ([14]) gives full documentation of the complete Demos system,
and includes a Simula source listing of Demos as an appendix. It is the au-
thor’s hope that this will lead to Demos being read and improved by others,
and to its being used in education to show what the components of a discrete
event simulation language are and how they fit together. The Demos system
is maintained by the author who will be pleased (?) to receive constructive
criticisms and error reports.

The Demos system (both source code and reference manual) are available
from the author:

Graham Birtwistle,
School of Computer Science,
University of Sheffield,
Regent Court, 211 Portobello Street,
Sheffield S1 4DP, England.
Tlf: (+44) 114 222 1842
Net: graham@dcs.shef.ac.uk

8.5 Coda

There is still much to learn and this primer has merely scratched the surface.
Fishman [32] and/or Shannon [37] (which both contain many further references)
are ways into the important topics of experimental design and input/output
analysis. Franta [33] combines an explanation of Simula together with an intro-
duction to the statistical aspects of simulation. Note especially his treatment
of the regenerative method. Poole and Szymankiewicz [27], Pritsker and Kiviat
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[28] and Schriber [29] contain many simulation examples which can be used to
build up modelling experience if you are not on an actual project. Reference
[28] in particular contains a good selection of examples and exercises.

Finally, note that when you have managed to work your way through this
book and complete the exercises then ... then you can keep it on your bookshelf.
For it is intended as an introductory teaching text and not as a reference
manual. Once a certain competence in Demos has been reached, then the
Demos Reference Manual [14] and the appropriate Simula User’s Manual [3-9]
should prove more useful.
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Outline of Simula

Simula statements

• block

Demos

begin

declarations;

statements;

end

begin

integer k, s;

for k := 1 step 1 until n do

s := s + X(k)**2;

end

• compound statement

begin

sum := sum + x;

n := n + 1;

end

• procedure statement

repeat

hold(0.0)

tugs.acquire(2)

175
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• goto statement

goto exit

• assignment statement

m := m + 1

P :- Q :- none

T.load := 16.0

• object generator

new boat("boat")

• for statement

for k := 1 step 1 until n do

begin

X(k) := false;

Y(k) := false;

end;

for k := 3, 1, 4, 1, 5, 9 do

freq(k) := freq(k)+1

for Q :- Q1, Q2, Q3, Q4 do

Q.signal

• if statement

if tugs.avail = 0 then TUGQ.wait

if free < 5 then

begin

hold(10.0);

E.wait;

end else T.wait
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• while statement

while Q.length > 0 do

Q.first.schedule(now)

• inspect statement (not used in this book)

inspect t when truck do load := 16.0

• dummy statement

Simula declarations

• procedure declaration

procedure parameters
mode

parameter specification value ref name
real/integer/character/boolean d * o
ref(any class) * d o
text o d o
real/integer/character/boolean array o d o
ref(any class)/text array * d o
procedure/label/switch * d o

key — d: default, *: illegal, o: optional

procedure towin(v); ref(vehicle)v;

begin

if v == none then ERROR("no vehicle") else

if v.brokendown then FALSEALARM else

victim :- v;

end***towin***

integer procedure sum(m, n); integer m, n;

begin

sum := m + n;

end***sum***;
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• class declaration (somewhat restricted)

class parameters
mode

parameter specification value ref
real/integer/character/boolean d *
ref(any class) * d
text o d
real/integer/character/boolean array o d
ref(any class)/text array * d

key — d: default, *: illegal, o: optional

class point(x, y); real x, y;

begin

real r;

r := sqrt(x**2 + y**2);

end***point***

point class polar;

begin

real angle;

angle := if r = 0.0 then 0.0 else arctan(x, y);

end***polar***

• external declaration

external class Traffic

external class Demos = "/usr/local/simulabin/demos.atr";

• array declaration

ref(res)array INNERS, OUTERS (1:N);

integer array BOARD ( 1:8, 1:8 );

• type declaration

integer a, b, c

ref(boat)B1, QE2
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Outline of Demos

simset class Demos;

begin Data collection facilities

class count(title); value title; text title; 64

begin

procedure update(v); integer v; 64

procedure report; 67

end***count***;

class tally(title); value title; text title; 82,83

begin

procedure update(v); real v; 83

procedure report; 82

end***tally***;

class histogram(title,lb,ub,ncells); value title;

text title; real lb, ub; integer ncells; 104

begin

procedure update(v); real v; 104

procedure report; 102

end***histogram***;

entity declarations

class entity(title); value title; text title; 36

virtual: label loop; 68

begin

integer priority; 70

procedure schedule(t); real t; 36

procedure cancel; 37

procedure into(q); ref(queue)q; 93

procedure out; 93

procedure interrupt(n); integer n; 161

boolean procedure avail; 181

real procedure evtime; 181

boolean procedure idle; 181

ref(entity)procedure nextev; 181

procedure repeat; 67

end***entity***;

resource declarations

class res(title,avail); value title; 37

text title; integer avail;

begin

procedure acquire(n); integer n; 37

procedure release(n); integer n; 37

179
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procedure report; 49

end***res***;

class bin(title,avail); value title;

text title; integer avail; 74

begin

procedure take(n); integer n; 75

procedure give(n); integer n; 75

procedure report; 82

end***bin***;

queue declarations

class queue(title); value title; text title; 93

begin

ref(entity)procedure first; 93

ref(entity)procedure last; 93

integer length; 93

procedure report;

end***queue***;

class waitq(title); value title; text title; 89

begin

ref(queue)masterq, slaveq; 89

ref(entity)procedure first; 90

ref(entity)procedure last; 90

integer length; 89

ref(entity)procedure coopt; 90

procedure find(e, cond); name e, cond;

ref(entity)e; boolean cond; 116

boolean procedure avail(e,cond);name e,cond;

ref(entity)e; boolean cond; 90

procedure wait; 91

procedure report; 103,104

end***waitq***;

class condq(title); value title; text title; 134

begin

boolean all; 149

ref(entity)procedure first; 134

ref(entity)procedure last; 134

integer length; 134

procedure waituntil(c); name c; boolean c; 134

procedure signal; 135

procedure report; 151

end***condq***;

the main program impersonator

entity class mainprogram;

begin

detach;

repeat;
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end***mainprogram***;

ref(entity)Demos;

... and the various routines

N.B. the random number generators are

given separately in Appendix C.

procedure trace; 50

procedure notrace; 50

procedure hold(t); real t; 37

real procedure time; 40

real procedure now; 175

ref(entity)procedure current; 40

procedure report; 179

procedure reset; 180

text procedure edit(t,n); value t; text t; integer n; 59

Demos :- new mainprogram("demos");

demos.schedule(0.0);

inner;

hold(0.0);

report;

end***Demos***;

B.1 The MAIN program

It is desirable to have the Demos block entering into the Simulation as an
entity, but this cannot be managed directly as context blocks may not be refer-
enced. The same effect is achieved by having an entity of class mainprogram.
ref(entity) Demos is a reference to a special “impersonating” object. It can
be scheduled, held, and cancelled just like any other entity. But every time it
becomes current, it transfers control back to the Demos context block (that is
the effect of the Simula routine detach in this case) whose user-written main
program actions are thereby continued. Thus a hold(t) written in the program
block causes the Demos object to be rescheduled at time+t and the actions of
(the new) current to be resumed. Thus the Demos context block will not be
active again until the Demos object becomes current.

A aimulation run ends when an exit is made through the end of the user-
written part of the Demos context block. It is usually desirable that the Demos
context block itself decides the length of the run, but it is possible to cancel
the Demos object and leave the decision to other entities.

