Filtered Gibbs Sampler for Estimating Blocking Probabilities in WDM Optical Networks

Felisa J. Vázquez-Abad and Lachlan L. H. Andrew

Département d'informatique et recherche oprérationnelle
Université de Montréal, Québec, CANADA couriel: vazquez@IRO. UMontreal.CA

Department of Electronic and Electrical Engineering
The University of Melbourne
email: \{fva,lha\}@ee.mu.oz.au

European Simulation Multiconference, 25 May 2000.

Outline of Presentation

1. Motivation

- WDM optical networks

2. Clique packing

- Stationary measure
- Blocking probability

3. Monte Carlo simulation

- Accept/reject Monte Carlo
- Markov chain Monte Carlo

4. The Gibbs sampler

- Periodic Gibbs
- Filtered sequential Gibbs sampler

5. Future work

1.1 Motivation: WDM Optical Networks

- Optical bandwidth \gg electronic bandwidth.
- Wavelength division multiplexing (WDM):
- Λ independent wavelengths per fibre
- Each wavelength modulated separately

- Crossconnects: at nodes act as space switches, they can also switch wavelengths.

1.1 Motivation: WDM Optical Networks

- Optical bandwidth \gg electronic bandwidth.
- Wavelength division multiplexing (WDM):
- Λ independent wavelengths per fibre
- Each wavelength modulated separately

- Crossconnects: at nodes act as space switches, they can also switch wavelengths.

Lightpaths are shown in different shades of colour.

- Optical carriers within fibres are wavelengths.
- Calls are connected using optical carriers along the links on their paths: lightpath.
- Connected calls use the bandwidth of each carrier wavelength along the lightpath.

1.1 Motivation: Crossconnects

Full wavelength conversion \Rightarrow standard circuit switched loss network

(a)

(b)

Space Switch Wavelength Converter
M input and output fibres with W wavelengths on each, requirements:

- wavelength continuous crossconnect: W different $M \times M$ space switches,
- wavelength conversion crossconnect: a single $M W \times M W$ space switch.

VERY Expensive !!!!!!

1.1 Motivation: Resource Allocation

Demand Model:
Call arrivals to lightpath i follow a Point process $N_{i}(t)$ with intensity λ_{i} (e.g. Poisson). Call durations: i.i.d holding times with mean $1 / \mu$.

Resources:

No (or partial) wavelength conversion : wavelength continuity constraints. Calls compete for bandwidth.

- Dynamic allocation of lightpaths
- Several methods available to assign LPs to incoming calls
- Problem: Analysis and evaluation difficult (unless full conversion)

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route i ?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path reject???

Fast tuning devices:
Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route i ?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path reject???

Fast tuning devices:

Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

Maximum packing: Fast tuning devices \Rightarrow rearrangement of wavelengths. Calls on route i connected if, upon rearrangement, there is a wavelength available.

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route i ?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path reject???

Fast tuning devices:

Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

Maximum packing: Fast tuning devices \Rightarrow rearrangement of wavelengths. Calls on route i connected if, upon rearrangement, there is a wavelength available. State description: occupancy, complex coupling equations.

Analysis: Complex model for analytical results, state space too large.

[^0]
2.0 Clique Packing in WDM Optical Networks

- $R=$ number of routes in network (number of O/D pairs if fixed routing)
- $n_{i}=$ number of calls currently using route i

Cliques Graph $\mathcal{G}=(V, E)$

- V : vertices $=$ routes
- E: edge if routes share a link
- Clique: fully connected subgraph of \mathcal{G}.

Maximum packing Fast tuning devices: Allocate incoming calls whenever possible, allowing rearrangement \Rightarrow (n-colouring of \mathcal{G})

Clique packing assumes that incoming calls can be connected iff

$$
\sum_{j \in \mathcal{C}_{l}} n_{j}<\Lambda \text { for all } l \text { with } j \in \mathcal{C}_{l}
$$

Simplified Model:
Occupancy vector $n_{i}(t)$ follows stochastic process: independent Poisson arrivals and i.i.d. holding times (not $M / G / \infty$ server... boundaries!)

