Filtered Gibbs Sampler for Estimating Blocking Probabilities in WDM Optical Networks

Felisa J. Vázquez-Abad and Lachlan L. H. Andrew

Département d'informatique et recherche oprérationnelle Université de Montréal, Québec, CANADA couriel: vazquez@IRO.UMontreal.CA

Department of Electronic and Electrical Engineering The University of Melbourne email: {fva,lha}@ee.mu.oz.au

European Simulation Multiconference, 25 May 2000.

Outline of Presentation

- 1. Motivation
 - WDM optical networks
- 2. Clique packing
 - Stationary measure
 - Blocking probability
- 3. Monte Carlo simulation
 - Accept/reject Monte Carlo
 - Markov chain Monte Carlo
- 4. The Gibbs sampler
 - Periodic Gibbs
 - Filtered sequential Gibbs sampler
- 5. Future work

1.1 Motivation: WDM Optical Networks

- Optical bandwidth >> electronic bandwidth.
- Wavelength division multiplexing (WDM):
 - Λ independent wavelengths per fibre
 - Each wavelength modulated separately

• *Crossconnects:* at nodes act as space switches, they can also switch wavelengths.

1.1 Motivation: WDM Optical Networks

- Optical bandwidth >> electronic bandwidth.
- Wavelength division multiplexing (WDM):
 - Λ independent wavelengths per fibre
 - Each wavelength modulated separately

• *Crossconnects:* at nodes act as space switches, they can also switch wavelengths.

Lightpaths are shown in different shades of colour.

- Optical carriers within fibres are *wavelengths*.
- Calls are connected using optical carriers along the links on their paths: *lightpath*.
- Connected calls use the bandwidth of each carrier wavelength along the lightpath.

1.1 Motivation: Crossconnects

Full wavelength conversion ⇒ standard *circuit switched loss network*

M input and output fibres with W wavelengths on each, requirements:

- wavelength *continuous* crossconnect: W different $M \times M$ space switches,
- wavelength *conversion* crossconnect: a single $MW \times MW$ space switch. VERY EXPENSIVE !!!!!!

1.1 Motivation: Resource Allocation

Demand Model:

Call *arrivals* to lightpath *i* follow a Point process $N_i(t)$ with intensity λ_i (e.g. Poisson). Call durations: i.i.d *holding times* with mean $1/\mu$.

Resources:

No (or partial) wavelength conversion : *wavelength continuity constraints*. Calls compete for bandwidth.

- *Dynamic allocation* of lightpaths
 - Several methods available to assign LPs to incoming calls
 - Problem: Analysis and evaluation difficult (unless full conversion)

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route *i*?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path *reject???*

Fast tuning devices:

Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route *i*?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path *reject???*

Fast tuning devices:

Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

Maximum packing: Fast tuning devices \Rightarrow rearrangement of wavelengths. Calls on route *i* connected if, upon rearrangement, there is a wavelength available.

1.1 Motivation: Maximum and Clique Packing

Dynamic lightpath allocation: Wavelength continuity constraint (no conversion). How to assign lightpaths to incoming calls at route *i*?

- Call arrives, search available wavelength (say First Fit assignment).
- No wavelength available on path *reject???*

Fast tuning devices:

Optical carriers can (in principle) change wavelength of on-going connections without affecting QoS.

- **Maximum packing:** Fast tuning devices \Rightarrow rearrangement of wavelengths. Calls on route *i* connected if, upon rearrangement, there is a wavelength available. State description: occupancy, complex coupling equations.
- Analysis: Complex model for analytical results, state space too large.

Simplified model: clique packing yields simple linear constraints

2.0 Clique Packing in WDM Optical Networks

• R = number of routes in network (number of O/D pairs if fixed routing)

• n_i = number of calls currently using route i

Cliques Graph $\mathcal{G} = (V, E)$

- V: vertices = routes
- E: edge if routes share a link
- Clique: fully connected subgraph of \mathcal{G} .

Maximum packing Fast tuning devices: Allocate incoming calls whenever possible, allowing rearrangement \Rightarrow (*n*-colouring of \mathcal{G})

Clique packing assumes that incoming calls can be connected iff

$$\sum_{j \in \mathcal{C}_l} n_j < \Lambda \text{ for all } l \text{ with } j \in \mathcal{C}_l$$

Simplified Model:

Occupancy vector $n_i(t)$ follows stochastic process: independent Poisson arrivals and i.i.d. holding times (not $M/G/\infty$ server... boundaries!)

