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The Inventory Model

Standard periodic review inventory model with backlog. The level of inventory as well as the
demands are assumedcontinuous(Fu and Bashyam).

t

S

s

D

D
D

D
1

3

X(t)

4

5

Costs at the end of period:

• Holding costh per unit of inventory at
end of period.

• Penalty costp per unit of unsatisfied
demand.

• Ordering costK fixed if the decision is
to order stock.

The inventory levelX(t) is a right-continous (cadlag) piecewise linear process, and the em-
bedded Chain{Xn} at the review epochs is Markovian:

Xn+1 =
{
Xn −Dn if Xn −Dn ≥ s

S otherwise
{Dn} i.i.d. ∼ G

Control Problem: Find the optimal values ofs andS to minimize the long term average
cost per periodC(s, S). Suggested method for general distributionsG and adaptive control is
gradient based stochastic approximation.

=⇒ Estimation of
∂

∂S
C(s, S)
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Mathematical Formulation: The Model

Probability space(Ω, P), {Dn} i.i.d. random variables,Fn = σ(D1, . . . , Dn).
=⇒ Xn+1 is Fn-measurable.
Natural filtrationof the process{Xn} is given byF = {Fi−1, i ≥ 1}.

Assumption1 The demandsDi, i = 1, 2, . . . have a continuous, bounded densityg, onR+.

The cost associated with periodn is:

Cn ≡ C(Xn,Dn) =


h(Xn −Dn) if Dn < Xn − s
h(Xn −Dn) +K if Xn − s < Dn < Xn

p(Dn −Xn) +K if Dn > Xn

By construction,Xn ∈ (s, S) is Harris recurrent and by Assumption 1 it is ergodic, therefore:

C(s, S) = lim
N→∞

1

N

N∑
n=1

E[C(Xn,Dn)].

Problem:How to estimate the stationary derivative

∂

∂S
C(s, S) = lim

N→∞

1

N

N∑
n=1

∂

∂S
E[C(Xn,Dn)]
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Mathematical Formulation: Derivatives

For any demandd, the functionC(·, d) is continuous, except atx = d+s. The cadlag process
C(X(t)) is aLipschitz continuousfunction of the processX(t) in the sup-norm.

Stochastic derivative (IPA): for ω ∈ Ω,

∂

∂S
C(Xn,Dn) = h1{Xn>Dn} + p1{Xn<Dn}

1

N

N∑
n=1

∂

∂S
C(Xn,Dn) =

hN+ + pN−

N
.

S
S + ∆

s

0

However, the stochastic derivative (IPA) isnot consistentfor the derivative, that is:

∂

∂S
C(s, S) 6= lim

N→∞

h EN+ + p EN−

N
.

0

s

∆+S
S

Reason:Because the processX(t) is notLipschitz con-
tinuous inS with probability one. To see this, let

τ+(ω) = min{n > 1 : Xn − s < Dn ≤ Xn + ∆− s}.

Then for allω with τ+(ω) < N , it holds that

sup
t∈[0,N)

‖XS+∆(t, ω)−XS(t, ω)‖ ≥ S − s−∆ 6= O(∆).
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Filtered Conditioning: SPA

τ+(ω) = min{n > 1 : Xn − s < Dn ≤ Xn + ∆− s}.

Define thecritical eventsasΩn = {ω : τ+(ω) = n}, which help describe the pathwise discon-
tinuities ofX(t). ExpressΩ as the union of disjoint sets:

Ω = Ω∗ ∪ (∪n≤NΩn) ,

and notice thatΩ∗ is set where the trajectories are Lipschitz continuous, whileΩn is the set
where there is a discontinuity at timen. Assumption 1 implies that critical events arerare:
P(Ωn|Fn−1) = P(Ωn|Xn) = O(∆).

On the setΩ∗ the IPA is valid for the
pathwise derivative. But on the criti-
cal events setsΩn the processes are
not Lipschitz continuous in the sup
norm.

Filtered Monte Carlo conditions on
the critical events.

0

s

∆+S
S

Critical event
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SPA Derivatives: Formulation

Finite Differences:Using the processes atS + ∆ andS (right-sided w.l.o.g.), one has:

∂

∂S
C(s, S) = lim

N→∞
lim
∆→0

D+
∆(S),

whereD+
∆(S) =

1

N

N∑
n=1

E

[
Ci(S + ∆)− Ci(S)

∆

]
.

UsingΩ = Ω∗ ∪ (∪n≤NΩn), the finite difference can be expressed by further conditioning:

D+
∆(S) =

h EN+ + p EN−

N
P[Ω∗]+

N∑
n=1

E

(
1

N

N∑
i=1

E

[
Ci(S + ∆)− Ci(S)

∆
| Ωn

]
P[Ωn|Fn−1]

)
where P(Ω∗) = 1−O(∆)→ 1 as∆→ 0.

Definition: The SPA derivative estimatoris a pathwise functional of the process that es-
timates thecritical probability ratesand in parallel, thedifference processesstarted at the
critical events.

lim
∆→0

N∑
n=1

E
( 1

N

N∑
i=1

E[Ci(S + ∆)− Ci(S) | Ωn︸ ︷︷ ︸
difference process

]× P[Ωn|Fn−1]

∆︸ ︷︷ ︸
critcal rates

)
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Difference Processes

Difference Processes:The following properties are essential to the simulation of SPA esti-
mators and they hold for general conditional threshold problems.