2.1 Analysis of clique packing: stationary measure

Model Arrivals \sim Poisson $\left(\lambda_{i}\right)$, holding times $\sim \exp (\mu),\{n(t)\}$ occupancy process: each dimension $B \& D$ with state dependent reflecting boundaries.

Result The limit occupancy distribution (stationary probabilites) are:

$$
\begin{aligned}
\pi(n) & =\frac{1}{G} \prod_{i=1}^{R}\left(\frac{\rho_{i}^{n_{i}}}{n_{i}!}\right), \quad n \in \mathcal{S} \\
\mathcal{S} & =\left\{n \in \mathbf{N}^{R}: \sum_{j \in \mathcal{C}_{l}} n_{j} \leq \Lambda ; l=1, \ldots, L\right\} \\
G & =\sum_{n \in S} \prod_{i=1}^{R}\left(\frac{\rho_{i}^{n_{i}}}{n_{i}!}\right)
\end{aligned}
$$

Result: This result may be generalised for other renewal arrival processes and holding time distribution.

2.2 Blocking probability

$$
B=\lim _{t \rightarrow \infty} \sum_{i=1}^{R} \frac{Y_{i}(t)}{A(t)}
$$

$$
\begin{aligned}
& Y_{i}(t)=\text { number of lost arrivals on route } i \text { at time } t \\
& A(t)=\text { total number of arrivals at time } t
\end{aligned}
$$

Blocking states on route i : states $n \in \mathcal{B}_{i} \Rightarrow$ incoming calls at i are lost:

$$
\mathcal{B}_{i}=\left\{n \in S: \max _{\left\{l: i \in \mathcal{C}_{l}\right\}} \sum_{j \in \mathcal{C}_{l}} n_{j}=\Lambda\right\} \quad \begin{array}{|c|c|c|c|c|c|c|c|}
\hline B=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \pi\left(\mathcal{B}_{i}\right) \\
\ldots \text { solved the problem? }
\end{array}
$$

2.2 Blocking probability

$$
B=\lim _{t \rightarrow \infty} \sum_{i=1}^{R} \frac{Y_{i}(t)}{A(t)}
$$

$Y_{i}(t)=$ number of lost arrivals on route i at time t
$A(t)=$ total number of arrivals at time t.
Blocking states on route i : states $n \in \mathcal{B}_{i} \Rightarrow$ incoming calls at i are lost:

$$
\mathcal{B}_{i}=\left\{n \in S: \max _{\left\{l: i \in \mathcal{C}_{l}\right\}} \sum_{j \in \mathcal{C}_{l}} n_{j}=\Lambda\right\} \quad \begin{array}{|c}
B=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \pi\left(\mathcal{B}_{i}\right) \\
\ldots \text { solved the problem? }
\end{array}
$$

Realistic network sizes: >20 nodes, $8-64$ wavelengths, $R=n^{2} / 2+o\left(n^{2}\right)$ \# states $\approx O\left(\Lambda^{R}\right)$. For 10 nodes and 8 wavelengths, computation of G requires $\approx 8^{45} \approx 10^{40}$ multiplications,

2.2 Blocking probability

$$
B=\lim _{t \rightarrow \infty} \sum_{i=1}^{R} \frac{Y_{i}(t)}{A(t)}
$$

$Y_{i}(t)=$ number of lost arrivals on route i at time t $A(t)=$ total number of arrivals at time t.

Blocking states on route i : states $n \in \mathcal{B}_{i} \Rightarrow$ incoming calls at i are lost:

$$
\mathcal{B}_{i}=\left\{n \in S: \max _{\left\{l: i \in \mathcal{C}_{l}\right\}} \sum_{j \in \mathcal{C}_{l}} n_{j}=\Lambda\right\} \quad \begin{array}{|c}
B=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \pi\left(\mathcal{B}_{i}\right) \\
\ldots \text { solved the problem? }
\end{array}
$$

Realistic network sizes: >20 nodes, $8-64$ wavelengths, $R=n^{2} / 2+o\left(n^{2}\right)$ \# states $\approx O\left(\Lambda^{R}\right)$. For 10 nodes and 8 wavelengths, computation of G requires $\approx 8^{45} \approx 10^{40}$ multiplications, which takes
10^{21} years of CPU time on a 1 TFlops computer...