B.2 Demos synchronisations

The Demos synchronisation pairs
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acquire release
take give
coopt schedule
waituntil signal

can be expressed in terms of calls on a more primitive procedure pair get/put.
This helps to ensure their consistency and once the underlying get/put pair
are understood it makes it easier to write synchronisations correctly. get and
put are (informally) listed below.

procedure get(Q, avail, seize); name avail; ref(queue) Q;

boolean avail; statement seize;

begin

current.into(Q);

while not(current == Q.first and avail) do

current.cancel;

current.out;

enter Q.first into event list immediately after current;

seize;

end***get***;

procedure put(Q, return); ref(queue) Q; statement return;

begin

if Q.first =/= none then Q.first.schedule(0.0);

return;

end***put***;

In terms of this pair, the Demos routines are

ref(res) r

r.acquire(n);

get(r.q, r.avail >= n, r.avail := r.avail - n);

r.release(n);

put(r.q, r.avail := r.avail + n);

ref(bin) b;

b.take(n);

get(b.q, b.avail >= n, b.avail := b.avail - n);

b.give(n);

put(b.q, b.avail := b.avail + n);

ref(condq) q;

q.waituntil(c);

get(q.condition queue, c, null);
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q.signal;

put(q.condition queue, null);

ref(waitq) w;

w.coopt;

get(q.masterq, q.slaveq.length > 0,

coopt :- q.slaveq.first.coopt);

w.wait;

put(q.masterq, begin

if q.masterq.length > 0

then q.masterq.first.schedule(0.0);

current.cancel;

end;)

Two cases do not quite fit into this general pattern: find and signal with
all set. The reader is encouraged to modify get and put him- or her-self so
that these routines can be accommodated.
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Appendix C

Demos random number
generators

There are 9 random drawing facilities in Demos which are categorised accord-
ing to the type of distribution they sample from. rdists return real val-
ues (constant, empirical, negexp, normal, uniform, erlang); idists re-
turn integer values (randint, poisson); and the one bdist (draw) returns a
boolean value. Their common portion is defined in class dist which is then
used as prefix to the other three.

class dist

class dist(title); value title; text title;

begin

integer u;

procedure report;

u := some suitable seed;

end***dist***;

dist class rdist; virtual: real procedure sample;;

dist class idist; virtual: integer procedure sample;;

dist class bdist; virtual: boolean procedure sample;;

Note that we can override the initial value given to u (a necessary feature
for designed experiments. Negative u values produce antithetic drawings).

In practice, the virtual part means that we can reference any sub-class of
rdist with a ref(rdist) variable and still access its appropriate procedure
sample. Similarly with ref(idist) and ref(bdist) variables.

185
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class constant

rdist class constant(a); real a;

begin

real procedure sample;

end***constant***;

A call on sample always returns a. It is sometimes useful during model devel-
opment to cast a distribution as a constant (returning the mean value on every
call), and to replace it by the actual distribution prior to model validation.

class normal

rdist class normal(a, b); real a, b;

begin

real procedure sample;

if b < 0 then b := -b;

end***normal***;

A call on sample returns a drawing from a normal distribution with mean a
and standard deviation b.

class negexp

rdist class negexp(a); real a;

begin

real procedure sample;

a := abs(a);

if a = 0.0 then a := 0.0001;

end***negexp***;

A call on sample returns a drawing from a negexp distribution with mean time
between arrivals of 1/a.

class uniform

rdist class uniform(a, b); real a, b;

begin

real procedure sample;

if a > b then swap a<->b;

end***uniform***;

A call on sample returns a drawing from a uniform distribution with lower
bound a and upper bound b.
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class erlang

rdist class erlang(a, b); real a, b;

begin

real procedure sample;

if a <= 0.0 then a := -a;

if b <= 0.0 then b := -b;

end***erlang***;

A call on sample returns a drawing from an erlang distribution with mean a
and standard deviation 1/(a*sqrt(b)).

class empirical

rdist class empirical(n); integer n;

begin

real array P, X [1:n];

real procedure sample;

read in the values P1, X1 : P2, X2: ... : Pn, Xn
which represent a cumulative distribution.
(P1 = 0.0, Pn = 1.0, Pm > Pr, Xm > XR for m > r);

end***empirical***;

A call on sample returns a drawing from the cumulative probability function
represented by the P and X tables, x1 <= sample <= xn. Linear interpola-
tion is used.

class randint

idist class randint(a, b); integer a, b;

begin

integer procedure sample;

if a > b then swap a<->b;

end***randint***;

A call on sample returns an integer randomly distributed between a and b.

class poisson

idist class poisson(a); real a;

begin

integer procedure sample;

end***poisson***;

A call on sample returns a drawing from a poisson distribution with mean a.
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class draw

Finally

bdist class draw(p); real p;

begin

boolean procedure sample;

end***draw***;

A call on sample returns true with probability p: always false if p <= 0.0,
and always true if p >= 1.0.
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Answers to exercises 2

2.1 Customer declaration and object

These objects have no parameters and no local declarations.

class customer;

begin

enter shop;

wait if barber busy;

get haircut;

pay barber;

leave shop;

end***customer***

customer

enter shop;

wait if barber busy;

get haircut;

pay barber;

leave shop;

q
-

2.2 Lorry declaration and object

These objects have local data values which are automatically set to zero (if
arithmetic) or false if boolean.

class lorry;

begin

integer reg, load;

load;

deliver;

end***lorry***

lorry

reg 0

load 0

load;

deliver;

q

-

2.3 Car declaration and object

These objects have parameters (which are initialised on object creation) and
local variables.
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class car(reg,maxspeed,seats,weight);

integer reg,maxspeed,seats;

real weight;

begin

boolean brokendown;

if reg < 1885 or weight <= 0.0

or maxspeed < 50 or seats < 1

then error;

end***car***

car

reg 1970

maxspeed 240

seats 2

weight 1.2

brokendown false

if reg < 1885 or weight <= 0.0

or maxspeed < 50 or seats < 1

then error;

q

-

The object is depicted after its body actions have been completed, with its
LSC “beyond range”. In this circumstance, it is usual to show the LSC as just
a (large) dot as below.

2.4 Boat declaration and object

class boat(tonnage); integer tonnage;

begin

integer load, crew;

if tonnage < 1000 then error;

crew := 5 + tonnage/200

end***boat***

boat

tonnage 2600

load 1600

crew 18

if tonnage < 1000 then error;

crew := 5 + tonnage/200

t

2.5 Remote accessing analogue

A straightforward example is one’s address. When asked the question “Where
do you live?”, “At number 12” is an adequate answer if already on that par-
ticular street; “Number 12, Main Street”, if in one’s home town, “Number 12,
Main Street, Ugglebarnby’ if out of town, etc., etc.
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2.6 Class order and its sub-classes

class order;

begin

integer number, arrival;

real setup_time, processing_time;

end***order***;

order class batch;

begin

integer size;

end***batch***;

order class single;

begin

real weight, finishing_time;

end***single***;

single class plate;

begin

real length, width;

end***plate***;

2.7 Harbour context

There are, of course, several “solutions” to this problem depending upon what
you have in mind. A typical skeleton context could be

class Harbour;

begin

class crane.............;

class boat..............;

boat class cargo........;

boat class passenger....;

boat class tanker.......;

boat class tug..........;

class container.........;

class tide..............;

.........................

end***harbour***;

which we would use to prefix a user program thus

external class Harbour;

Harbour

begin

ref(crane) c1, c2;

ref(tug) t1, t2, t3;

...................

end;
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if Harbour is externally compiled in the local directory, and by something like

external class Harbour = "/usr/profs/graham/book/examples/Harbour.atr";

Harbour

begin

ref(crane) c1, c2;

ref(tug) t1, t2, t3;

...................

end;

when the externally compiled version lies elsewhere.

Answers to exercises 3

3.1 Decomposition analogy

The Macbeth analogy allows one player per role, but in a play with a chorus
we can have several actors with the same lines.

In the world of music, only the conductor has the complete score for a
symphony (which corresponds to a full Demos trace). Different part scores are
produced for 1st. violins, 2nd. violins, etc. Each such score gives only the
one part and a count of the bars when its players are silent (which corresponds
to a hold). Note that in this case, we have several players per role playing
in unison. In simulation models, several objects may well have the same class
declaration, but they can be executed at different speeds and start at different
times.
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3.2 Barber’s shop trace

time customer current action time of next event

0.0 C1 arrive
C1 request 1 barber
C1 seize 1 barber
C1 start haircut 15.0

15.0 C1 release 1 barber
C1 quit ****

20.0 C2 arrive
C2 request 1 barber
C2 seize 1 barber
C2 start haircut 35.0

35.0 C3 arrive
C3 request 1 barber
C2 release 1 barber
C2 quit ****
C3 seize 1 barber
C3 start haircut 50.0

40.0 C4 arrive
C4 request 1 barber

50.0 C3 release 1 barber
C3 quit ****
C4 seize 1 barber
C4 start haircut 65.0

65.0 C4 release 1 barber
C4 quit ****

Customer activity diagram

haircut ��
��

1 barber
?

