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The Inventory Model

Standard periodic review inventory model with backlog. The level of inventory as well as the
demands are assumedntinuougFu and Bashyam). cqsts at the end of period:

XOs - [ e Holding costh per unit of inventory at
D,

end of period.

e Penalty cosip per unit of unsatisfie¢
l demand.

D, e Ordering cosi fixed if the decision is
| | Il | to order stock.

The inventory levelX (¢) is a right-continous (cadlag) piecewise linear process, and the em-
bedded Chaiqd X,,} at the review epochs is Markovian:
X,—-D, tX,—D,>s .

X, ={ " n ne T = D} id. ~ G

T ls otherwise {Du}

Control Problem: Find the optimal values of and S to minimize the long term average
cost per period’(s, S). Suggested method for general distributiehand adaptive control is
gradient based stochastic approximation

L 9,
— S
Estimation of aSC(S, S)
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Mathematical Formulation: The Model

Probability spacé2, P), { D, } i.i.d. random variables},, = o(D, ..., D,).
— X,,.1 1S §,,-measurable.
Natural filtrationof the proces$ X, } is given byF = {§;_,,i > 1}.

Assumption1 The demand®,,i = 1,2, ... have a continuous, bounded dengifypnR™".

The cost associated with periads:

h(X, — D,) if D, <X, —s
C,=C(X,, D)) =4 h(X,— D)+ K ifX,—s<D,<X,
p(D, — X,)+ K ifD,> X,

By construction,X,, € (s, S) is Harris recurrent and by Assumption 1 it is ergodic, therefore:

1 N

C(s,S) = lim NZ E[C(X,, Dy).

N—o0
n=1

Problem:How to estimate the stationary derivative

9 1 <L 9

%C(s, S) = ]\}1_1”}100 N - 95 E[C(X,, Dy)]
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Mathematical Formulation: Derivatives

For any demand, the functionC'(-, d) is continuous, except at= d+ s. The cadlag process
C'(X(t)) is aLipschitz continuougunction of the procesX () in the sup-norm.
Stochastic derivative (IPAJor w € (),

a S
@C(Xn,D ) = hlix,~p,} +PLl{x,<D,)
ANt +pN— T I
N Z oS C(Xn, Dn) = N ' 0

However, the stochastic derivative (IPA)ist consistenfor the derivative, that is:

d hENT+pEN~
g9 7 Jim N |
Reason:Because the process(t) is notLipschitz con-
> tinuous inS with probability one. To see this, let

T (w)=min{n >1: X, —s<D, <X, +A—s}
e N R (R Then for allw with 7 (w) < N, it holds that

sup || XAt w) — X (t,w)|| > S —s— A #O(A).
te[0,N)
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Filtered Conditioning: SPA

T (w)=min{n >1:X,—s< D, <X, +A—s}

Define thecritical eventsas(), = {w : 77 (w) = n}, which help describe the pathwise discon-
tinuities of X (¢). Expresg as the union of disjoint sets:

Q=" U (Upen),

and notice thaf)* is set where the trajectories are Lipschitz continuous, whijles the set

where there is a discontinuity at time Assumption 1 implies that critical events aree:
P(Qn‘gn—l) - P(Qn’Xn) - O(A)-

On the set)* the IPA is valid for the S+SA
pathwise derivative. But on the criti-
cal events set$), the processes are
not Lipschitz continuous in the sup

norm. S

Filtered Monte Carlo conditions on 0
the critical events.

Critical eve
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SPA Derivatives: Formulation

Finite Differences: Using the processes at+ A and.S (right-sided w.l.0.g.), one has:

0
a5 %) = A DA

wherepg(S):NZ [ S+A) c<s)]_

Using() = O* U (U,<n§2,), the finite difference can be expressed by further conditioning:

DX(S) = " ENJF;\LIP = Pl +Z E <% Z = [Q(S s AA) s | Qn] P[Qn’%nl]>

n=1 =1

where RQ2*) =1 — O(A) — 1 asA — 0.

Definition: The SPA derivative estimatas a pathwise functional of the process that es-
timates thecritical probability ratesand in parallel, thedifference processestarted at the
critical events.

lim E(% S ECHS +A) — C(S) | 2] % P[Q”f”—ﬂ)

n=1 =1 N J N J

- v - v
difference process critcal rates
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Difference Processes

Difference Processe3he following properties are essential to the simulation of SPA esti-
mators and they hold for general conditional threshold problems.