3. Simulation methods: Monte Carlo

Idea: Estimate B directly, rather than find G then B

$$
B=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathrm{E}\left(\mathbf{1}_{\left\{X \in \mathcal{B}_{i}\right\}}\right), X \sim \pi
$$

Simulation:

- Generate a sample $\left\{X_{1}, \ldots, X_{N}\right\}$ i.i.d., $X_{i} \sim \pi$
- Use the sample average:

$$
\hat{Y}(N)=\frac{1}{N} \sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \sum_{s=1}^{N} \mathbf{1}_{\left\{X_{s} \in \mathcal{B}_{i}\right\}}
$$

3. Simulation methods: Efficiency

$$
\hat{Y}(N)=\frac{1}{N} \sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \sum_{s=1}^{N} \mathbf{1}_{\left\{X_{s} \in \mathcal{B}_{i}\right\}}
$$

LLN and CLT \Rightarrow confidence intervals can be estimated to give approximate error $\epsilon=z_{1-\alpha / 2} \sqrt{\operatorname{Var}(\hat{Y}(N))} \Rightarrow$

$$
\text { Relative error } \approx \sqrt{\frac{\operatorname{Var} \hat{Y}(N))}{B^{2}}}
$$

Definition: Relative efficiency of estimator $\hat{Y}(N)$:

$$
\mathcal{E}_{r}(\hat{Y}(N))=\frac{B^{2}}{\mathrm{CPU}[\hat{Y}(N)] \operatorname{Var}[\hat{Y}(N)]}
$$

Trade-off between relative error and CPU time.

4. Monte Carlo Simulation: Acceptance/Rejection

Generate $X_{k} \sim \pi(\cdot),\left\{X_{k}\right\}$ i.i.d. and use

$$
Y_{k}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{X_{k} \in \mathcal{B}_{i}\right\}}
$$

π is a state-dependent truncated Poisson $\quad \pi(n)=\frac{1}{G} \prod_{i=1}^{R} \frac{\rho_{i}^{n_{i}}}{n_{i}!}, n \in S$ Accept/Reject:

- Repeat
- Generate $\left(m_{1}, \ldots, m_{R}\right)$ independent, $m_{i} \sim \operatorname{Poisson}\left(\rho_{i}\right)$
- until $m \in S$
- Set $X_{k}(i)=m_{i}$
X_{k} are i.i.d. $\sim \pi$.

4. Monte Carlo Simulation: Acceptance/Rejection

Generate $X_{k} \sim \pi(\cdot),\left\{X_{k}\right\}$ i.i.d. and use

$$
Y_{k}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{X_{k} \in \mathcal{B}_{i}\right\}}
$$

π is a state-dependent truncated Poisson $\quad \pi(n)=\frac{1}{G} \prod_{i=1}^{R} \frac{\rho_{i}^{n_{i}}}{n_{i}!}, n \in S$
Accept/Reject:

- Repeat
- Generate $\left(m_{1}, \ldots, m_{R}\right)$ independent, $m_{i} \sim \operatorname{Poisson}\left(\rho_{i}\right)$
- until $m \in S$
- Set $X_{k}(i)=m_{i}$
X_{k} are i.i.d. $\sim \pi$.

ρ_{i}	$R=7$	$R=19$	$R=37$
12	0.05	0.19	0.5
15	1.10	11.00	167.0
18	17.00	16.66	5.3×10^{8}

Problem:
$\mathrm{E}($ iterations $)=1 / G$

5. The Gibbs sampler

Periodic Gibbs sampler: change one component of the vector at a time, using the conditional distribution to generate it (one-dimensional truncated Poisson).