6

Customer declaration

class customer;

begin

acquire 1 barber;
get haircut;
release 1 barber;

end***customer***;
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3.3 2-man barber’s shop trace

time customer current action time of next event

0.0 C1 arrive
C1 request 1 barber
C1 seize 1 barber
C1 start haircut 15.0

15.0 C1 release 1 barber
C1 quit ****

20.0 C2 arrive
C2 request 1 barber
C2 seize 1 barber
C2 start haircut 35.0

35.0 C3 arrive
C3 request 1 barber
C3 seize 1 barber
C3 start haircut 50.0
C2 release 1 barber
C2 quit ****

40.0 C4 arrive
C4 request 1 barber
C4 seize 1 barber
C4 start haircut 55.0

50.0 C3 release 1 barber
C3 quit ****

55.0 C4 release 1 barber
C4 quit ****

Customer activity diagram

haircut ��
��

2 barber
?

6

Customer declaration

Exactly as in exercise 3.2 above.
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3.4 Factory trace

time van current action time of next event

0.0 V1 arrive
V1 request w’bridge
V1 seize w’bridge 3.0
V1 start weighing

1.0 V2 arrive
V2 request w’bridge

3.0 V1 release w’bridge
V1 start unloading 23.0
V2 seize w’bridge
V2 start weighing 6.0

6.0 V2 release w’bridge
V2 start unloading 26.0

23.0 V1 request w’bridge
V1 seize w’bridge
V1 start weighing 26.0

24.0 V3 arrive
V3 request w’bridge

25.0 V4 arrive
V4 request w’bridge

26.0 V2 request w’bridge
V1 release w’bridge
V1 quit ****
V3 seize w’bridge
V3 start weighing 29.0

29.0 V3 release w’bridge
V3 start unloading 49.0
V4 seize w’bridge
V4 start weighing 32.0

32.0 V4 release w’bridge
V4 start unloading 52.0
V2 seize w’bridge
V2 start weighing 35.0

35.0 V2 release w’bridge
V2 quit ****

Note: V3 and V4 are currently unloading.

Van activity diagram

In our model, vans are served on the first-come, first-served principle (FCFS).
See particularly at time = 26.0 when V3 heads the waiting queue for the weigh-
bridge. V2 and V4 are also blocked at the weighbridge when V1 releases it. If
vans moving out were given priority, V2 would have been the next to acquire
the weighbridge.
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weigh in

unload

weigh out

����1 weighbridge

6

?

?

?

class van;

begin

acquire 1 weighbridge;

weigh in;

release 1 weighbridge;

unload;

acquire 1 weighbridge;

weigh out;

release 1 weighbridge;

end***van***;

3.5 Barber’s shop program

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) barbers;

entity class customer;

begin

barbers.acquire(1);

hold(15.0);

barbers.release(1);

end***customer***;

barbers :- new res("barbers", 1);

new customer("c").schedule( 0.0);

new customer("c").schedule(20.0);

new customer("c").schedule(35.0);

new customer("c").schedule(40.0);

hold(65.0);

end;
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3.6 Factory program

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res)weighbridge;

entity class van;

begin

weighbridge.acquire(1);

hold(3.0);

weighbridge.release(1);

hold(20.0);

weighbridge.acquire(1);

hold(3.0);

weighbridge.release(1);

end***van***;

weighbridge :- new res("weighbridge", 1);

new van("V").schedule(0.0);

new van("V").schedule(1.0);

new van("V").schedule(24.0);

new van("V").schedule(25.0);

hold(40.0);

end;
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3.7 Event list trace of factory program

time event list weighbridge

0.0 D(0.0)
0.0 D(0.0) V1(0.0)
0.0 D(0.0) V1(0.0) V2(1.0)
0.0 D(0.0) V1(0.0) V2(1.0) V3(24.0)
0.0 D(0.0) V1(0.0) V2(1.0) V3(24.0) V4(25.0)
0.0 V1(0.0) V2(1.0) V3(24.0) V4(25.0) D(40.0)
1.0 V2(1.0) V1(3.0) V3(24.0) V4(25.0) D(40.0)
3.0 V1(3.0) V3(24.0) V4(25.0) D(40.0) V2
3.0 V1(3.0) V2(3.0) V3(24.0) V4(25.0) D(40.0)
3.0 V2(3.0) V1(23.0) V3(24.0) V4(25.0) D(40.0)
6.0 V2(6.0) V1(23.0) V3(24.0) V4(25.0) D(40.0)

23.0 V1(23.0) V3(24.0) V4(25.0) V2(26.0) D(40.0)
24.0 V3(24.0) V4(25.0) V2(26.0) V1(26.0) D(40.0)
25.0 V4(25.0) V2(26.0) V1(26.0) D(40.0) V3
26.0 V2(26.0) V1(26.0) D(40.0) V3, V4
26.0 V1(26.0) D(40.0) V3, V4, V2
26.0 V1(26.0) V3(26.0) D(40.0) V4, V2
26.0 V3(26.0) D(40.0) V4, V2
29.0 V3(29.0) D(40.0) V4, V2
29.0 V3(29.0) V4(29.0) D(40.0) V2
29.0 V4(29.0) D(40.0) V3(49.0) V2
32.0 V4(32.0) D(40.0) V3(49.0) V2
32.0 V4(32.0) V2(32.0) D(40.0) V3(49.0)
32.0 V2(32.0) D(40.0) V3(49.0) V4(52.0)
35.0 V2(35.0) D(40.0) V3(49.0) V4(52.0)
40.0 D(40.0) V3(49.0) V4(52.0)

..... ......... ......... ......... ......... ......... .....

3.8 Entity generation

See example 2, page 40.
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3.9 Normal distribution

random class normal(mean, sig); real mean, sig;

begin

real procedure sample;

begin

real sum;

integer k;

for k := 1 step 1 until 12 do

sum := sum + next;

sample := mean + (sum-6.0)*sig;

end***sample**;

if sig < 0.0 then error;
end***normal***;

This algorithm is based upon the Central Limit Theorem. For better methods,
see Fishman [33, p.128] or Shannon [37, p.362].

3.10 Barber’s shop: two customer types

haircut cut and shave��
��

1

barber

?

6

?

6

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) barbers;

ref(rdist) c1, c2, s1, s2;

entity class cut;

begin

new cut("cut").schedule(c1.sample);

barbers.acquire(1);

hold(s1.sample);

barbers.release(1);

end***cut***;

entity class both;

begin

new both("both").schedule(c2.sample);

barbers.acquire(1);

hold(s2.sample);

barbers.release(1);

end***both***;
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c1 :- new negexp("c1", 0.025);

c2 :- new negexp("c2", 0.01666667);

s1 :- new uniform("s1", 12.0, 24.0);

s2 :- new uniform("s2", 20.0, 36.0);

barbers :- new res("barbers", 1);

new cut("cut").schedule(0.0);

new both("both").schedule(10.0);

hold(480.0);

end;

3.11 Tool check out

serve1 serve2��
��

2

clerks

?

6

?

6

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) clerks;

ref(rdist) nextm1, nextm2, serve1, serve2;

entity class mech1;

begin

new mech1("m1:").schedule(nextm1.sample);

clerks.acquire(1);

hold(serve1.sample);

clerks.release(1);

end***mech1***;

entity class mech2;

begin

new mech2("m2:").schedule(nextm2.sample);

clerks.acquire(1);

hold(serve2.sample);

clerks.release(1);

end***mech2***;

nextm1 :- new negexp("nextm1", 0.005);

nextm2 :- new negexp("nextm2", 0.008);

serve1 :- new uniform("serve1", 200.0, 400.0);

serve2 :- new uniform("serve2", 75.0, 150.0);

clerks :- new res("clerks", 2);
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new mech1("m1:").schedule(0.0);

new mech2("m2:").schedule(0.0);

hold(480.0*60.0);

end;

Notice that this model is structurally identical to that of exercise 3.10.

3.12 Grocery store program

�
�

�
�next aisle?

shop this aisle

pay bill ��
��

2 checkout

yesno

-

�

repeat 3 times

?