2.1 Analysis of clique packing: stationary measure

Model Arrivals ~ Poisson(λ_i), holding times ~ exp(μ), {n(t)} occupancy process: each dimension B&D with state dependent reflecting boundaries.

$$\lambda_{i} \qquad \lambda_{i} \qquad \lambda_{i$$

Result The limit occupancy distribution (stationary probabilites) are:

$$\pi(n) = \frac{1}{G} \prod_{i=1}^{R} \left(\frac{\rho_i^{n_i}}{n_i!} \right), \quad n \in S$$
$$S = \left\{ n \in \mathbf{N}^R : \sum_{j \in \mathcal{C}_l} n_j \le \Lambda; \ l = 1, \dots, L \right\}$$
$$G = \sum_{n \in S} \prod_{i=1}^{R} \left(\frac{\rho_i^{n_i}}{n_i!} \right)$$

Result: This result may be generalised for other renewal arrival processes and holding time distribution.

2.2 Blocking probability

 $\left\| B = \lim_{t \to \infty} \sum_{i=1}^{R} \frac{Y_i(t)}{A(t)} \right\| \quad \begin{array}{l} Y_i(t) = \text{number of lost arrivals on route } i \text{ at time } t \\ A(t) = \text{total number of arrivals at time } t. \end{array} \right.$

Blocking states on route *i*: states $n \in B_i \Rightarrow$ incoming calls at *i* are lost:

$$\mathcal{B}_{i} = \left\{ n \in S : \max_{\{l:i \in \mathcal{C}_{l}\}} \sum_{j \in \mathcal{C}_{l}} n_{j} = \Lambda \right\}$$

$$B = \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda}\right) \pi(\mathcal{B}_i)$$

... solved the problem?

2.2 Blocking probability

$$B = \lim_{t \to \infty} \sum_{i=1}^{R} \frac{Y_i(t)}{A(t)}$$

 $Y_i(t)$ = number of lost arrivals on route *i* at time *t* A(t) = total number of arrivals at time *t*.

Blocking states on route *i*: states $n \in B_i \Rightarrow$ incoming calls at *i* are lost:

$$\mathcal{B}_{i} = \left\{ n \in S : \max_{\{l:i \in \mathcal{C}_{l}\}} \sum_{j \in \mathcal{C}_{l}} n_{j} = \Lambda \right\}$$

$$B = \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda}\right) \pi(\mathcal{B}_i)$$

... solved the problem?

Realistic network sizes: > 20 nodes, 8–64 wavelengths, $R = n^2/2 + o(n^2)$ # states $\approx O(\Lambda^R)$. For 10 nodes and 8 wavelengths, computation of G requires $\approx 8^{45} \approx 10^{40}$ multiplications,

2.2 Blocking probability

$$B = \lim_{t \to \infty} \sum_{i=1}^{R} \frac{Y_i(t)}{A(t)}$$

 $Y_i(t)$ = number of lost arrivals on route *i* at time *t* A(t) = total number of arrivals at time *t*.

Blocking states on route *i*: states $n \in B_i \Rightarrow$ incoming calls at *i* are lost:

$$\mathcal{B}_{i} = \left\{ n \in S : \max_{\{l:i \in \mathcal{C}_{l}\}} \sum_{j \in \mathcal{C}_{l}} n_{j} = \Lambda \right\}$$

$$B = \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda}\right) \pi(\mathcal{B}_i)$$

... solved the problem?

Realistic network sizes: > 20 nodes, 8–64 wavelengths, $R = n^2/2 + o(n^2)$ # states $\approx O(\Lambda^R)$. For 10 nodes and 8 wavelengths, computation of G requires $\approx 8^{45} \approx 10^{40}$ multiplications, which takes

 10^{21} years of CPU time on a 1 TFlops computer...

3. Simulation methods: Monte Carlo

Idea: Estimate B directly, rather than find G then B

$$B = \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda} \right) \mathsf{E}(\mathbf{1}_{\{X \in \mathcal{B}_i\}}), \ X \sim \pi$$

Simulation:

- Generate a sample $\{X_1, \ldots, X_N\}$ i.i.d., $X_i \sim \pi$
- Use the sample average:

$$\hat{Y}(N) = \frac{1}{N} \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda}\right) \sum_{s=1}^{N} \mathbf{1}_{\{X_s \in \mathcal{B}_i\}}$$

3. Simulation methods: Efficiency

$$\hat{Y}(N) = \frac{1}{N} \sum_{i=1}^{R} \left(\frac{\lambda_i}{\lambda}\right) \sum_{s=1}^{N} \mathbf{1}_{\{X_s \in \mathcal{B}_i\}}$$

LLN and CLT \Rightarrow confidence intervals can be estimated to give approximate error $\epsilon = z_{1-\alpha/2} \sqrt{\mathsf{Var}(\hat{Y}(N))} \Rightarrow$

Relative error
$$\approx \sqrt{\frac{\text{Var}\hat{Y}(N))}{B^2}}$$

Definition: *Relative efficiency* of estimator $\hat{Y}(N)$:

$$\mathcal{E}_r(\hat{Y}(N)) = \frac{B^2}{\operatorname{CPU}[\hat{Y}(N)]\operatorname{Var}[\hat{Y}(N)]}$$

Trade-off between *relative error* and *CPU time*.