Recall that, = {w € Q : 77 (w) = n} is the set of trajectories where the first discontinuity
in the two processes happens at tim&onditioning ort),,,

e As A — 0, both processes coincideforen, that is,C;(S + A) = C;(S),i < n.

e The limit processes for each € (), start at the limit valuesX,” = S (reorder and fill
inventory), X,, = s (no ordering). The rest of their evolution uses the same sequence of
demandsD;,: > n (CRN). From the Markovian properties, it follows that the difference
processs independent at and ofj,,_;.

o After ¢(n) = min{i > n : X;” = X; = S}, both processes coincicagain and their
difference is zero.

Therefore it is sufficient to estimate:

N ¢(n)
E[ACY] = lim E[Ci(S+A) = Ci(S) | ] = EQ ) [C(X;", Di) = C(X;, Dy)]

Remark: Under negative perturbation the differences@e) — C;(S — A), but in the limit
A — 0, the difference proces&C~ has the same distribution asC*, and similarly for a
double sided perturbatia®;(S + A/2) — C;(S — A/2)
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Critical Rates: One-Sided
Definition: Theright-sided SPAestimator is a conditional estimator of the rates:

N N
1 P8, . 1 PX,—s<D,<X,+A—-s[§,1]
ilino N ; A r ilino N ; A ’
and theeft-sided SPAestimator is a conditional estimator of the rates:
N N
ilglo N nz:; A T ilglo N nz:: A ’

Right-sided The critical sets are defined8s = {w: D, > X,, — s} € §,. Only onQ2' there

is a positive probability that™ (w) = n.
P[$27,8i1] _ PIDs — Z; < A[Y] 9(Z:) - —
A = A — m, with Z’L — X’L — S

The corresponding one-sided SPA estimators for the critical ratee:

N N
1 9(Zn) - 1 9(Zn)
<R>§PA - N o 1 — G(zﬂ) 1{Dn>Zn}7 (R)SPA - N nz:; G(Zn) 1{Dn>Zn}

and are typically estimated through a usual Filtered Monte Carlo, as the sequence of the cor
secutive demandgD,, } is generated.
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Efficiency of Estimation
In many Markov Chain simulations a CLT is applied to estimate confidence intervals. The

A

precisionof an estimatoi’ (V) is proportional to\/Var[Y(N)]/N, whereN: sample size.
Variance reductiors- better precision, butPutime may override the benefits.
Definition: Theefficiencyof a consistent estimataf (V) is:

. 1
E(Y(N)) = - - :
CPUY (N)]VarlY (N)]
e Critical RatesUses further conditioning (oft:) which may reduce variance,
PIQs[8:—1] = E (P, 8i-1]) -

Problem:For many distributions of interest the calculation®fZ,,) may be very costly
and increasespPu.

— Two-Sided SPA

e Difference Processe®ff-line simulations are used to estimateNe'*]. Independent dif-
ference processes are simulatedforeplicationsProblem:May require longcPutime to
generate all the demands, which may be costly for many distributions.

—> Parallel Phantoms
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Two-Sided SPA Estimation

1 Nominal processXs(t), perturbation pro-

] cesses{y. A /»(t) and

} The critical events now are the first epochs
| where ordering decisions differ:

SRR TS T(w) =min{n: —A/2 < D,— 7, < A/2}.

1ZP[Qn]8n1 B X, =52 —-s<D, <X, +5—5[§, 1]
A 7_A—>0]V A .

Using the density of the demandﬁ)n, the estimator for the critical ratdsis:

14
S
N

Rspa = N

Estimation through a usual Filtered Monte Carlo, as the sequence of the consecutive demant
{D,} is generated. Only(-) has to be evaluated and there is no random denominator.
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Parallel Phantoms
Difference processg, = X, — X,, can be calculated recursively:
1. StartatX; = 5, Xy = s, setdy =S — s, n = 1.
2. 1fd, #0setn:=n+1, else¢p =n andeEND OF CYCLE

3. Generatd),,, calculateX,, . ; and update difference:

If d,, > 0 then:
d,, if D, < X,” +d, — s (both above reorder leve)

dps1=% X —D,—S<0 ifXI—d,—s<D,< X' —s(oneabove and one below)
0 if D, > X" — s (both processes rea&h)