6
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external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res)checkout;

ref(rdist)array shop (1:3);

ref(bdist)array aisle(1:3);

ref(idist)array items(1:3);

ref(rdist)next, overhead;

ref(idist)impulse;

integer k;

entity class customer;

begin

integer k, tot;

new customer("c").schedule(next.sample);

for k := 1 step 1 until 3 do

begin

if aisle(k).sample then

begin

tot := tot+items(k).sample;

hold(shop(k).sample);

end;

end;

tot := tot+impulse.sample;

checkout.acquire(1);

hold(overhead.sample + 10*tot);

checkout.release(1);

end***customer***;

next :- new negexp("next", 0.0125);

aisle(1) :- new draw("aisle 1", 0.75);

aisle(2) :- new draw("aisle 2", 0.55);

aisle(3) :- new draw("aisle 3", 0.82);

items(1) :- new randint("items 1", 2, 4);

items(2) :- new randint("items 2", 3, 5);

items(3) :- new randint("items 3", 6, 8);

shop (1) :- new uniform("shop 1", 60.0, 180.0);

shop (2) :- new uniform("shop 2", 120.0, 180.0);

shop (3) :- new uniform("shop 3", 75.0, 165.0);

overhead :- new uniform("overhead",15.0, 35.0);

impulse :- new randint("impulse", 1, 3);

checkout :- new res("check out", 2);

new customer("c").schedule(0.0);

hold(8*3600);

end;

3.13 Closing down the surgery

First cut off the arrival stream by an if ... then test. class patient
becomes
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entity class patient;

begin

if time <= 630.0 then

begin

new patient("p").schedule(next);
doctor.acquire(1);

hold(consultation);
doctor.release(1);

end;

end***patient***;

Each patient thus checks for itself whether or not the door is closed (time <=
10.30 o’clock). The first arrival after that time exits at once and no further
patients are generated. To make sure that the doctor sees all the patients, we
can queue the Demos block itself behind the last patient (if any) by replacing
the statement hold(90.0) in the main program block by

hold(90.0);

doctor.acquire(1);

When the Demos block is re-entered, all waiting patients have been consulted.

3.14 Entity generation

In this situation, we cannot allow the n’th. patient object to generate patient
the n+1’st. regardless. A simple, yet powerful, way out is to declare a com-
pletely separate object whose sole purpose is to generate patient objects, and
remove the generating statement new patient... from the body of class
patient. The new entity declaration is:

entity class gen;

begin

hold(next);
new patient("P").schedule(0.0);

repeat;

end***gen***;

We also alter class patient by deleting new patient("P").schedule(next)
and the statement generating the first patient object (in the Demos block) is
replaced by

[integer k;]

for k := 1 step 1 until n do

new patient("P").schedule(0.0);

new gen("Pgen").schedule(0.0);
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Answers to exercises 4

4.1 Widget making

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

integer k;

ref(res) oven;

ref(rdist) assembly, fire;

ref(count) widgets;

entity class assembler;

begin

hold(assembly.sample);

oven.acquire(1);

hold(fire.sample);

oven.release(1);

widgets.update(1);

repeat;

end***assembler***;

assembly :- new uniform("assembly", 25.0, 35.0);

fire :- new normal("fire", 8, 2);

widgets :- new count("widgets");

oven :- new res("oven", 1);

for k := 1 step 1 until 3 do

new assembler("assembler").schedule(0.0);

hold(40.0*60.0);

end;

4.2 Polishing castings

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) crane; ref(count)jobs;

ref(rdist) load, polish1, reposition, polish2, remove, next, use;

entity class machine;

begin

crane.acquire(1);

LOOP:

hold(load.sample);

crane.release(1);

hold(polish1.sample);

crane.acquire(1);

hold(reposition.sample);

crane.release(1);
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hold(polish2.sample);

crane.acquire(1);

hold(remove.sample);

jobs.update(1);

repeat;

end***machine***;

entity class other;

begin

new other("other").schedule(next.sample);

crane.acquire(1);

hold(use.sample);

crane.release(1);

end***other***;

crane :- new res("crane", 1);

jobs :- new count("jobs done");

load :- new uniform("load", 15.0, 29.0);

polish1 :- new uniform("polish 1", 60.0, 100.0);

reposition :- new uniform("reposition", 8.0, 22.0);

polish2 :- new uniform("polish 2", 80.0, 140.0);

remove :- new uniform("remove", 15.0, 30.0);

next :- new negexp("next o’job", 0.020);

use :- new normal("use", 25.0, 5.0);

new other("other").schedule(20.0);

new machine("m").schedule(0.0);

hold(24000.0);

end;

Notice how we let the machine retain the crane through the remove and then
the fetch and lift phases.

4.3 TV set assembly

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) adjusters, inspectors;

ref(rdist) next, inspection, readjust;

ref(bdist) faulty;

entity class tvset;

begin

new tvset("TV").schedule(next.sample);

LOOP:

inspectors.acquire(1);

hold(inspection.sample);

inspectors.release(1);

if faulty.sample then

begin

adjusters.acquire(1);

hold(readjust.sample);
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adjusters.release(1);

priority := priority + 1;

repeat;

end;

end***tvset***;

adjusters :- new res("adjusters", 1);

inspectors :- new res("inspectors", 2);

next :- new negexp("next TV", 0.2);

inspection :- new uniform("inspection", 6.0, 10.0);

faulty :- new draw("faulty", 0.10);

readjust :- new normal("readjust", 30.0, 5.0);

new tvset("TV").schedule(0.0);

hold(5*8*60);

end;

The staging spaces may be roughly estimated from the QMAX value reported for
the res objects.

4.4 Unit repairs

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) ws1, ws2, sp2;

ref(rdist) arrivals, strip, rebuild;

ref(count) sub;

integer k;

entity class unit;

begin

if w1.length = 4 then sub.update(1) else

begin

ws1.acquire(1);

hold(strip.sample);

sp2.acquire(1);

ws1.release(1);

hold(if sp2.avail = 1 then 0.2 else 0.1);

ws2.acquire(1);

sp2.release(1);

hold(rebuild.sample);

ws2.release(1);

end;

end***unit***;

entity class next;

begin

new unit("unit").schedule(0.0);

hold(arrivals.sample);

repeat;

end***next***;

arrivals :- new negexp("arr", 4.0);
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strip :- new normal("strip", 0.50, 0.05);

rebuild :- new normal("rebuild", 0.25, 0.1);

ws1 :- new res("work st. 1", 2);

ws2 :- new res("work st. 2", 1);

sp2 :- new res("area 2", 2);

sub :- new count("subcontracts");

for k := 1 step 1 until 2 do

new unit("unit").schedule(0.0);

new next("next").schedule(0.5);

hold(136.0);

end;

4.5 Unit repairs II

To stop the run appropriately, replace hold(136.0) in the Demos block by

hold(134.0);

ws1.acquire(2);

sp2.acquire(2);

ws2.acquire(1);

Any units arriving after time 134.0 will be blocked requesting ws1.

4.6 Production line

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res)array server(1:5);

ref(rdist) arr, serve;

ref(count) again, done;

integer k;

entity class item;

begin

integer k;

new item("item").schedule(arr.sample);

LOOP:

for k := 1 step 1 until 5 do

begin

hold(1.0);

if server(k).avail = 1 then

begin

server(k).acquire(1);

hold(serve.sample);

server(k).release(1);

done.update(1);

goto L;

end;
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end;

hold(4.0);

again.update(1);

repeat;

L:end***item***;

arr :- new negexp("arrivals", 4.0);

serve :- new uniform("service", 0.8, 1.2);

again :- new count("re-cycles");

done :- new count("items done");

for k := 1 step 1 until 5 do

server(k) :- new res(edit("server",k),1);

new item("item").schedule(0.0);

hold(480.0);

end;

4.7 Production line II

As in exercise 4.6 above, except delete all references to the ref(count) again
and alter the declaration of class item to

entity class item;

begin

integer k;

new item("item").schedule(arr.sample);

for k := 1 step 1 until 4 do

begin

hold(1.0);

if server(k).avail = 1 then

begin

server(k).acquire(1);

hold(servel.sample);

server(k).release(1);

goto L;

end;

end;

hold(1.0);

server(5).acquire(1);

hold(serve.sample);

server(5).release(1);

L:done.update(1);

end***item***;

The storage space required in front of server 5 can be roughly estimated from
the QMAX statistic of the corresponding res object. By declaring an appropriate
procedure local to class item, the declaration can be made somewhat neater
as below

entity class item;

begin
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integer k;

procedure service(n); integer n;

begin

server(n).acquire(1);

hold(serve.sample);

server(n).release(1);

goto L;

end***service***;

new item("item").schedule(arr.sample);

for k := 1 step 1 until 4 do

if server(k).avail then service(k);

service(5);

L:done.update(1);

end***item***;