Recall thatΩn = {ω ∈ Ω : τ+(ω) = n} is the set of trajectories where the first discontinuity
in the two processes happens at timen. Conditioning onΩn,

• As ∆→ 0, both processes coincidebeforen, that is,Ci(S + ∆) = Ci(S), i < n.

• The limit processes for eachω ∈ Ωn start at the limit values,X+
n = S (reorder and fill

inventory),Xn = s (no ordering). The rest of their evolution uses the same sequence of
demandsDi, i ≥ n (CRN). From the Markovian properties, it follows that the difference
processis independent ofn and ofFn−1.

• After φ(n) = min{i > n : X+
i = Xi = S}, both processes coincideagain and their

difference is zero.

Therefore it is sufficient to estimate:

E[∆C+] = lim
N→∞

N∑
i=n

E [Ci(S + ∆)− Ci(S) | Ωn] = E


φ(n)∑
i=n

[C(X+
i , Di)− C(Xi,Di)]


Remark: Under negative perturbation the differences areCi(S)−Ci(S−∆), but in the limit

∆ → 0, the difference process∆C− has the same distribution as∆C+, and similarly for a
double sided perturbationCi(S + ∆/2)− Ci(S −∆/2)



Felisa J. Vázquez-Abad 8

Critical Rates: One-Sided

Definition: Theright-sided SPAestimator is a conditional estimator of the rates:

lim
∆→0

1

N

N∑
n=1

P[Ωn|Fn−1]

∆
,= lim

∆→0

1

N

N∑
n=1

P[Xn − s < Dn ≤ Xn + ∆− s|Fn−1]

∆
,

and theleft-sided SPAestimator is a conditional estimator of the rates:

lim
∆→0

1

N

N∑
n=1

P[Ωn|Fn−1]

∆
,= lim

∆→0

1

N

N∑
n=1

P[Xn −∆− s < Dn ≤ Xn − s|Fn−1]

∆
,

Right-sided: The critical sets are defined asΩ+
n = {ω : Dn > Xn − s} ∈ Fn. Only onΩ+

n there
is a positive probability thatτ+(ω) = n.

P[Ωi|Ω+
i , Fi−1]

∆
=

P[Di − Zi ≤ ∆|Ω+
i ]

∆
→ g(Zi)

1−G(Zi)
, with Zi = Xi − s

The corresponding one-sided SPA estimators for the critical ratesR are:

(R)+
SPA =

1

N

N∑
n=1

g(Zn)

1−G(Zn)
1{Dn>Zn}, (R)−SPA =

1

N

N∑
n=1

g(Zn)

G(Zn)
1{Dn>Zn}

and are typically estimated through a usual Filtered Monte Carlo, as the sequence of the con-
secutive demands{Dn} is generated.
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Efficiency of Estimation

In many Markov Chain simulations a CLT is applied to estimate confidence intervals. The

precisionof an estimator̂Y (N) is proportional to
√

Var[Ŷ (N)]/N , whereN : sample size.
Variance reduction⇒ better precision, butCPUtime may override the benefits.
Definition: Theefficiencyof a consistent estimator̂Y (N) is:

E(Ŷ (N)) =
1

CPU[Ŷ (N)]Var[Ŷ (N)]
.

• Critical Rates:Uses further conditioning (onΩ±n ) which may reduce variance,

P[Ωi|Fi−1] = E
(
P[Ωi|Ω+

i , Fi−1]
)
.

Problem:For many distributions of interest the calculation ofG(Zn) may be very costly
and increasesCPU.

=⇒ Two-Sided SPA

• Difference Processes:Off-line simulations are used to estimate E[∆C+]. Independent dif-
ference processes are simulated forN replications.Problem:May require longCPUtime to
generate all the demands, which may be costly for many distributions.

=⇒ Parallel Phantoms
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Two-Sided SPA Estimation

s

S
∆S+ /2

S- ∆/2 Nominal processXS(t), perturbation pro-
cessesXS+∆/2(t) andXS−∆/2(t).
The critical events now are the first epochs
where ordering decisions differ:

τ (ω) = min{n : −∆/2 < Dn−Zn ≤ ∆/2}.

Thetwo sided SPAestimator is a conditional estimator of the rates:

lim
∆→0

1

N

N∑
n=1

P[Ωn|Fn−1]

∆
,= lim

∆→0

1

N

N∑
n=1

P[Xn − ∆
2 − s < Dn ≤ Xn + ∆

2 − s|Fn−1]

∆
.

