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1.1 The Multi-Valued Decision Process

Model: Decision events occur according to a Point process N (t), with rate A. One amongst
V' actions must be taken upon arrival of such an event.

Control Strategy: The decision strategy prescribes randomized independent decisions:

QZ'Z

Probability that action ¢ will be taken upon arrival of the n-th event.
V
Decision Space : O = {6 e RVsuch that §; > 0,i=1,...,V, and Y 6, = 1} :
i=1
Long Term Cost per Unit Time: F'(0) is the long term average cost rate associated with
a given strategy 6.

[T 717

Point Process, incoming events

F'(0) is generally unknown.

Decision Maker o

Minimize  F(0)
V

subject to >0, =1
PR S I R

=1

F@©)

~

Point Process with actions
System’ s Dynamics

We call 6% = arg min F'(0) the optimal value (which may not be unique).
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1.2 Optimality of the Probability Vector 6
Definition: The Generalized Gradient Operator is defined by:

GHlF()] = @;Zf - é:l eﬁgef

_ Vo
A value of 6 such that > 6. =1 and
=1

N =0 iff >0
gk[zr(e)]:{>O ;M’;io fork =1,V (1)

satisfies the Kuhn-Tucker conditions. Under convexity of F'(6), if § satisfies (1), then = 6*.
Lemma 1 Consider the ODE:
d(t)
) 0GP () 2)
If the starting point is a probability vector: ¥;(0) € O, then J(t) remains always as a
probability vector. Furthermore, if ¥(0) € © is such that ¥;(0) > 0 for each k =1,...,V
and it is not a local mazimum of F'(-), then the stable points of (2) are local minima.

If the function F' has a unique minimum, then (2) has an asymptote at 0* = arg min F(0).
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1.3 Estimation Problem: Formulation

Approximating the solution to the ODE: stochastic approximation

Or(n+1)=0i(n) — €,0,(n)Y,, Y, = Gi[F(¥(t))]

The sensitivity es- Update 6
timator Y, 13 a noisy
measurement of the de- (f T (f (f(f ,
sired sensitivity. Incoming events O

For the stochas- Decision Maker

tic approximation to be
asymptotically optimal, o
we need to estimate the Se\r;:tlwty

lized gradient.
generalized gradien . T TT TT -

Point Process with actions

How to estimate the sensitivities?
[PA: not applicable, SF: generally large variances.

Extension of the Phantom RPA method to multivalued decisions.
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2.1 A Queueing Example

e [tems arrive at at queue in front of a machine, where they wait to be processed according
to a FCFS rule. The (stationary) arrival process N(t) has rate A.

e A machine can process items at V' different speed settings. We call n; € {vy,..., vy} the
particular decision or speed chosen for the i-th processed item.

e The distribution of the random processing times is conditional to the chosen speed, with
iyt = E[Si|n; = vi]. We order the settings: gy, < pu; if k < j (1) is the fastest in average).

e The operating cost assumes that it costs ¢, dollars per unit of processing time when the
machine works at speed v, and ¢ < C; if k& < 3, (faster modes more costly, no switching cost).

N(t) 21 Ky

ee @ oo i o

— \ 3 Ulg

E 777777777777777777777 J 0, U,
Server

L Vooly . v
Minimize F'(6) = W(6) + A > ——, subject to > 6, = 1.
k=1 Mk i=1

— Estimation of Gi[W (6)].
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2.2 Parallel A-Phantom Systems

Lindley’s recursions, for ¢ > 0, with W; = 0: As
Riv1 = Sita(uiv1, miv1) + Wipr = ] <—A5>
Vo T
= X G () ey + Wi iﬂ | Em
‘/Vi+1 = maX(O, Rz — Al) R3 <_|:\>5>

Definition: Given a trajectory (A;, ui, m;), let 77 be a sequence of phantom decisions s.t.

