The Case of the Swappining and of the Disappearing Phantems

Felisa J. Vázquez-Abad

Department of Computer Science and Operations Research
University of Montreal
Montréal, Québec H3C 3J7, CANADA
e-mail: vazquez@iro.umontreal.ca

Department of Electronic and Electrical Engineering
The University of Melbourne
Parkville, Victoria 3052, AUSTRALIA
e-mail: fva@ee.mu.oz.au

Invited paper to the International Workshop on Discrete Event Systems Cagliari, Italy, August 1998.

The Case of the Swapping and of the Disappearing Phantoms

Outline of Presentation

1. Introduction

- The Multi-Valued Decision Process
- Optimality of the Probability Vector
- Formulation of the Estimation Problem

2. Rare Perturbation Analysis

- A Queueing Example
- Parallel Δ-Phantom Systems
- The General RPA Formula

3. Two Phantom RPA Implementations

- The Swapping Phantoms
- The Disappearing Phantoms

4. Implementation

- Parallel Computation
- Simulation Results

1.1 The Multi-Valued Decision Process

Model: Decision events occur according to a Point process $N(t)$, with rate λ. One amongst V actions must be taken upon arrival of such an event.
Control Strategy: The decision strategy prescribes randomized independent decisions:
θ_{i} : Probability that action i will be taken upon arrival of the n-th event.
Decision Space : $\Theta=\left\{\theta \in \mathbb{R}^{V}\right.$ such that $\theta_{i} \geq 0, i=1, \ldots, V$, and $\left.\sum_{i=1}^{V} \theta_{i}=1\right\}$.
Long Term Cost per Unit Time: $F(\theta)$ is the long term average cost rate associated with a given strategy θ.

Point Process, incoming events

$F(\theta)$ is generally unknown.

Minimize	$F(\theta)$
subject to	$\sum_{i=1}^{V} \theta_{i}=1$

Point Process with actions

System's Dynamics

We call $\theta^{*}=\arg \min _{\theta \in \Theta} F(\theta)$ the optimal value (which may not be unique).

1.2 Optimality of the Probability Vector θ

Definition: The Generalized Gradient Operator is defined by:

$$
\mathcal{G}_{k}[F(\cdot)]=\frac{\partial F(\cdot)}{\partial \theta_{k}}-\sum_{j=1}^{V} \theta_{j} \frac{\partial F(\cdot)}{\partial \theta_{j}}
$$

A value of $\bar{\theta}$ such that $\sum_{k=1}^{V} \bar{\theta}_{k}=1$ and

$$
\mathcal{G}_{k}[F(\bar{\theta})]=\left\{\begin{array}{ll}
=0 & \text { if } \bar{\theta}_{k}>0 \tag{1}\\
\geq 0 & \text { if } \bar{\theta}_{k}=0
\end{array} \text { for } k=1, . ., V\right.
$$

satisfies the Kuhn-Tucker conditions. Under convexity of $F(\theta)$, if $\bar{\theta}$ satisfies (1), then $\bar{\theta}=\theta^{*}$.
Lemma 1 Consider the ODE:

$$
\begin{equation*}
\frac{d \vartheta_{k}(t)}{d t}=-\vartheta_{k}(t) \mathcal{G}_{k}[F(\vartheta(t))] \tag{2}
\end{equation*}
$$

If the starting point is a probability vector: $\vartheta_{k}(0) \in \Theta$, then $\vartheta(t)$ remains always as a probability vector. Furthermore, if $\vartheta(0) \in \Theta$ is such that $\vartheta_{k}(0)>0$ for each $k=1, \ldots, V$ and it is not a local maximum of $F(\cdot)$, then the stable points of (2) are local minima.

If the function F has a unique minimum, then (2) has an asymptote at $\theta^{*}=\arg \min _{\theta \in \Theta} F(\theta)$.

1.3 Estimation Problem: Formulation

Approximating the solution to the ODE: stochastic approximation

$$
\theta_{k}(n+1)=\theta_{k}(n)-\epsilon_{n} \theta_{k}(n) Y_{n}, \quad Y_{n} \approx \mathcal{G}_{k}[F(\vartheta(t))]
$$

The sensitivity estimator Y_{n} is a noisy measurement of the desired sensitivity.