Using the densityg of the demandsDn, the estimator for the critical ratesR is:

RSPA =
1

N

N∑
n=1

g(Zn)

Estimation through a usual Filtered Monte Carlo, as the sequence of the consecutive demands
{Dn} is generated. Onlyg(·) has to be evaluated and there is no random denominator.
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Parallel Phantoms

Difference processdn = X+
n −Xn can be calculated recursively:

1. Start atX+
0 = S,X0 = s, setd0 = S − s, n = 1.

2. If dn 6= 0 setn := n + 1, elseφ = n andEND OF CYCLE.

3. GenerateDn, calculateXn+1 and update difference:

If dn > 0 then:

dn+1 =


dn if Dn < X+

n + dn − s (both above reorder levels)
X+
n −Dn − S < 0 if X+

n − dn − s < Dn < X+
n − s (one above and one below)

0 if Dn > X+
n − s (both processes reachS)

If dn < 0 then:

dn+1 =


dn if Dn < X+

n − s (both above reorder levels)
S +Dn −X+

n − dn > 0 if X+
n − s < Dn < X+

n − dn − s (one above and one below)
0 if Dn > X+

n − dn − s (both processes reachS)

4. Go to 2.

Parallel Phantoms:Only thenominal processX+
n is simulated. UseX+

n and the consecutive
demands to estimate in parallel the difference process by starting aphantom processwith initial
differenced1(j) = S − s every timethatX+

j = S. Only one simulation(D1, D2, . . . , DN)

is used for estimating E[∆C+]. That is, a random number of phantom processesdn(j), j =

1, 2, . . . is calculated along with the nominal simulation.
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Parallel Phantom SPA

∂

∂S
C(s, S) = lim

N→∞

h EN+ + p EN−

N
+ E[∆C+] lim

N→∞
E

(
1

N

N∑
n=1

g(Xn − s)
)

M(N): number of stepsj = 1, . . . , N such thatXj = S. ThePhantom SPAis:

\(∆C+)N =
1

M(N)

N∑
j=1

1{Xj=S}

φ(j)∑
n=j

dn(j), and
\C ′(s, S) =
hN+ + pN−

N
+ \(∆C+)N

N∑
n=1

g(Xn − s)
N

,

Proposition 1 The Phantom SPA estimator\C ′(s, S) is strongly consistent for∂∂SC(s, S).

Proof : Given any indexj andn ≥ j, P[dn+1 = 0] ≥ P[Dn > S − s] ≥ π > 0. This
implies thatφ(j) is stochastically dominatedby a geometric random variable with finite expec-
tation (1/π). Also, ‖dn(j)‖ < S − s, w.p.1. Use Assumption 1, dominated convergence and
uniqueness of the stationary measureµ(dx) for the process, to obtain the result:

lim
N→∞

\(∆C+)N = E[∆C+], and lim
N→∞

1

N

N∑
n=1

g(Xn − s) =

∫ S

s

g(x− s)µ(dx).
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Computer Simulations

K = 10, h = 10, p = 50, s = 10, S = 20.N = 5000 nominal,M = 5000 cycles off-line.
Comparison of Two-Sided SPA with Fu’s One-Sided Off-line estimators:

Results with Off-Line Simulations
Distribution Theoretical SPA− SPA+ SPA∗

Exp(1/3) −4.531 −4.680± 0.26 −4.570± 0.10 −4.572± 0.08
Exp(1/5) −2.862 −2.779± 0.145 −2.843± 0.088 −2.837± 0.082
Exp(1/10) 1.516 1.586± 0.114 1.569± 0.094 1.576± 0.101

U(0, 6) – −5.185± 0.171 −5.225± 0.171 −5.261± 0.122
U(0, 12) – −5.359± 0.211 −5.312± 0.088 −5.259± 0.044
U(0, 20) – −2.181± 0.100 −2.212± 0.084 −2.200± 0.079

Comparison of Two-Sided Off-line estimation with Parallel Phantom SPA:

Off-Line Parallel Phantoms
Distribution SPA∗ CPU (secs) SPA∗ CPU (secs)
Exp(1/3) −4.509± 0.081 25.54 −4.530± 0.027 11.91
Exp(1/5) −2.816± 0.097 14.99 −2.829± 0.056 8.40
Exp(1/10) −1.488± 0.088 10.5 −1.497± 0.078 6.75
U(0, 6) −5.180± 0.085 45.91 −5.281± 0.025 21.69
U(0, 12) −5.234± 0.036 11.31 −5.232± 0.018 7.30
U(0, 20) 2.242± 0.130 7.19 2.224± 0.084 5.32
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Concluding Remarks

• Two-Sided vs One-Sided:amount of variance reduction seems to be problem dependent.

• Parallel Phantoms:The greatest contribution to efficiency improvement of the Phantom
SPA comes from the parallel on-line systems.

• Difference Processes:Use of CRN via parallel phantom processes: exploit difference pro-
cess recursions to decreaseCPUtime.

• Conjecture:highnegativecorrelation between phantom systems.

On going:

• General formulation for threshold problems withconditionally independent kernels:

P[Xn+1 ∈ ds|Xn] = H(Dn), {Dn} i.i.d., H(·) has a mass at threshold values.

– Alternative formulation of two-sided critical rates viaweak differentiationapproach (in
progress).

– Extension of the properties:the distribution of the difference process is conditionally
independent of (filtered) critical rates.

• Examples:barrier options in finance (estimation of the greeks), queueing systems under
random polling policies, optimal replacement models, etc.