4.8 Steel billets

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(bin) bogies;

ref(res) mills, pits, cranes;

entity class furnace;

begin

hold(heat_billet_time.sample);

bogies.take(1);

new billet("billet").schedule(0.0);

repeat;

end***furnace***;

entity class billet;

begin

UNLOAD:

if pits.avail = 0 then

begin

NO_PITS_FREE:

cranes.acquire(1);

hold(unload_from_bogie_time.sample);

cranes.release(1);

bogies.give(1);

AWAIT_PIT:

pits.acquire(1);

cranes.acquire(1);

hold(load_into_pit_time.sample);

cranes.release(1);

end else

begin

STRAIGHT_IN:

pits.acquire(1);

cranes.acquire(1);

hold(from_bogie_into_pit_time.sample);
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cranes.release(1);

bogies.give(1);

end;

hold(soak_time.sample);

ROLLING:

mills.acquire(1);

cranes.acquire(1);

hold(unload_from_pit_time.sample);

cranes.release(1);

pits.release(1);

hold(roll_time.sample);

mills.release(1);

end***billet***;

cranes :- new res("cranes", 2);

mills :- new res("mills", 1);

pits :- new res("pits", 12);

bogies :- new bin("bogies", 9);

new furnace("furnace").schedule(0.0);

hold(simulation_period.sample);

end;

4.9 3-stage assembly line

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(count) done;

ref(bin) assembled, greased, packed, inners, outers;

ref(rdist) nexti, nexto, assemble, grease, pack;

integer k;

entity class iring;

begin

inners.give(1);

hold(nexti.sample);

repeat;

end***iring***;

entity class oring;

begin

outers.give(1);

hold(nexto.sample);

repeat;

end***outer rings***;

entity class assembler;

begin

inners.take(1);

outers.take(1);

hold(assemble.sample);
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assembled.give(1);

repeat;

end***assembler***;

entity class greaser;

begin

assembled.take(1);

hold(grease.sample);

greased.give(1);

repeat;

end***greaser***;

entity class packer;

begin

greased.take(2);

hold(pack.sample);

done.update(1);

repeat;

end***packer***;

assembled :- new bin("assembled", 0);

greased :- new bin("greased", 0);

packed :- new bin("packed", 0);

inners :- new bin("inners", 10);

outers :- new bin("outers", 10);

done :- new count("jobs done");

nexti :- new negexp("inner", 6.0);

nexto :- new negexp("outer", 6.0);

assemble :- new normal("assemble", 0.5, 0.1);

grease :- new constant("grease", 0.16);

pack :- new normal("pack", 0.6, 0.1);

new iring("i-ring").schedule(0.0);

new oring("o-ring").schedule(0.0);

for k := 1 step 1 until 3 do

new assembler("assembler").schedule(0.0);

new greaser("greaser").schedule(0.0);

for k := 1 step 1 until 2 do

new packer("packer").schedule(0.0);

hold(480.0);

end;

4.10 Faulty part

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(bin)faulty, good;

ref(rdist)run, repair, other;

integer k;
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entity class operator;

begin

hold(0.4);

faulty.give(1);

REPLACE:

good.take(1);

hold(0.4);

OK_TO_RUN:

hold(run.sample);

repeat;

end***operator***;

entity class repairman;

begin

do_repairs:

while faulty.avail > 0 do

begin

faulty.take(1);

hold(repair.sample);

good.give(1);

end;

other_work:

hold(other.sample);

repeat;

end***repair***;

run :- new normal("run", 36.0, 7.0);

repair :- new normal("repair", 2.0, 0.5);

other :- new uniform("other", 0.5, 1.5);

faulty :- new bin("faulty", 1);

good :- new bin("good", 0);

for k := 1 step 1 until 3 do

new operator("o").schedule((2*k-1)*run.sample/6);

new repairman("r").schedule(0.0);

hold(672.0);

end;

4.11a — infinite buffer

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) access;

ref(bin) messages;

ref(rdist) nextm, decode;

entity class sender;

begin

hold(nextm.sample);

access.acquire(1);

hold(0.05);

access.releasel(1);



Answers to exercises 213

messages.give(1);

repeat;

end***sender***;

entity class receiver;

begin

messages.take(1);

access.acquire(1);

hold(0.05);

access.release(1);

hold(decode.sample);

repeat;

end***receiver***;

nextm :- new negexp("nextm", 1.0);

decode :- new uniform("decode", 0.6, 1.4);

access :- new res("access", 1);

messages :- new bin("messages", 0);

new sender("s").schedule(0.0);

new receiver("r").schedule(0.0);

hold(100.0);

end;

4.11b — buffer of capacity L

In 4.11a above, access is used to guarantee single access to the buffer slots,
and messages holds the number of messages sent by S but not yet extracted by
R. In this problem, S may not be more than L slots ahead of R or else it starts
overwriting a previous message. This can be controlled by a further bin lead
which is used to block S should R be L messages behind. To 4.11a we add the
declaration ref(bin)lead and the initialising statement

lead :- new bin("lead", L);

The synchronisation is completed by altering the sequence

hold(nextm.sample);

access.acquire(1);

in class sender to

hold(nextm.sample);

lead.take(1);

access.acquire(1);

which makes sure that S is not too far ahead before attempting to place the
next message in the buffer; and by altering the sequence



214 Answers to exercises

access.release(1);

inside class receiver to

access.release(1);

lead.give(1);

This lets S know each time a slot has been freed. We must, of course, also
declare and initialise L or else use a constant.

4.12 Garage

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) bays;

ref(rdist) pservice,cservice,nextp;

ref(idist) group;

integer week, day, k, n;

real t;

entity class pcar;

begin

priority := 1;

new pcar("p").schedule(nextp.sample);

bays.acquire(1);

hold(pservice.sample);

bays.release(1);

end***police car***;

entity class car;

begin

bays.acquire(1);

hold(cservice.sample);

bays.release(1);

end***car***;

bays :- new res("bays", 5);

pservice :- new normal("pservice", 2.5, 1.0);

nextp :- new negexp("next p", 0.08333333);

group :- new randint("group", 12, 20);

cservice :- new uniform("cservice", 1.5, 2.5);

Demos.priority := 2;

bays.acquire(5);

new pcar("p").schedule(nextp.sample);

for week := 1 step 1 until 4 do

begin

for day := 1 step 1 until 5 do

begin
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hold(9.0);

n := group.sample;

for k := 1 step 1 until n do

new car("c").schedule(0.0);

bays.release(5);

hold(8.0);

t := time;

bays.acquire(5);

hold(7.0 - (time - t));

end;

SATURDAY:

hold(9.0);

n := group.sample/2;

for k := 1 step 1 until n do

new car("c").schedule(0.0);

bays.release(5);

hold(4.0);

t := time;

Demos.priority := 0;

bays.acquire(5);

Demos.priority := 2;

hold(11.0 - (time - t));

SUNDAY:

hold(24.0);

end;

end;

Answers to exercises 5

5.1 Library archive

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(waitq) DESK;

ref(rdist) nextr, there, back, st;

ref(histogram) thru;

integer k;

entity class librarian(n); integer n;

begin

procedure customer_req;

begin

C :- DESK.coopt;

r := r + 1;

C.into(Q);

hold(0.1);

end***customer_req***;;

ref(queue) Q;
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ref(entity) C;

ref(count) slips;

integer r;

Q :- new queue(edit("Q", n));

slips :- new count(edit("slips", n));

LOOP:

r := 0;

customer_req;

ANY_MORE:

while desk.length > 0 and r < 5 do

customer_req;

slips.update(r);

GET_REQUESTS:

hold(there.sample);

hold(r*(1.0+st.sample/5.0));

hold(back.sample);

SIGN_OUT:

while Q.length > 0 do

begin

hold(0.5);

Q.first.schedule(0.0);

end;

repeat;

end***librarian***;

entity class request;

begin

real arrtime;

arrtime := time;

new request("r").schedule(nextr.sample);

DESK.wait;

quit:

thru.update(time - arrtime);

end***request***;

nextr :- new negexp("next req", 0.5);

there :- new uniform("there", 0.5, 1.5);

st :- new normal("st", 0.0, 1.0);

back :- new uniform("back", 0.5, 2.0);

desk :- new waitq("desk");

thru :- new histogram("thru times", 0, 3, 10);

for k := 1 step 1 until 3 do

new librarian("l", k).schedule(0.0);

new request("req").schedule(0.0);

hold(480.0);

end;
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5.2 Library archive II

The essence is to allow only one librarian to be attending to the desk queue at
once. In our solution to Exercise 5.1 whilst one librarian is signing in a request,
another may poach the next in line. This we can avoid by using a res object
access of limit 1 and inserting access.acquire(1); after the label LOOP and
access.release(1); immediately before the label GET REQUESTS in the body
of class librarian.