4. Monte Carlo Simulation: Acceptance/Rejection

Generate $X_k \sim \pi(\cdot)$, $\{X_k\}$ i.i.d. and use

$$Y_k = \sum_{i=1}^R \left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{X_k \in \mathcal{B}_i\}}$$

 $\pi \text{ is a state-dependent truncated Poisson } \pi(n) = \frac{1}{G} \prod_{i=1}^{R} \frac{\rho_i^{n_i}}{n_i!}, \ n \in S$ Accept/Reject:

- Repeat
 - Generate (m_1, \ldots, m_R) independent, $m_i \sim \text{Poisson}(\rho_i)$
- until $m \in S$
- Set $X_k(i) = m_i$

 X_k are i.i.d. $\sim \pi$.

4. Monte Carlo Simulation: Acceptance/Rejection

Generate $X_k \sim \pi(\cdot)$, $\{X_k\}$ i.i.d. and use $Y_k = \sum_{i=1}^R \left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{X_k \in \mathcal{B}_i\}}$ π is a state-dependent truncated Poisson $\pi(n) = \frac{1}{G} \prod_{i=1}^{R} \frac{\rho_i^{n_i}}{n_i!}, n \in S$ Accept/Reject: • Repeat - Generate (m_1, \ldots, m_R) independent, $m_i \sim \text{Poisson}(\rho_i)$

- until $m \in S$
- Set $X_k(i) = m_i$

X_k are i.i.d. $\sim \pi$.	$ ho_i$	R = 7	R = 19	R = 37
	12	0.05	0.19	0.5
	15	1.10	11.00	167.0
	18	17.00	16.66	5.3×10^8

Problem: E(iterations) = 1/G

5. The Gibbs sampler

Periodic Gibbs sampler: change one component of the vector at a time, using the conditional distribution to generate it (one-dimensional truncated Poisson).

- all samples are accepted: truncates to the feasible region
- one component at a time: no need to evaluate G

Remark: $\{\zeta_{kR}\}_{k=0}^{\infty}$ is a Markov chain.

5.2 Markov chain Monte Carlo: Gibbs Sampler

Idea: When direct generation of $X \sim \pi$ is difficult or impractical, simulate a Markov chain $\{\zeta_k\}$ with stationary probabilites:

$$\pi(n) = \lim_{k \to \infty} \mathsf{P}\{\zeta_k = n\}, \ n \in S$$

Sample average satisfies CLT.

$$\zeta_{k+1}(i) \begin{cases} = \zeta_k(i) & \text{if } i \neq \sigma_k = k \mod(R) + 1, \\ \sim \pi(\cdot | \zeta_{k+1}^{-\sigma_k}) & \text{otherwise.} \end{cases},$$

$$Y_{k}^{(r)} = \sum_{i=1}^{R} \left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\{\zeta_{k}^{(r)} \in \mathcal{B}_{i}\}} : \text{ periodic } 1 \leq r \leq R.$$
$$Y_{k} = \sum_{i=1}^{R} \left(\frac{\lambda_{i}}{\lambda}\right) \mathbf{1}_{\{\zeta_{k} \in \mathcal{B}_{i}\}} : \text{ sequential.}$$

Result: The periodic Gibbs sample has stationary probability $\pi(\cdot)$. The sequential Gibbs sampler is strongly consistent: at **each** step, calculate Y_k instead of only every $R(\approx 300)$ steps.

5.2 Markov chain Monte Carlo: Gibbs Sampler

Efficiency against offered load for direct simulation, and random, sequential and periodic Gibbs samplers applied to a 5×5 mesh-torus.

... except for very high loads Gibbs is not performing much better.