P{ni=vn(0) =v} =1, 1#k
. A . A
P{a; = vp|ni(0) = v} =1 — 0. Pl = ulm(0) = v} = 2=, 14k
where p; > 0 are to be determined later. The A- phantom system is defined by the queueing
system that follows the trajectory driven by the sequence (A;, u;, 7;).

el errees

A—Phantom System, corresponds
to 8=06- A, where:

\ ®=-pd, @)=
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2.3 The General RPA Formula
Finite Horizon: Let ) (n) = Z W; be the total wait of the first M customers.

Finite Difference in 0: Consuier now the expected value of the finite difference:

DA(M) = @M(n(()))A— par(7)

Given M customers, the number of phantom decisions in {7;,7 = 1, ..., M} has a Binomial

, where 71 yields the A-Phantom system.

distribution, since each decision is chosen as a phantom one with probability P{7; # n;(0)} =
A, independently of previous ones. Therefore,

BIDAs(M)] = B [MA( - 8" EVDAOn]+E| £ (1) Am(1 = A B DAM)

m—=2

where E(™) is the expectation w.r.t. 77, conditioning on having exactly m phantoms.
The RPA Limit: The finite horizon phantom RPA formula is:

i BIDA(M)] = elk {jzl 0 {SOM(U(O) ]—Ww(n(j))”

where I;(j) = 1y,.(0)=,}- The sequence n(j) is defined by 7;(j) = 7:(0), 7 # j, and:

P{n;(j) = vuln;(0) = v} =1,1#k, P{n;(j) = vi[n;(0) = v} =p.

Use equiprobability of all the sequences of phantom decisions with only one distinct from 7(0).
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Chosen phantom decisions are swapped:

3.1 The Swapping Phantoms: Main Result
LA
) Q Oy
p=—— 1k T I

()
=) rrrrte

The ensuing phantom customers in the n-phantom ( P, A
system swap speeds compared to the correspond- ® 6,
\—>O

ing nominal decisions, choosing one of the remaining

ones according to their original proportion.

Proposition 1 Assume that the service times are dominated by {S;(n)}, for some random
sequence 1, and that the dominating queueing process satisfies E[N3(7)] < co. Then:

O
(1—6y)

G 0] = Jim £ ¥ 1) PO et

M

where I5(j) = 1 0)=v,}- The sequence n(j) is defined by n;(7) = mi(0),i # j, and:
P{n;(j) = uln;(0) = v}t =1,1#k, P{n;(j) = vuln;(0) = v} =p.
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3.2 The Swapping Phantoms: Sketch of Proof

First Step: Using this definition for the A-Phantom system, simple algebraic manipulations
show that

RO -F@) 1
ELHU A N 1 — Qk

Gi[F(0)]

In order to see this, set V =3, k = 2:
F(0)—=F(6) = F(61,02,05)—F (61, 02, 05)+F (61,0, 03)—F (61,0, 05)+F (61, 02, 63)— F (61, 62, 65)
Now use 66; = 0; — 0; = Ab; /(1 —0y),i # k to rewrite:

I F(61,0,,05) — F (64,02, 05) __h i F (0, + 601, 0,05) — F(61,02,03) _ 0 9F()
A—0 A (1 — Qk) 0601 —0 064 (1 — Qk) 00,
and similarly for ¢ = 3. For £ = 2 we have:
- F(601,05,05) — F(61,0,,05) 0F() 1 [0F(0) 5, OF(0)
A% A 00, (1—6y | 06, " 06,

which establishes our claim.