5.3 Steel I

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(rdist) load_smelt, pour, strip, clean_assemble, set, load_pit, soak;

ref(res) pits, cranes, mills;

ref(bin) bogies;

ref(waitq) STRIPQ;

integer k;

entity class furnace;

begin

integer k;

hold(load_smelt.sample);

for k := 1 step 1 until 2 do

begin

bogies.take(1);

hold(pour.sample);

new batch("b").schedule(0.0);

end;

repeat;

end***furnace***;

entity class strippers;

begin

ref(batch)B;

B :- STRIPQ.coopt;

hold(strip.sample);

B.schedule(0.0);

hold(clean_assemble.sample);

bogies.give(1);

repeat;

end***strippers***;

entity class batch;

begin

hold(set.sample);

STRIPQ.wait;
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pits.acquire(1);

cranes.acquire(1);

hold(load_pit,.sample);

cranes.release(1);

hold(soak.sample);

UNLOAD_15_AND_ROLL_14:

mills.acquire(1);

cranes.acquire(1);

hold(1.0 + 14*3.0);

cranes.release(1);

pits.release(1);

ROLL_THE_LAST:

hold(3.0);

mills.release(1);

end***batch***;

load_smelt :- new normal("load_and_smelt", 165.0, 20.0);

pour :- new constant("pour", 20.0);

strip :- new uniform("strip", 10.0, 16.0);

clean_assemble :- new uniform("clean_assemble", 20.0, 24.0);

set :- new constant("set", 75.0);

load_pit :- new_constnt("load pit", 15.0);

soak :- new normal("soak", 160.0, 30.0);

pits :- new res("pits", 10);

cranes :- new res("cranes", 3);

mills :- new res("mills", 2);

bogies :- new bin("bogies", 8);

STRIPQ :- new waitq("await strip");

for k := 1 step 1 until 4 do

new furnace("f").schedule(40*(k-1));

for k := 1 step 1 until 2 do

new strippers("s").schedule(0.0);

hold(1500.0);

end;

5.4 Steel II

ref(res) power, brickies, c1, c2;

ref(bin) bogies;

entity class furnace;

begin

integer k;

for k := 1 step 1 until 10 do

begin

c1.acquire(1);

hold(load.sample);
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c1.release(1);

power.acquire(3);

hold(melt.sample);

power.release(2);

hold(refine.sample);

bogies.take(1);

c2.acquire(1);

hold(tap.sample);

new batch("B").schedule(0.0).

c2.release(1);

power.release(1);

end;

brickies.acquire(1);

hold(clean.sample);

brickies.release(1);

repeat;

end***furnace***;

5.5 Newspaper adverts

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(waitq) Q1, Q2;

ref(res) trunks;

ref(count) calls, accepted, rej, completed, overflows, direct, indirect;

ref(rdist) arr, notes, advert;

ref(histogram) waittimes, thrutimes;

entity class call;

begin

real arrtime;

new call("call").schedule(arr.sample);

arrtime := time;

calls.update(1);

if trunks.avail = 0 then rej.update(1) else

if Q1.length = k then overflows.update(1) else

begin

accepted.update(1);

trunks.acquire(1);

if Q2.masterq.length > 0 then

begin

direct.update(1);

Q2.wait;

end else

begin

indirect.update(1);

if Q2.length = 0 then Q2.wait else Q1.wait;
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end;

AWAIT_END_OF_CONVERSATION:

trunks.release(1);

thrutimes.update(time - arrtime);

completed.update(1);

end;

end***call***;

entity class operator;

begin

procedure Q1intoQ2;

begin

ref(entity) C;

while Q1.length > 0 do

begin

C :- Q1.first;

C.out;

C.into(Q2);

end;

end***Q1 into Q2***;

ref(call) C;

C :- Q2.coopt;

if Q2.length = 0 then Q1intoQ2;

waittimes.update(time - C.arrtime);

hold(advert.sample);

C.schedule(0.0);

hold(notes.sample);

repeat;

end***operator***;

integer k, m, n, j;

k := 9; m := 6; n := 15;

arr :- new negexp("arr", 1.0);

notes :- new normal("notes", 4.0, 1.0);

advert :- new normal("advert", 1.25, 0.5);

calls :- new count("calls");

rej :- new count("rej");

overflows :- new count("overflows");

completed :- new count("completed");

direct :- new count("direct");

indirect :- new count("indirect");

accepted :- new count("accepted");

waittimes :- new histogram("waits", 0.0, 10.0, 10);

thrutimes :- new histogram("thru times", 0.0, 10.0, 10);

trunks :- new res("trunks", n);

Q1 :- new waitq("Q1");

Q2 :- new waitq("Q 2");

for j := 1 step 1 until m do

new operator("O").schedule(0.0);

new call("C").schedule(0.0);
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hold(480.0);

end;

5.6 Example 6 revisited

(Sketch only.) Maintain a bin pending on the number of untreated requests
in each request queues. Now a query places itself in a request queue by:

pending.give(1);

RQ(k).wait;

The scanner executes a pending.take(1) to await the next query when the
request queues are all empty. This keeps the scanner asleep while no queries
are currently pending. When the scanner is woken up again, it has to compute
where it should be (quite tricky), hold until it is time to lock onto the next
station (careful as it will be in mid-rotation or in mid-test). Then we let it ro-
tate, test and transmit while pending.avail > 0. Then the scanner saves its
current status (time and position) and hangs itself up with a pending.take(1).

Answers to exercises 6

6.1 Lazy boolean operators

boolean procedure and2(a, b); name a, b; boolean a, b;

and2 := if a then b else false;

boolean procedure or2(a, b); name a, b; boolean a, b;

or2 := if a then true else b;

6.2 Bar

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(rdist) drink, pour, wash, next;

ref(idist) thirst;

ref(bin) clean, dirty, empty;

ref(condq) IDLEQ;

ref(waitq) BAR;

entity class customer;

begin

integer k, n;
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new customer("c").schedule(next.sample);

n := thirst.sample;

for k := 1 step 1 until n do

begin

IDLEQ.signal;

BAR.wait;

hold(drink.sample);

empty.give(1);

end;

end***customer***;

entity class waiter;

begin

integer n;

n := 0;

while empty.avail > 0 do

begin

empty.take(1);

hold(0.2);

n := n+1;

end;

dirty.give(n);

IDLEQ.signal;

hold(30.0 - n*0.2);

repeat;

end***waiter***;

entity class barmaid;

begin

ref(entity) C;

IDLEQ.waituntil

( (bar.length > 0 and clean.avail > 0) or dirty.avail > 0);

if (BAR.length > 0 and clean.avail > 0) then

begin

C :- BAR.coopt;

clean.take(1);

hold(pour.sample);

C.schedule(0.0);

end else

begin

dirty.take(1);

hold(wash.sample);

clean.give(1);

IDLEQ.signal;

end;

repeat;

end***barmaid***;

clean :- new bin("clean", 15);

dirty :- new bin("dirty", 0);

empty :- new bin("empty", 0);

idleq :- new condq("idle");

bar :- new waitq("bar");

thirst :- new randint("thirst", 1, 6);
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drink :- new uniform("drink", 15.0, 25.0);

pour :- new constant("pour", 1.0);

wash :- new constant("wash", 0.5);

next :- new negexp("next", 0.2);

new barmaid("B").schedule(0.0);

new customer("C").schedule(0.0);

new waiter("W").schedule(0.0);

hold(180.0);

end;

6.3 Port with tides

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) tugs, jetties;

ref(condq) DOCKQ, OUTQ;

ref(rdist) next, discharge;

boolean lowtide, hightide;

entity class boat;

begin

new boat("b").schedule(next.sample);

jetties.acquire(1);

DOCKQ.waituntil(tugs.avail >= 2 and hightide);

tugs.acquire(2);

hold(2.0);

tugs.release(2);

DOCKQ.signal;

OUTQ.signal;

hold(discharge.sample);

OUTQ.waituntil(tugs.avail > 0 and not lowtide);

tugs.acquire(1);

hold(2.0);

tugs.release(1);

jetties.release(1);

DOCKQ.signal;

OUTQ.signal;

end***boat***;

entity class tide;

begin

lowtide := true;

hold(4.0);

lowtide := false;

OUTQ.signal;

hold(2.5);
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hightide := true;