5.3 Filtered Gibbs sampler – Reduction of CPU time

Sequential Gibbs: $\{\zeta_k\} \in S$ a Markov chain. At each step use

$$Y_k = \sum_{i=1}^R \left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{\zeta_k \in \mathcal{B}_i\}}$$

Many terms which are highly correlated between samples: component $\sigma(k) = k \mod R + 1$ is the only one that changes, $\mathbf{1}_{\{\zeta_k \in \mathcal{B}_i\}} \in \{0, 1\}$ will be identical for many routes *i* from k - 1 to *k*. For any $i \in \{1, \ldots, R\}$:

$$Y_{k,i} = \mathbf{1}_{\{\zeta_{k+1} \in \mathcal{B}_i\}} \Rightarrow \mathsf{E}[Y_{k,i}] = B_i,$$
$$\lim_{N \to \infty} \frac{1}{N(i)} \sum_{k=1}^N Y_{k,i} \mathbf{1}_{\{\sigma_k = i\}} \to B_i$$

 $R \approx 300$, many computations are wasted. Dedicate each iteration k to only *one component* $i = \sigma_k \dots$?

5.3 Filtered Gibbs sampler – Reduction of CPU time

Sequential Gibbs: $\{\zeta_k\} \in S$ a Markov chain. At each step use

$$Y_k = \sum_{i=1}^R \left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{\zeta_k \in \mathcal{B}_i\}}$$

Dedicate each iteration k to only one component $i = \sigma_k \dots$? Greater effects on routes sharing more cliques.

Only determine blocking on updated route

$$Y_k = R\left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{\zeta_k \in \mathcal{B}_{\sigma_k}\}}, \quad \sigma_k = k \mod R + 1.$$

Result: The sample average $\hat{Y}(N)$ is strongly consistent for B and converges in the order $\mathcal{O}(N^{-1/2})$.

5.3 Filtered Gibbs sampler – Reduction of Variance

$$Y_k = R\left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{\zeta_k \in \mathcal{B}_{\sigma_k}\}} \quad \sigma_k = k \mod R + 1$$

Usual conditioning argument: Var(Y) = Var(E(Y|X)) + E(Var(Y|X)), Z = E(Y|X) satisfies E(Z) = B and $Var(Z) \leq Var(Y)$.

$$\hat{Y}'(N) = \frac{1}{N} \sum_{k=1}^{N} \mathsf{E}[Y_k | \zeta_{k-1}]$$

conditions on natural filtration of the process (hence "filtered").

5.3 Filtered Gibbs sampler – Reduction of Variance

$$Y_k = R\left(\frac{\lambda_i}{\lambda}\right) \mathbf{1}_{\{\zeta_k \in \mathcal{B}_{\sigma_k}\}} \quad \sigma_k = k \mod R + 1$$

Usual conditioning argument: Var(Y) = Var(E(Y|X)) + E(Var(Y|X)), Z = E(Y|X) satisfies E(Z) = B and $Var(Z) \leq Var(Y)$.

$$\hat{Y}'(N) = \frac{1}{N} \sum_{k=1}^{N} \mathsf{E}[Y_k | \zeta_{k-1}]$$

conditions on natural filtration of the process (hence "filtered").

Instead of using $\mathbf{1}_{\{\zeta_k \in \mathcal{B}_{\sigma}\}}$, estimate the blocking using the conditional probability:

$$Y_k = R\left(\frac{\lambda_i}{\lambda}\right) \mathsf{P}(\zeta_k \in \mathcal{B}_{\sigma_k} | \zeta_{k-1})$$

Result: The Filtered Gibbs sampler is strongly consistent for B and converges in the order $\mathcal{O}(N^{-1/2})$.

$$\mathsf{P}[X_{k+1} \in \mathcal{B}_j | \zeta_k] = \frac{P_j(\Lambda_j(\zeta_k)) - P_j(\Lambda_j(\zeta_k) - 1))}{P_j(\Lambda_i(\zeta_k))}$$

5.3 Markov chain Monte Carlo: Gibbs Sampler

Efficiency against offered load for *direct simulation*, *filtered randomised* and *filtered sequential* Gibbs samplers applied to a 5×5 mesh-torus.

Realistic network sizes and loads: $\Lambda = 12$ at B = 0.12, the gain factor is 93,931: if our method requires 1 minute, the usual A/R would need 65.2 days to complete the simulation.

As network size grows it overcomes the curse of dimensionality.

On-going and future work

- Use of stratification to choose σ_k in a judicious way, for variance reduction.
- Application of Filtered Gibbs sampler for more complex networks
 - partial conversion, asymmetric,
 - use efficient clique determination algorithms: graph theory.
- Application of similar techniques to realistic route assignment.
- Relative efficiency \downarrow as $B \rightarrow 0$: "rare events"
 - Use of fast simulation with importance sampling: direct simulation of the process.
 - Can we apply fast simulation to Gibbs sampler directly?