For the stochastic approximation to be asymptotically optimal, we need to estimate the generalized gradient.

How to estimate the sensitivities?
IPA: not applicable, SF: generally large variances.

Extension of the Phantom RPA method to multivalued decisions.

2.1 A Queueing Example

- Items arrive at at queue in front of a machine, where they wait to be processed according to a FCFS rule. The (stationary) arrival process $N(t)$ has rate λ.
- A machine can process items at V different speed settings. We call $\eta_{i} \in\left\{v_{1}, \ldots, v_{V}\right\}$ the particular decision or speed chosen for the i-th processed item.
- The distribution of the random processing times is conditional to the chosen speed, with $\mu_{k}^{-1}=E\left[S_{i} \mid \eta_{i}=v_{k}\right]$. We order the settings: $\mu_{k} \leq \mu_{j}$ if $k<j$ (v_{1} is the fastest in average).
- The operating cost assumes that it costs c_{k} dollars per unit of processing time when the machine works at speed v_{k}, and $c_{k}<c_{j}$ if $k<j$, (faster modes more costly, no switching cost).

$$
\text { Minimize } F(\theta)=W(\theta)+\lambda \sum_{k=1}^{V} \frac{c_{k} \theta_{k}}{\mu_{k}}, \text { subject to } \sum_{i=1}^{V} \theta_{i}=1
$$

$\Longrightarrow \quad$ Estimation of $\mathcal{G}_{k}[W(\theta)]$.

2.2 Parallel Δ-Phantom Systems

Lindley's recursions, for $i \geq 0$, with $W_{1}=0$:

$$
\begin{aligned}
R_{i+1} & =S_{i+1}\left(u_{i+1}, \eta_{i+1}\right)+W_{i+1}= \\
& =\sum_{k=1}^{V} G_{k}^{-1}\left(u_{i+1}\right) \mathbf{1}_{\left\{\eta_{i+1}=v_{k}\right\}}+W_{i+1} \\
W_{i+1} & =\max \left(0, R_{i}-A_{i}\right)
\end{aligned}
$$

Definition: Given a trajectory $\left(A_{i}, u_{i}, \eta_{i}\right)$, let $\tilde{\eta}$ be a sequence of phantom decisions s.t.

$$
\begin{gathered}
P\left\{\tilde{\eta}_{i}=v_{l} \mid \eta_{i}(0)=v_{l}\right\}=1, \quad l \neq k \\
P\left\{\tilde{\eta}_{i}=v_{k} \mid \eta_{i}(0)=v_{k}\right\}=1-\frac{\Delta}{\theta_{k}}, \quad P\left\{\tilde{\eta}_{i}=v_{l} \mid \eta_{i}(0)=v_{k}\right\}=\frac{p_{l} \Delta}{\theta_{k}}, \quad l \neq k
\end{gathered}
$$

where $p_{l} \geq 0$ are to be determined later. The Δ-phantom system is defined by the queueing system that follows the trajectory driven by the sequence $\left(A_{i}, u_{i}, \tilde{\eta}_{i}\right)$.

$\Delta-$ Phantom System, corresponds to $\widetilde{\theta}=\theta-\tilde{\Delta}$, where:

$$
(\tilde{\Delta})_{l}=-p_{l} \Delta, \quad(\tilde{\Delta})_{k}=\Delta
$$

2.3 The General RPA Formula

Finite Horizon: Let $\varphi_{M}(\eta)=\sum_{i=1}^{M} W_{i}$ be the total wait of the first M customers.
Finite Difference in θ : Consider now the expected value of the finite difference:

$$
D_{\Delta}(M)=\frac{\varphi_{M}(\eta(0))-\varphi_{M}(\tilde{\eta})}{\Delta}, \text { where } \tilde{\eta} \text { yields the } \Delta \text {-Phantom system. }
$$