Second Step: Use Dominated Convergence to interchange the limits of the finite differences
(RPA formula) and the finite horizon approximation to the stationary average.
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3.3 The Disappearing Phantoms: Main Result

e Swapping requires domination: system stability under slowest setting, and also

disappears
e requires knowledge of the service distributions, in order to “swap” speeds.
Uniformization argument: customers of class k arrive at A
rate 05 \. Service distribution is class dependent. Use now - 0,
p; = 0,1 # k, meaning that some of the customers, the
phantom ones, are not allowed entrance to the machine T T T T T T T
and thus disappear from the system.

| COF(\0)  OF(\O) V. OF(\0)
Call: il 0) = 5o $ AT - 3,
so that Go[F(\,0)] = DF(\ 0)] — X 6,Di[F(\, )
1=1

Proposition 2 Assume that E[N(0)] < oo. Then:

02w ) = Jim_5 | § 1) P00 - eutoD]

where Ii(j) = L 0)=uy- The sequence n(j) is defined by n;(j) = ni(0),7 # j, bul now
n;(j) =0, meaning that its service time will be set to zero in the phantom queue.
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3.4 The Disappearing Phantoms: Sketch of Proof

First Step: Since the rate Ay = 0\, then A = A — AX and consequently, the corresponding
system satisfies:

~ A0, ~ A — AOLA 0;A + O(A?) if 1 £k
(92' 6 62', 0. = =X’ —6 ) h . 5@ = ' .
X — AN LS NS UG {(1—6k)A+O(A2) i=k
Using 6 A = Af;\, we then have:
. F(\60)—F()\0) ) F(\60)—F(\,0)
in_}no A Aa)\F(A o)+ hmO A
Proceed as before to write down:
_ F(\0) - F(\6) OF (X 9) OF(X\,0)  OF(X\0) L, OF /\ 9)
s A I e Gl i i i P
therefore:
 F(\O)—F(\6) OF(\6) 0F(\6) OF(\,0)
| — A —Y 0,—————=="Dy(\,0
et A A = 00, H2,6)

Second Step: Use Dominated Convergence to interchange the limits of the finite differences
(RPA formula) and the finite horizon approximation to the stationary average.
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4.1 Implementation: Parallel Computation

Our estimators require computation of:

M 1 M
> 1n(j) = di(j), where d;(7) = W;(0) — Wi(j)
j:l =1

Wi;(7) is the waiting time of the i-th customer in the j-phantom system. We simulate only one
path of the nominal system. To each customer we associate a phantom system.

2
It d]+1< ) > 0 then phantomz ( ) 4(2)
T Wi11(0) otherwise ’J
phaniom 3@ 4,5 Sﬂ» d5(2) = W5 (0)
l B F-_;j%”’_(;ﬂ—L ;5’ Customer in phantom system
finds an empty server.
H PE— Ifd;ii(7) <0 then
SA0 . :
o o) = {49 Wi (0) >0
542) dg(2) = -W ¢(2) o —Wi1(j)  otherwise

Wia(5) = [(Ri(0) — A;) = di(5)] ™
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4.2 Implementation: Simulation Results

13

The numerical results were obtained via simulations of the system for V' = 3 speeds. The

arrival rate is A = 0.05 and 0.10 and all service distributions are uniform between (ay, by) as

given in:

| Speed k || Uniform(ay, by) |
1 1

2
3

3
4

38
7
6

0y,
0.2
0.5
0.3

The results for two different utilization factors are given below.

X =0.05, p = 0.40

Method k=1 k=2 k= CPU Time
Theoretical 20.22 -5.04 -5.08 -
Disap 20.18 £ 0.31[-5.03 £ 0.08 | -5.06 £ 0.08 7 secs.
Swap (CRN) || 20.36 &+ 0.31 | -5.05 4+ 0.05 | -5.05 4+ 0.07 13 secs.
Swap (IND) | 20.13 + 0.32 | -5.05 + 0.05 | -5.05 + 0.08 | 11 secs.
\ A=0.10, p =0.80 |
Method E=1 k=2 k= CPU Time
Theoretical 246.55 -61.55 -61.79 -
Disap 246.1 £ 9.786 | -61.47 £ 2.479 | -61.60 £ 2.465 12 secs.
Swap (CRN) || 246.7 + 10.043 | -61.33 4+ 2.037 | -61.22 + 2.210 18 secs.
Swap (IND) | 254.2 + 12.923 | -62.37 £ 2.390 | -62.77 4+ 2.296 20 secs.




