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1.1 The Multi-Valued Decision Process

Model: Decision events occur according to a Point process N(t), with rate λ. One amongst

V actions must be taken upon arrival of such an event.

Control Strategy: The decision strategy prescribes randomized independent decisions:

θi : Probability that action i will be taken upon arrival of the n-th event.

Decision Space : Θ =

θ ∈ IRV such that θi ≥ 0, i = 1, . . . , V, and
V∑
i=1
θi = 1

 .
Long Term Cost per Unit Time: F (θ) is the long term average cost rate associated with

a given strategy θ.

F (θ) is generally unknown.

Point Process, incoming events

System’s Dynamics

Decision Maker

Actions

Point Process with actions

θF(  )

Minimize F (θ)

subject to
V∑
i=1
θi = 1

We call θ∗ = arg min
θ∈Θ

F (θ) the optimal value (which may not be unique).
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1.2 Optimality of the Probability Vector θ

Definition: The Generalized Gradient Operator is defined by:

Gk[F (·)] =
∂F (·)
∂θk

−
V∑
j=1

θj
∂F (·)
∂θj

A value of θ̄ such that
V∑
k=1

θ̄k = 1 and

Gk[F (θ̄)] =

= 0 if θ̄k > 0

≥ 0 if θ̄k = 0
for k = 1, .., V (1)

satisfies the Kuhn-Tucker conditions. Under convexity of F (θ), if θ̄ satisfies (1), then θ̄ = θ∗.

Lemma 1 Consider the ODE:
dϑk(t)

dt
= −ϑk(t)Gk[F (ϑ(t))] (2)

If the starting point is a probability vector: ϑk(0) ∈ Θ, then ϑ(t) remains always as a

probability vector. Furthermore, if ϑ(0) ∈ Θ is such that ϑk(0) > 0 for each k = 1, . . . , V

and it is not a local maximum of F (·), then the stable points of (2) are local minima.

If the function F has a unique minimum, then (2) has an asymptote at θ∗ = arg min
θ∈Θ

F (θ).
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1.3 Estimation Problem: Formulation

Approximating the solution to the ODE: stochastic approximation

θk(n + 1) = θk(n)− εnθk(n)Yn, Yn ≈ Gk[F (ϑ(t))]

The sensitivity es-

timator Yn is a noisy

measurement of the de-

sired sensitivity.

For the stochas-

tic approximation to be

asymptotically optimal,

we need to estimate the

generalized gradient.

Point Process with actions

Incoming events

Y n

Sensitivity

Update θ

Decision Maker

θ

System’s Dynamics

How to estimate the sensitivities?

IPA: not applicable, SF: generally large variances.

Extension of the Phantom RPA method to multivalued decisions.
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2.1 A Queueing Example

• Items arrive at at queue in front of a machine, where they wait to be processed according

to a FCFS rule. The (stationary) arrival process N(t) has rate λ.

• A machine can process items at V different speed settings. We call ηi ∈ {v1, . . . , vV } the

particular decision or speed chosen for the i-th processed item.

• The distribution of the random processing times is conditional to the chosen speed, with

µ−1
k = E[Si|ηi = vk]. We order the settings: µk ≤ µj if k < j (v1 is the fastest in average).

• The operating cost assumes that it costs ck dollars per unit of processing time when the

machine works at speed vk, and ck < cj if k < j, (faster modes more costly, no switching cost).

θ

θ

θ2

θ1

3

4

µ
µ
µ
µ

1

2

3

4

Server

N(t)

Minimize F (θ) = W (θ) + λ
V∑
k=1

ckθk
µk

, subject to
V∑
i=1
θi = 1.

=⇒ Estimation of Gk[W (θ)].
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2.2 Parallel ∆-Phantom Systems

Lindley’s recursions, for i ≥ 0, with W1 = 0:

Ri+1 = Si+1(ui+1, ηi+1) +Wi+1 =

=
V∑
k=1

G−1
k (ui+1)1{ηi+1=vk} +Wi+1

Wi+1 = max(0, Ri −Ai)

A
A

RR3

3

5

5

Definition: Given a trajectory (Ai, ui, ηi), let η̃ be a sequence of phantom decisions s.t.

P{η̃i = vl|ηi(0) = vl} = 1, l 6= k

P{η̃i = vk|ηi(0) = vk} = 1− ∆

θk
, P{η̃i = vl|ηi(0) = vk} =

pl∆

θk
, l 6= k

where pl ≥ 0 are to be determined later. The ∆- phantom system is defined by the queueing

system that follows the trajectory driven by the sequence (Ai, ui, η̃i).