Step k

After R steps the vector is

- - updated in all components,

$$
\begin{aligned}
& \pi\left(m \mid \zeta_{k+1}\right)=\frac{P_{j}(m)}{P_{j}\left(\Lambda_{j}\left(\zeta_{k}\right)\right)} \\
& \Lambda_{j}\left(\zeta_{k}\right)=\Lambda-\max _{i: j \in C_{i}} \sum_{c \in C_{i}} \zeta_{k}(c) \mathbf{1}_{\{j \neq c\}}
\end{aligned}
$$

- all samples are accepted: truncates to the feasible region
- one component at a time: no need to evaluate G

Remark: $\left\{\zeta_{k R}\right\}_{k=0}^{\infty}$ is a Markov chain.

5.2 Markov chain Monte Carlo: Gibbs Sampler

Idea: When direct generation of $X \sim \pi$ is difficult or impractical, simulate a Markov chain $\left\{\zeta_{k}\right\}$ with stationary probabilites:

$$
\pi(n)=\lim _{k \rightarrow \infty} \mathrm{P}\left\{\zeta_{k}=n\right\}, \quad n \in S
$$

Sample average satisfies CLT.

$$
\begin{aligned}
& \zeta_{k+1}(i) \begin{cases}=\zeta_{k}(i) & \text { if } i \neq \sigma_{k}=k \bmod (R)+1, \\
\sim \pi\left(\cdot \mid \zeta_{k+1}^{-\sigma_{k}}\right) & \text { otherwise. }\end{cases} \\
& Y_{k}^{(r)}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k}^{(r)} \in \mathcal{B}_{i}\right\}}: \text { periodic } 1 \leq r \leq R, \\
& Y_{k}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbb{1}_{\left\{\zeta_{k} \in \mathcal{B}_{i}\right\}}: \text { sequential. }
\end{aligned}
$$

Result: The periodic Gibbs sample has stationary probabilty $\pi(\cdot)$. The sequential Gibbs sampler is strongly consistent: at each step, calculate Y_{k} instead of only every $R(\approx 300)$ steps.

5.2 Markov chain Monte Carlo: Gibbs Sampler

Efficiency against offered load for direct simulation, and random, sequential and periodic Gibbs samplers applied to a 5×5 mesh-torus.

. . . except for very high loads Gibbs is not performing much better.

5.3 Filtered Gibbs sampler - Reduction of CPU time

 Sequential Gibbs: $\left\{\zeta_{k}\right\} \in \mathcal{S}$ a Markov chain. At each step use$$
Y_{k}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{i}\right\}}
$$

Many terms which are highly correlated between samples: component $\sigma(k)=k \bmod R+1$ is the only one that changes, $\mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{i}\right\}} \in\{0,1\}$ will be identical for many routes i from $k-1$ to k. For any $i \in\{1, \ldots, R\}$:

$$
\begin{gathered}
Y_{k, i}=\mathbf{1}_{\left\{\zeta_{k+1} \in \mathcal{B}_{i}\right\}} \Rightarrow \mathbf{E}\left[Y_{k, i}\right]=B_{i}, \\
\lim _{N \rightarrow \infty} \frac{1}{N(i)} \sum_{k=1}^{N} Y_{k, i} \mathbf{1}_{\left\{\sigma_{k}=i\right\}} \rightarrow B_{i}
\end{gathered}
$$

$R \approx 300$, many computations are wasted.
Dedicate each iteration k to only one component $i=\sigma_{k} \ldots$?

5.3 Filtered Gibbs sampler - Reduction of CPU time

Sequential Gibbs: $\left\{\zeta_{k}\right\} \in \mathcal{S}$ a Markov chain. At each step use

$$
Y_{k}=\sum_{i=1}^{R}\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{i}\right\}}
$$

Dedicate each iteration k to only one component $i=\sigma_{k} \ldots$?
Greater effects on routes sharing more cliques.
Only determine blocking on updated route

$$
Y_{k}=R\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{\sigma_{k}}\right\}}, \quad \sigma_{k}=k \bmod R+1
$$

Result: The sample average $\hat{Y}(N)$ is strongly consistent for B and converges in the order $\mathcal{O}\left(N^{-1 / 2}\right)$.