DOCKQ.signal;

hold(4.0);

hightide := false;

hold(2.5);

repeat;

end***tide***;

tugs :- new res("tugs", 3);

jetties :- new res("jetties", 2);

DOCKQ :- new condq("DOCK");

OUTQ :- new condq("LEAVING");

next :- new negexp("next boat", 0.10);

discharge :- new normal("discharge", 14.0, 3.0);

new tide("tide").schedule(1.0);

new boat("b").schedule(0.0);

hold(28.0*24.0);

end;

6.4 Traffic lights

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(condq) LIGHTS;

ref(rdist) next, clear;

boolean ok, green;

entity class car;

begin

new car("c").schedule(next.sample);

LIGHTS.waituntil(ok and green);

ok := false;

hold(clear.sample);

ok := true;

LIGHTS.signal;

end***car***;

entity class tlights;

begin

green := true;

LIGHTS.signal;

hold(20.0);

green := false;

hold(24.0);

repeat;

end***tlights***;

ok := true;
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LIGHTS :- new condq("traffic lights");

next :- new negexp("next car", 0.03);

clear :- new normal("clear time", 2.0, 0.5);

new tlights("lights").schedule(0.0);

new car("c").schedule(0.0);

hold(7200.0);

end;

6.5 Traffic lights II

We use res objects near and far to indicate whether or not the near and
far lanes are currently free. They are switched by objects of class convoy
(representing a line of cars with no break in between). There is a convoy for
each direction. We declare

ref(res) near, far;

entity class convoy(lane); ref(res)lane;

begin

LANE_BLOCKED:

lane.acquire(1);

hold(time_for_convoy_to_pass.sample);

lane.release(1);

LIGHTS.signal;

GAP:

hold(safe_to_cross_time.sample);

repeat;

end***convoy***;

and issue the initialising statements:

near :- new res("near lane", 1);

far :- new res("far lane", 1);

new convoy("near",near).schedule(...);

new convoy("far", far).schedule(...);

The cars elect to filter onto the main road (acquiring near) or to cross the
main road (acquiring both near and far). In both cases, they need to be at
the front of the queue and are delayed a little by the car in front (as in exercise
6.4).

entity class car;

begin

boolean filter;

new car("c").schedule(next);

filter := probability_of_filtering.sample;
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lights.waituntil

( ok and near.avail > 0

and (filter or far.avail > 0));

ok := false;

hold(time_to_clear.sample);

ok := true;

LIGHTS.signal;

end***car***;

6.6 Channel I

In this answer, and in the answers to exercises 6.7–6.8 as well, we assume (with-
out loss of generality) that the canal runs from east to west. We use booleans
sail(E) and sail(W)) to indicate the prevailing direction. The prevailing di-
rection is switched periodically by an object of class switcher. Notice how it
acquires 3 units of the res canal prior to doing the direction switching. This
gives any boats in the canal time to clear it.

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(rdist) next;

boolean array sail(1:2);

ref(res) canal;

ref(condq)array Q(1:2);

boolean entry;

integer E, W;

real timeslot, ctime;

entity class boat(D); integer D;

begin

new boat("b", D).schedule(next.sample);

AWAIT_ENTRY_PERMISSION:

Q(D).waituntil(sail(D) and entry);

canal.acquire(1);

entry := false;

FIRST_PART_OF_CANAL:

hold(ctime/3.0);

entry := true;

Q(D).signal;

REST_OF_CANAL:

hold(2.0*ctime/3.0);

canal.release(1);

end***boat***;

entity class switcher;

begin

integer D;

priority := 1;

canal.acquire(3);

LOOP:
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for D := E, W do

begin

canal.release(3);

sail(D) := true;

Q(D).signal;

hold(timeslot);

sail(D) := false;

canal.acquire(3);

end;

repeat;

end***switcher***;

ctime := ...;

timeslot := ...;

E := 1;

W := 2;

Q(E) :- new condq("going east");

Q(W) :- new condq("going west");

next :- new normal("next", ...., ....);

entry := true;

canal :- new res("canal", 3);

new switcher("s").schedule(0.0);

new boat("W boat:", W).schedule(...);

new boat("E boat:", E).schedule(...);

hold(........);

end;

6.7 Channel II

Declare globally, and suitably initialise

ref(condq) SQ; integer l;

and alter the definition of switcher in exercise 6.6 to

entity class switcher;

begin

integer D;

canal.acquire(3);

LOOP:

for D := E, W do

begin

canal.release(3);

sail(D) := true;

Q(D).signal;

hold(l*ctime/3.0);

SQ.waituntil(Q(3-D).length = l);

sail(D) := false;
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canal.acquire(3);

end;

repeat;

end***switcher***;

sq is a third condq specially for the switcher object. The value of 3 - D is E
if D = W, and W if D = E, i.e. if D is the prevailing direction, 3 - D returns the
blocked direction, and vice versa. Also, alter class boat in 6.6 by including
an SQ.signal before the call on Q(D).waituntil.

6.8 Channel III

As in 6.7, except alter the declaration of switcher to

entity class switcher;

begin

integer D;

priority := -1;

LOOP:

SQ.waituntil(Q((E).length > 0 or Q(W).length > 0);

D := if Q((E).length > 0 and Q(W).length > 0

then choose_E_or_W_with_equal_weight.sample

else if Q(E).length > 0 then E else W;

sail(D) := true;

Q(D).signal;

canal.acquire(3);

sail(D) := false;

canal.release(3);

repeat;

end***switcher***;

By giving the switcher a low priority, when it queues for the canal, it can be
overtaken by any boat arriving for the prevailing direction.

6.9 Channel IV

As in 6.7, but amend the declaration of switcher to

entity class switcher;

begin

integer D;

priority := 1;

canal.acquire(3);

LOOP:

for D := E, W do

begin
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canal.release(3);

sail(D) := true;

sail(3-D) := false;

Q(D).signal;

SQ.waituntil(Q((3-D).length > Q(D).length);

sail(D) := false;

canal.acquire(3);

end;

repeat;

end***switcher***;

6.10 Steel revisited

Add to 4.8 the declarations and appropriate initialisations of ref(condq)
PITS, OUTSIDE and alter class billet to:

entity class billet;

begin

boolean cold;

AWAIT_PIT:

cranes.acquire(1);

PITQ.waituntil(pits.avail > 0 or PITQ.length >= 4);

if pits.avail = 0

then

begin

hold(move_outside.sample);

cranes.release(1);

OUTSIDE.signal;

cold := true;

OUTSIDE.waituntil

(cranes.avail > 0 and pits.avail > 5 and PITQ.length = 0);

cranes.acquire(1);

pits.acquire(1);

hold(return_inside.sample);

end

else pits.acquire(1);

hold(load_into_pit.sample);

cranes.release(1);

OUTSIDE.signal;

hold(if cold then soak_longer.sample else soak_shorter.sample);

mills.acquire(1);

cranes.acquire(1);

hold(unload_from_pit.sample);

cranes.release(1);

pits.release(1);

PITQ.signal;

OUTSIDE.signal;

hold(roll_in_mill.sample);
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mills.release(1);

end***billet***;

6.11 Pickers and cappers

begin

external class Demos = "/usr/local/simulabin/Demos.atr";

integer n, m, k;

n := 6;

m := n + 1;

Demos

begin

ref(count)array done(1:N);

boolean array pos(0:M);

real pause_time, move_time, seal_time;

ref(count) ok, fail;

ref(condq) CQ;

ref(waitq) PQ;

ref(rdist) fetch;

boolean capping;

entity class belt;

begin

integer k;

LOOP:

hold(move_time);

for k := m step -1 until 1 do

pos(K) := pos(K-1);

if pos(M) then ok.update(1) else fail.update(1);

capping := true;

CQ.signal;

hold(pause_time - seal_time);

TOO_LATE:

capping := false;

hold(seal_time);

repeat;

end***belt***;

entity class picker(n); integer n;

begin

hold(fetch.sample);

WAIT_UNTIL_SEAL_IS_PASSED:

PQ.wait;

repeat;

end***picker***;

entity class capper(n); integer n;

begin

ref(picker) P;

AWAIT_CONTAINER:

CQ.waituntil(not pos(N) and capping);
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hold(seal_time);

pos(N) := true;

FIND_PARTNER:

PQ.find(P, P.N = N);

P.schedule(0.0);

repeat;

end***capper***;

pause_time := 5.0;

move_time := 3.0;

seal_time := 2.0;

ok :- new count("sealed");

fail :- new count("not sealed");