θk

∆1-

θ = θ − ∆~~

~(  ) k = ∆∆

Phantom System, corresponds∆−
l

p ∆
kθ to 

∆~(  ) l = −     ∆, pl

, where:



Felisa J. Vázquez-Abad 7

2.3 The General RPA Formula

Finite Horizon: Let ϕM(η) =
M∑
i=1
Wi be the total wait of the first M customers.

Finite Difference in θ: Consider now the expected value of the finite difference:

D∆(M) =
ϕM(η(0))− ϕM(η̃)

∆
, where η̃ yields the ∆-Phantom system.

Given M customers, the number of phantom decisions in {η̃i, i = 1, . . . ,M} has a Binomial

distribution, since each decision is chosen as a phantom one with probability P{η̃i 6= ηi(0)} =

∆, independently of previous ones. Therefore,

E[D∆(M)] = E
[
M∆(1−∆)M−1E(1)[D∆(M)]

]
+E

 M∑
m=2

M
m

∆m(1−∆)M−mE(m)[D∆(M)]


where E(m) is the expectation w.r.t. η̃, conditioning on having exactly m phantoms.

The RPA Limit: The finite horizon phantom RPA formula is:

lim
∆→0

E[D∆(M)] =
1

θk
E


M∑
j=1

Ik(j)

ϕM(η(0)− ϕM(η(j))

M




where Ik(j) = 1{ηj(0)=vk}. The sequence η(j) is defined by ηi(j) = ηi(0), i 6= j, and:

P{ηj(j) = vl|ηj(0) = vl} = 1, l 6= k, P{ηj(j) = vl|ηj(0) = vk} = pl.

Use equiprobability of all the sequences of phantom decisions with only one distinct from η(0).
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3.1 The Swapping Phantoms: Main Result

Chosen phantom decisions are swapped:

pl = − θl
(1− θk)

, l 6= k

The ensuing phantom customers in the η̃-phantom

system swap speeds compared to the correspond-

ing nominal decisions, choosing one of the remaining

ones according to their original proportion.

θk

∆1-

l
p ∆

kθ

Proposition 1 Assume that the service times are dominated by {Si(η̄)}, for some random

sequence η̄, and that the dominating queueing process satisfies E[N3(η̄)] <∞. Then:

θk
(1− θk)

Gk[W (θ)] = lim
M→∞

E


M∑
j=1

Ik(j)
[ϕM(η(0))− ϕM(η(j))]

M



where Ik(j) = 1{ηj(0)=vk}. The sequence η(j) is defined by ηi(j) = ηi(0), i 6= j, and:

P{ηj(j) = vl|ηj(0) = vl} = 1, l 6= k, P{ηj(j) = vl|ηj(0) = vk} = pl.
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3.2 The Swapping Phantoms: Sketch of Proof

First Step: Using this definition for the ∆-Phantom system, simple algebraic manipulations

show that

lim
∆→0

F (θ)− F (θ̃)

∆
=

1

1− θk
Gk[F (θ)]

In order to see this, set V = 3, k = 2:

F (θ)−F (θ̃) = F (θ1, θ2, θ3)−F (θ1, θ2, θ̃3)+F (θ1, θ2, θ̃3)−F (θ1, θ̃2, θ̃3)+F (θ1, θ̃2, θ̃3)−F (θ̃1, θ̃2, θ̃3)

Now use δθi = θ̃i − θi = ∆θi/(1− θk), i 6= k to rewrite:

lim
∆→0

F (θ̃1, θ̃2, θ̃3)− F (θ1, θ̃2, θ̃3)

∆
=

θ1

(1− θk)
lim
δθ1→0

F (θ1 + δθ1, θ̃2, θ̃3)− F (θ1, θ̃2, θ̃3)

δθ1
=

θ1

(1− θk)
∂F (θ)

∂θ1

and similarly for i = 3. For k = 2 we have:

lim
∆→0

F (θ1, θ2, θ̃3)− F (θ1, θ̃2, θ̃3)

∆
=
∂F (θ)

∂θk
=

1

(1− θk)

∂F (θ)

∂θk
− θk

∂F (θ)

∂θk


which establishes our claim.

Second Step: Use Dominated Convergence to interchange the limits of the finite differences

(RPA formula) and the finite horizon approximation to the stationary average.
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3.3 The Disappearing Phantoms: Main Result

• Swapping requires domination: system stability under slowest setting, and also

• requires knowledge of the service distributions, in order to “swap” speeds.

Uniformization argument: customers of class k arrive at

rate θkλ. Service distribution is class dependent. Use now

pl = 0, l 6= k, meaning that some of the customers, the

phantom ones, are not allowed entrance to the machine

and thus disappear from the system.