If d,, < 0 then:
d, if D, < X, — s (both above reorder leva)

dps1=R S+D,— X—d,>0 if Xt —s<D,<X!—d,— s(oneabove and one belo
0 if D, > X" —d, — s (both processes rea&h

4. Go to 2.

Parallel PhantomsOnly thenominal process(;" is simulated. UseX,” and the consecutive
demands to estimate in parallel the difference process by staningrdom proceswith initial
differenced;(j) = S — s every timethat Xj‘.* = S. Only one simulation Dy, Ds, ..., Dy)
is used for estimating [RC™]. That is, a random number of phantom procestgs), j =
1,2,...Is calculated along with the nominal simulation.
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Parallel Phantom SPA

] . hEN*+pEN- .
g5’ (® 9 = Jm — + ElACT] &E%F( Zg )

M (N): number of stepg =1, ..., N such thatX; = S. ThePhantom SPAs:

—_—

¢(Jj)
1 Z Z .

N
g = M ; PN (ACﬂNZW’

Proposition 1 The Phantom SPA estimat@@) IS strongly consistent foa%C(s, S).

Proof : Given any index; andn > j, Pld,.1 = 0] > PlD, > S —s] > @ > 0. This
implies thatp(;) is stochastically dominately a geometric random variable with finite expec-
d.(j)]| < S — s, w.p.1l. Use Assumption 1, dominated convergence and
unigueness of the stationary measuféx) for the process to obtain the result:

S
+ _ + _ _
]\}1_13100 (AC’ )y = E[ACT], and ]\;E)noo Zg /S g(x — s)u(dx).
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K =10,h =10,p =50,s =10, S = 20. N = 5000 nominal,M = 5000 cycles off-line.

Computer Simulations

Comparison of Two-Sided SPA with Fu’'s One-Sided Off-line estimators:

Results with Off-Line Simulations

Distribution | Theoretical SPA- SPA* SPA!
Exp(1/3) | —4.531 | —4.680+0.26 | —4.570 £0.10 | —4.572 & 0.08
Exp(1/5) | —2.862 | —2.779+0.145 | —2.843 4+ 0.088 | —2.837 + 0.082
EXp(l/lO) 1.516 1.586 +0.114 1.569 £ 0.094 1.576 & 0.101

U(0,6) - —5.185+0.171 | —5.225 4+ 0.171 | —5.261 - 0.122
U(O, 12) - —5.359 £ 0.211 | —5.312 £ 0.088 | —5.259 + 0.044
U(O, 20) - —2.181 £+£0.100 | —2.212 4+ 0.084 | —2.200 = 0.079

Comparison of Two-Sided Off-line estimation with Parallel Phantom SPA:

Off-Line Parallel Phantoms

Distribution SPA! CPU (secs]) SPA! CPU (secs)
Exp(1/3) | —4.509 £ 0.081 25.54 —4.530 4+ 0.027 11.91
Exp(1/5) | —2.816 4+ 0.097 14.99 | —2.829 + 0.056 8.40
Exp(1/10) | —1.488 4+ 0.088 10.5 —1.497 £ 0.078 6.75
U(0,6) —5.180 + 0.085 4591 | —5.281 +£0.025 21.69
U(0,12) | —5.23440.036| 11.31 | —-5.2324+0.018 7.30
U (0, 20) 2.242 +0.130 7.19 2.224 + 0.084 5.32

13
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Concluding Remarks

e Two-Sided vs One-Side@amount of variance reduction seems to be problem dependent.

e Parallel PhantomsThe greatest contribution to efficiency improvement of the Phantom
SPA comes from the parallel on-line systems.

e Difference Processeblse of CRN via parallel phantom processes: exploit difference pro-
Cess recursions to decreaseutime.

e Conjecturehighnegativecorrelation between phantom systems.
On going:
e General formulation for threshold problems wabnditionally independent kernels

PX,.1 €ds|X,] =H(D,), {D,}iid., H(-)hasamass atthreshold values.

— Alternative formulation of two-sided critical rates waak differentiatiorapproach (in
progress).

— Extension of the propertieghe distribution of the difference process is conditionally
independent of (filtered) critical rates.

e Examplesbarrier options in finance (estimation of the greeks), queueing systems under
random polling policies, optimal replacement models, etc.