Given M customers, the number of phantom decisions in $\left\{\tilde{\eta}_{i}, i=1, \ldots, M\right\}$ has a Binomial distribution, since each decision is chosen as a phantom one with probability $P\left\{\tilde{\eta}_{i} \neq \eta_{i}(0)\right\}=$ Δ, independently of previous ones. Therefore,
$E\left[D_{\Delta}(M)\right]=E\left[M \Delta(1-\Delta)^{M-1} E^{(1)}\left[D_{\Delta}(M)\right]\right]+E\left[\sum_{m=2}^{M}\binom{M}{m} \Delta^{m}(1-\Delta)^{M-m} E^{(m)}\left[D_{\Delta}(M)\right]\right]$
where $E^{(m)}$ is the expectation w.r.t. $\tilde{\eta}$, conditioning on having exactly m phantoms.
The RPA Limit: The finite horizon phantom RPA formula is:

$$
\lim _{\Delta \rightarrow 0} E\left[D_{\Delta}(M)\right]=\frac{1}{\theta_{k}} E\left\{\sum_{j=1}^{M} I_{k}(j)\left[\frac{\varphi_{M}\left(\eta(0)-\varphi_{M}(\eta(j))\right.}{M}\right]\right\}
$$

where $I_{k}(j)=\mathbf{1}_{\left\{\eta_{j}(0)=v_{k}\right\}}$. The sequence $\eta(j)$ is defined by $\eta_{i}(j)=\eta_{i}(0), i \neq j$, and:

$$
P\left\{\eta_{j}(j)=v_{l} \mid \eta_{j}(0)=v_{l}\right\}=1, l \neq k, P\left\{\eta_{j}(j)=v_{l} \mid \eta_{j}(0)=v_{k}\right\}=p_{l} .
$$

Use equiprobability of all the sequences of phantom decisions with only one distinct from $\eta(0)$.

3.1 The Swapping Phantoms: Main Result

Chosen phantom decisions are swapped:

$$
p_{l}=-\frac{\theta_{l}}{\left(1-\theta_{k}\right)}, l \neq k
$$

Proposition 1 Assume that the service times are dominated by $\left\{S_{i}(\bar{\eta})\right\}$, for some random sequence $\bar{\eta}$, and that the dominating queueing process satisfies $E\left[\mathbf{N}^{3}(\bar{\eta})\right]<\infty$. Then:

$$
\frac{\theta_{k}}{\left(1-\theta_{k}\right)} \mathcal{G}_{k}[W(\theta)]=\lim _{M \rightarrow \infty} E\left\{\sum_{j=1}^{M} I_{k}(j) \frac{\left[\varphi_{M}(\eta(0))-\varphi_{M}(\eta(j))\right]}{M}\right\}
$$

where $I_{k}(j)=1_{\left\{\eta_{j}(0)=v_{k}\right\}}$. The sequence $\eta(j)$ is defined by $\eta_{i}(j)=\eta_{i}(0), i \neq j$, and:

$$
P\left\{\eta_{j}(j)=v_{l} \mid \eta_{j}(0)=v_{l}\right\}=1, l \neq k, P\left\{\eta_{j}(j)=v_{l} \mid \eta_{j}(0)=v_{k}\right\}=p_{l}
$$

3.2 The Swapping Phantoms: Sketch of Proof

First Step: Using this definition for the Δ-Phantom system, simple algebraic manipulations show that

$$
\lim _{\Delta \rightarrow 0} \frac{F(\theta)-F(\tilde{\theta})}{\Delta}=\frac{1}{1-\theta_{k}} \mathcal{G}_{k}[F(\theta)]
$$

In order to see this, set $V=3, k=2$:
$F(\theta)-F(\tilde{\theta})=F\left(\theta_{1}, \theta_{2}, \theta_{3}\right)-F\left(\theta_{1}, \theta_{2}, \tilde{\theta}_{3}\right)+F\left(\theta_{1}, \theta_{2}, \tilde{\theta}_{3}\right)-F\left(\theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)+F\left(\theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)-F\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)$
Now use $\delta \theta_{i}=\tilde{\theta}_{i}-\theta_{i}=\Delta \theta_{i} /\left(1-\theta_{k}\right), i \neq k$ to rewrite:

$$
\lim _{\Delta \rightarrow 0} \frac{F\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)-F\left(\theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)}{\Delta}=\frac{\theta_{1}}{\left(1-\theta_{k}\right)} \lim _{\delta \theta_{1} \rightarrow 0} \frac{F\left(\theta_{1}+\delta \theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)-F\left(\theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)}{\delta \theta_{1}}=\frac{\theta_{1}}{\left(1-\theta_{k}\right)} \frac{\partial F(\theta)}{\partial \theta_{1}}
$$

and similarly for $i=3$. For $k=2$ we have:

$$
\lim _{\Delta \rightarrow 0} \frac{F\left(\theta_{1}, \theta_{2}, \tilde{\theta}_{3}\right)-F\left(\theta_{1}, \tilde{\theta}_{2}, \tilde{\theta}_{3}\right)}{\Delta}=\frac{\partial F(\theta)}{\partial \theta_{k}}=\frac{1}{\left(1-\theta_{k}\right)}\left[\frac{\partial F(\theta)}{\partial \theta_{k}}-\theta_{k} \frac{\partial F(\theta)}{\partial \theta_{k}}\right]
$$

which establishes our claim.
Second Step: Use Dominated Convergence to interchange the limits of the finite differences (RPA formula) and the finite horizon approximation to the stationary average.

3.3 The Disappearing Phantoms: Main Result

- Swapping requires domination: system stability under slowest setting, and also
- requires knowledge of the service distributions, in order to "swap" speeds.

Uniformization argument: customers of class k arrive at rate $\theta_{k} \lambda$. Service distribution is class dependent. Use now $p_{l}=0, l \neq k$, meaning that some of the customers, the phantom ones, are not allowed entrance to the machine and thus disappear from the system.

$$
\text { Call: } \quad \mathcal{D}_{k}(\lambda, \theta)=\frac{\partial F(\lambda, \theta)}{\partial \theta_{k}}+\lambda \frac{\partial F(\lambda, \theta)}{\partial \lambda}-\sum_{j=1}^{V} \theta_{j} \frac{\partial F(\lambda, \theta)}{\partial \theta_{j}}
$$

so that:

$$
\mathcal{G}_{k}[F(\lambda, \theta)]=\mathcal{D}_{k}[F(\lambda, \theta)]-\sum_{i=1}^{V} \theta_{i} \mathcal{D}_{i}[F(\lambda, \theta)]
$$

Proposition 2 Assume that $E\left[\mathbf{N}(0)^{3}\right]<\infty$. Then:

$$
\theta_{k} \mathcal{D}_{k}[W(\theta)]=\lim _{M \rightarrow \infty} E\left\{\sum_{j=1}^{M} I_{k}(j) \frac{\left[\varphi_{M}(\eta(0))-\varphi_{M}(\eta(j))\right]}{M}\right\}
$$

where $I_{k}(j)=1_{\left\{\eta_{j}(0)=v_{k}\right\}}$. The sequence $\eta(j)$ is defined by $\eta_{i}(j)=\eta_{i}(0), i \neq j$, but now $\eta_{j}(j)=\emptyset$, meaning that its service time will be set to zero in the phantom queue.

3.4 The Disappearing Phantoms: Sketch of Proof

First Step: Since the rate $\lambda_{k}=\theta_{k} \lambda$, then $\tilde{\lambda}=\lambda-\Delta \lambda$ and consequently, the corresponding system satisfies:
$\tilde{\theta}_{i}=\frac{\lambda \theta_{i}}{\lambda-\Delta \lambda}=\theta_{i}+\delta_{i}, \tilde{\theta}_{k}=\frac{\lambda_{k}-\Delta \theta_{k} \lambda}{\lambda-\Delta \lambda}=\theta_{k}-\delta_{k}$, where: $\delta_{i}= \begin{cases}\theta_{i} \Delta+\mathcal{O}\left(\Delta^{2}\right) & \text { if } i \neq k \\ \left(1-\theta_{k}\right) \Delta+\mathcal{O}\left(\Delta^{2}\right) & i=k\end{cases}$
Using $\delta \lambda=\Delta \theta_{k} \lambda$, we then have:

$$
\lim _{\Delta \rightarrow 0} \frac{F(\lambda, \theta)-F(\tilde{\lambda}, \tilde{\theta})}{\Delta}=\lambda \frac{\partial}{\partial \lambda} F(\lambda, \theta)+\lim _{\Delta \rightarrow 0} \frac{F(\lambda, \theta)-F(\lambda, \tilde{\theta})}{\Delta}
$$