5.3 Filtered Gibbs sampler - Reduction of Variance

$$
Y_{k}=R\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{\sigma_{k}}\right\}} \quad \sigma_{k}=k \bmod R+1
$$

Usual conditioning argument: $\operatorname{Var}(Y)=\operatorname{Var}(\mathrm{E}(Y \mid X))+\mathrm{E}(\operatorname{Var}(Y \mid X))$, $Z=\mathrm{E}(Y \mid X)$ satisfies $\mathrm{E}(Z)=B$ and $\operatorname{Var}(Z) \leq \operatorname{Var}(Y)$.

$$
\hat{Y}^{\prime}(N)=\frac{1}{N} \sum_{k=1}^{N} \mathrm{E}\left[Y_{k} \mid \zeta_{k-1}\right]
$$

conditions on natural filtration of the process (hence "filtered").

5.3 Filtered Gibbs sampler - Reduction of Variance

$$
Y_{k}=R\left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{\sigma_{k}}\right\}} \quad \sigma_{k}=k \bmod R+1
$$

Usual conditioning argument: $\operatorname{Var}(Y)=\operatorname{Var}(\mathrm{E}(Y \mid X))+\mathrm{E}(\operatorname{Var}(Y \mid X))$, $Z=\mathrm{E}(Y \mid X)$ satisfies $\mathrm{E}(Z)=B$ and $\operatorname{Var}(Z) \leq \operatorname{Var}(Y)$.

$$
\hat{Y}^{\prime}(N)=\frac{1}{N} \sum_{k=1}^{N} \mathrm{E}\left[Y_{k} \mid \zeta_{k-1}\right]
$$

conditions on natural filtration of the process (hence "filtered"). Instead of using $\mathbf{1}_{\left\{\zeta_{k} \in \mathcal{B}_{\sigma}\right\}}$, estimate the blocking using the conditional probability:

$$
Y_{k}=R\left(\frac{\lambda_{i}}{\lambda}\right) \mathrm{P}\left(\zeta_{k} \in \mathcal{B}_{\sigma_{k}} \mid \zeta_{k-1}\right)
$$

Result: The Filtered Gibbs sampler is strongly consitstent for B and converges in the order $\mathcal{O}\left(N^{-1 / 2}\right)$.

$$
\mathrm{P}\left[X_{k+1} \in \mathcal{B}_{j} \mid \zeta_{k}\right]=\frac{\left.P_{j}\left(\Lambda_{j}\left(\zeta_{k}\right)\right)-P_{j}\left(\Lambda_{j}\left(\zeta_{k}\right)-1\right)\right)}{P_{j}\left(\Lambda_{i}\left(\zeta_{k}\right)\right)}
$$

5.3 Markov chain Monte Carlo: Gibbs Sampler

Efficiency against offered load for direct simulation, filtered randomised and filtered sequential Gibbs samplers applied to a 5×5 mesh-torus.

Realistic network sizes and loads: $\Lambda=12$ at $B=0.12$, the gain factor is 93,931: if our method requires 1 minute, the usual A / R would need 65.2 days to complete the simulation.

As network size grows it overcomes the curse of dimensionality.

On-going and future work

- Use of stratification to choose σ_{k} in a judicious way, for variance reduction.
- Application of Filtered Gibbs sampler for more complex networks
- partial conversion, asymmetric,
- use efficient clique determination algorithms: graph theory.
- Application of similar techniques to realistic route assignment.
- Relative efficiency \downarrow as $B \rightarrow 0$: "rare events"
- Use of fast simulation with importance sampling: direct simulation of the process.
- Can we apply fast simulation to Gibbs sampler directly?

[^0]: Simplified model: clique packing yields simple linear constraints