θk

∆1-

disappears

Call: Dk(λ, θ) =
∂F (λ, θ)

∂θk
+ λ

∂F (λ, θ)

∂λ
−

V∑
j=1

θj
∂F (λ, θ)

∂θj

so that: Gk[F (λ, θ)] = Dk[F (λ, θ)]−
V∑
i=1
θiDi[F (λ, θ)]

Proposition 2 Assume that E[N(0)3] <∞. Then:

θkDk[W (θ)] = lim
M→∞

E


M∑
j=1

Ik(j)
[ϕM(η(0))− ϕM(η(j))]

M


where Ik(j) = 1{ηj(0)=vk}. The sequence η(j) is defined by ηi(j) = ηi(0), i 6= j, but now

ηj(j) = ∅, meaning that its service time will be set to zero in the phantom queue.
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3.4 The Disappearing Phantoms: Sketch of Proof

First Step: Since the rate λk = θkλ, then λ̃ = λ−∆λ and consequently, the corresponding

system satisfies:

θ̃i =
λθi

λ−∆λ
= θi+δi, θ̃k =

λk −∆θkλ

λ−∆λ
= θk−δk, where: δi =

 θi∆ +O(∆2) if i 6= k

(1− θk)∆ +O(∆2) i = k

Using δλ = ∆θkλ, we then have:

lim
∆→0

F (λ, θ)− F (λ̃, θ̃)

∆
= λ

∂

∂λ
F (λ, θ) + lim

∆→0

F (λ, θ)− F (λ, θ̃)

∆

Proceed as before to write down:

lim
∆→0

F (λ, θ)− F (λ, θ̃)

∆
= −

∑
i6=k

θi
∂F (λ, θ)

∂θi
+ (1− θk)

∂F (λ, θ)

∂θk
=
∂F (λ, θ)

∂θk
−

V∑
i=1

θi
∂F (λ, θ)

∂θi

therefore:

lim
∆→0

F (λ, θ)− F (λ̃, θ̃)

∆
=
∂F (λ, θ)

∂θk
+λ

∂F (λ, θ)

∂λ
−

V∑
j=1

θj
∂F (λ, θ)

∂θj
= Dk(λ, θ)

Second Step: Use Dominated Convergence to interchange the limits of the finite differences

(RPA formula) and the finite horizon approximation to the stationary average.
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4.1 Implementation: Parallel Computation

Our estimators require computation of:

M∑
j=1

Ik(j)
1

M

M∑
i=1
di(j), where di(j) ≡Wi(0)−Wi(j)

Wi(j) is the waiting time of the i-th customer in the j-phantom system. We simulate only one

path of the nominal system. To each customer we associate a phantom system.

If dj+1(j) > 0 then

di+1(j) =

 di(j) if Wi+1(0) > di(j)

Wi+1(0) otherwise

S (0)2

S (2)2

d  (2)
d  (2)

3
4

Customer in phantom system
finds an empty server.

5d  (2) = W  (0)

phantom 2

5

S (0)2

S (2)2

d  (2)
d  (2)d  (2)

5
4

phantom 2

d  (2) = -W  (2)6

3

6

If dj+1(j) < 0 then

di+1(j) =

 di(j) if Wi+1(0) > 0

−Wi+1(j) otherwise

Wi+1(j) = [(Ri(0)− Ai)− di(j)]+.
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4.2 Implementation: Simulation Results

The numerical results were obtained via simulations of the system for V = 3 speeds. The

arrival rate is λ = 0.05 and 0.10 and all service distributions are uniform between (ak, bk) as

given in:

Speed k Uniform(ak, bk) θk
1 1 38 0.2
2 3 7 0.5
3 4 6 0.3

The results for two different utilization factors are given below.

λ = 0.05, ρ = 0.40
Method k = 1 k = 2 k = 3 CPU Time

Theoretical 20.22 -5.04 -5.08 –
Disap 20.18 ± 0.31 -5.03 ± 0.08 -5.06 ± 0.08 7 secs.

Swap (CRN) 20.36 ± 0.31 -5.05 ± 0.05 -5.05 ± 0.07 13 secs.
Swap (IND) 20.13 ± 0.32 -5.05 ± 0.05 -5.05 ± 0.08 11 secs.

λ = 0.10, ρ = 0.80
Method k = 1 k = 2 k = 3 CPU Time

Theoretical 246.55 -61.55 -61.79 –
Disap 246.1 ± 9.786 -61.47 ± 2.479 -61.60 ± 2.465 12 secs.

Swap (CRN) 246.7 ± 10.043 -61.33 ± 2.037 -61.22 ± 2.210 18 secs.
Swap (IND) 254.2 ± 12.923 -62.37 ± 2.390 -62.77 ± 2.296 20 secs.