CQ :- new condq("capperq");

CQ.all:= true;

PQ :- new waitq("pickerq");

fetch :- new uniform("get seal", 7.0, 11.0);

new belt("belt").schedule(0.0);

for k := 1 step 1 until n do

begin

new picker("P", k).schedule(0.0);

new capper("C", k).schedule(0.0);

end;

hold(8.0*3600.0);

end;

end;

6.12 Plate cutting yard

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(idist)type;

ref(rdist)next, cutting;

ref(res)array c(1:2);

ref(condq) CQ;

ref(waitq) ARRQ;

ref(waitq)array OUTQ(1:2);

integer array l(1:2);

entity class plate;

begin

integer n;

new plate("p").schedule(next.sample);

n := type.sample;

CQ.signal;

ARRQ.wait;

RESUME_WHEN_JOINING_CUTTER_Q:

l(n) := l(n)+1;

c(n).acquire(1);
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l(n) := l(n)-1;

hold(cutting.sample);

c(n).release(1);

CQ.signal;

end***plate***;

entity class crane;

begin

boolean procedure testQ(k); integer k;

begin

testQ := l(k) < 3 and OUTQ(k).length > 0;

end***testQ***;

ref(plate) P;

CQ.waituntil(ARRQ.length > 0 or testQ(1) or testQ(2));

while ARRQ.length > 0 do

begin

P :- ARRQ.last.coopt;

if l(P.n) < 3 then

begin

STRAIGHT_THROUGH:

hold(1.0);

P.schedule(0.0);

hold(1.0);

end else

STRAIGHT_OUTSIDE:

begin

hold(0.5);

P.into(OUTQ(p.n));

hold(0.5);

end;

end;

MOVE_IN_FROM_OUTSIDE:

if testQ(1) or testQ(2) then

begin

hold(1.0);

P :- if testQ(1) then OUTQ(1).last else OUTQ(2).last;

P.coopt;

hold(1.0);

P.schedule(0.0);

hold(1.0);

end;

repeat;

end***crane***;

next :- new negexp("plate", 0.1);

cutting :- new normal("cutting", 8.0, 2.0);

type :- new randint("type", 1, 2);

c(1) :- new res("cutter", 1);

c(2) :- new res("cutter", 1);

arrq :- new waitq("arrivals");

outq(1) :- new waitq("outside dump");

outq(2) :- new waitq("outside dump");

cq :- new condq("idle crane");

new plate("p").schedule(0.0);

new crane("c").schedule(0.0);
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hold(480.0);

end;

6.13 A small optimisation

Because with option b you have to remember to signal Q at time = t. a is also
more efficient. Why?

Answers to exercises 7

7.1 Lathe

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(lathe) L;

ref(count) done;

ref(rdist) p, up, repair;

entity class lathe;

begin

hold(p.sample);

done.update(1);

repeat;

end***lathe***;

entity class breakdown;

begin

real tleft;

hold(up.sample);

L.cancel;

tleft := L.evtime-time;

hold(repair.sample);

L.schedule(tleft+5.0);

repeat;

end***breakdown***;

done :- new count("done");

p :- new normal("process",15.0,3.0);

up :- new negexp("running", 1/300);

repair :- new normal("repair", 30.0, 5.0);

L :- new lathe("L");

L.schedule(0.0);

new breakdown("B_DOWN").schedule(0.0);

hold(60*24*28);

end;
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7.2 Lather

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(count) done, spoiled;

ref(rdist) p, up, repair;

ref(lathe) L;

entity class lathe;

begin

integer interrupted;

hold(p.sample);

if interrupted > 0 then

begin

interrupted := 0;

spoiled.update(1);

hold(6.0);

end else done.update(1);

repeat;

end***lathe***;

entity class breakdown;

begin

hold(up.sample);

L.cancel;

hold(repair.sample);

L.interrupted := 1;

L.schedule(0.0);

repeat;

end***breakdown***;

done :- new count("done");

spoiled :- new count("repair");

up :- new negexp("running", 1/300);

repair :- new normal("repair", 30.0, 5.0);

p :- new normal("process", 15.0, 3.0);

L :- new lathe("L");

L.schedule(0.0);

new breakdown("B_DOWN").schedule(0.0);

hold(60*24*28);

end;

7.3 Lathest

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(res) r;

integer k;

ref(count) done;



Answers to exercises 235

ref(rdist) p, up, repair;

entity class lathe;

begin

new b_down("B", current).schedule(0.0);

LOOP:

hold(p.sample);

done.update(1);

repeat;

end***lathe***;

entity class b_down(L); ref(lathe) L;

begin

real tleft;

hold(up.sample);

tleft := L.evtime-time;

L.cancel;

r.acquire(1);

hold(30.0);

r.release(1);

L.schedule(tleft+5.0);

repeat;

end***b_down***;

entity class other;

begin

priority := -1;

LOOP:

r.acquire(1);

hold(15.0);

r.release(1);

repeat;

end***other***;

r :- new res("repairman", 1);

done :- new count("done");

p :- new normal("process",30.0,5.0);

up :- new negexp("running", 1/300);

for k := 1 step 1 until 6 do

new lathe("L").schedule(0.0);

new other("o").schedule(0.0);

hold(60*24*28);

end;

7.4 Car ferry

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(ferry) CF;
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integer day, hour;

ref(condq) DOCKQ;

ref(waitq) ARRQ;

ref(bdist) days, nights;

ref(idist) unload;

ref(rdist) nextf, nextd, nextn;

ref(histogram)array thru(1:2);

ref(res) quay;

boolean procedure daytime;

daytime := hour >= 6 and hour < 18;

entity class clock;

begin

for day := 1 step 1 until 28 do

for hour := 0 step 1 until 23 do

begin

new ferry("f").schedule(nextf.sample);

if CF.idle

then CF.interrupt(1)

else CF.interrupted := 1;

hold(1.0);

end;

end***clock***;

entity class car;

begin

ref(car) N;

boolean season;

real arrtime;

N :- new car("c");

if daytime then

begin

N.schedule(nextd.sample);

season := days.sample;

end else

begin

N.schedule(nextn.sample);

season := nights.sample;

end;

priority := if season then 2 else 1;

arrtime := time;

DOCKQ.signal;

ARRQ.wait;

ON_BOARD:

thru(priority).update(time-arrtime);

end***car***;

entity class ferry;

begin

integer n;

UNLOADING:

quay.acquire(1);

CF :- current;

hold(unload.sample);
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LOAD:

DOCKQ.waituntil(ARRQ.length > 0 and n > 20 or

interrupted > 0);

while ARRQ.length > 0 and n < 20 do

begin

n := n+1;

ARRQ.first.schedule(0.0);

hold(1/60);

end;

if interrupted = 0 then goto LOAD;

CF :- none;

quay.release(1);

end***ferry***;

unload :- new randint("unload", 0.1, 0.2);

days :- new draw("season:day", 0.4);

nights :- new draw("season:night", 0.25);

nextf :- new normal("ferry", 1/3, 1/12);

nextd :- new negexp("day rate", 15.0);

nextn :- new negexp("night rate", 9.0);

quay :- new res("quay", 1);

DOCKQ :- new condq("ferry load q");

ARRQ :- new waitq("dockside q");

thru(1) :- new histogram("normal", 0.0, 1.0, 10);

thru(2) :- new histogram("season", 0.0, 1.0, 10);

new car("c").schedule(0.0);

new clock("clock").schedule(0.0);

hold(24.0*28.0);

end;

7.5 The last alarum

external class Demos = "/usr/local/simulabin/Demos.atr";

Demos

begin

ref(condq) LINE;

ref(res) server;

ref(rdist) next, serve, p;

entity class cus;

begin

integer imp;

new cus("c").schedule(next.sample);

imp := p.sample;

new alarm("a", current).schedule(imp);

LINE.waituntil(server.avail>0 or interrupted>0);

if interrupted = 0 then

begin

server.acquire(1);

hold(serve.sample);
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server.release(1);

LINE.signal;

end;

end***cus***;

entity class alarm(E); ref(entity)E;

begin

if E.idle and E =/= LINE.first then E.interrupt(1);

end***alarm***;

LINE :- new condq("await service");

server :- new res("server", 1);

next :- new negexp("next", 1.0);

serve :- new uniform("service", 2/3, 1.0);

p :- new uniform("impat", 2.0, 5.0);

new cus("c").schedule(0.0);

hold(240.0);

end;
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