Proceed as before to write down:

$$
\lim _{\Delta \rightarrow 0} \frac{F(\lambda, \theta)-F(\lambda, \tilde{\theta})}{\Delta}=-\sum_{i \neq k} \theta_{i} \frac{\partial F(\lambda, \theta)}{\partial \theta_{i}}+\left(1-\theta_{k}\right) \frac{\partial F(\lambda, \theta)}{\partial \theta_{k}}=\frac{\partial F(\lambda, \theta)}{\partial \theta_{k}}-\sum_{i=1}^{V} \theta_{i} \frac{\partial F(\lambda, \theta)}{\partial \theta_{i}}
$$

therefore:

$$
\lim _{\Delta \rightarrow 0} \frac{F(\lambda, \theta)-F(\tilde{\lambda}, \tilde{\theta})}{\Delta}=\frac{\partial F(\lambda, \theta)}{\partial \theta_{k}}+\lambda \frac{\partial F(\lambda, \theta)}{\partial \lambda}-\sum_{j=1}^{V} \theta_{j} \frac{\partial F(\lambda, \theta)}{\partial \theta_{j}}=\mathcal{D}_{k}(\lambda, \theta)
$$

Second Step: Use Dominated Convergence to interchange the limits of the finite differences (RPA formula) and the finite horizon approximation to the stationary average.

4.1 Implementation: Parallel Computation

Our estimators require computation of:

$$
\sum_{j=1}^{M} I_{k}(j) \frac{1}{M} \sum_{i=1}^{M} d_{i}(j), \text { where } d_{i}(j) \equiv W_{i}(0)-W_{i}(j)
$$

$W_{i}(j)$ is the waiting time of the i-th customer in the j-phantom system. We simulate only one path of the nominal system. To each customer we associate a phantom system.

If $d_{j+1}(j)<0$ then
$d_{i+1}(j)= \begin{cases}d_{i}(j) & \text { if } W_{i+1}(0)>0 \\ -W_{i+1}(j) & \text { otherwise }\end{cases}$

$$
W_{i+1}(j)=\left[\left(R_{i}(0)-A_{i}\right)-d_{i}(j)\right]^{+}
$$

4.2 Implementation: Simulation Results

The numerical results were obtained via simulations of the system for $V=3$ speeds. The arrival rate is $\lambda=0.05$ and 0.10 and all service distributions are uniform between $\left(a_{k}, b_{k}\right)$ as given in:

Speed k	Uniform $\left(a_{k}, b_{k}\right)$		θ_{k}
1	1	38	0.2
2	3	7	0.5
3	4	6	0.3

The results for two different utilization factors are given below.

$\lambda=0.05, \rho=0.40$				
Method	$k=1$	$k=2$	$k=3$	CPU Time
Theoretical	20.22	-5.04	-5.08	-
Disap	20.18 ± 0.31	-5.03 ± 0.08	-5.06 ± 0.08	7 secs.
Swap (CRN)	20.36 ± 0.31	-5.05 ± 0.05	-5.05 ± 0.07	13 secs.
Swap (IND)	20.13 ± 0.32	-5.05 ± 0.05	-5.05 ± 0.08	11 secs.

$\lambda=0.10, \rho=0.80$				
Method	$k=1$	$k=2$	$k=3$	CPU Time
Theoretical	246.55	-61.55	-61.79	-
Disap	246.1 ± 9.786	-61.47 ± 2.479	-61.60 ± 2.465	12 secs.
Swap (CRN)	246.7 ± 10.043	-61.33 ± 2.037	-61.22 ± 2.210	18 secs.
Swap (IND)	254.2 ± 12.923	-62.37 ± 2.390	-62.77 ± 2.296	20 secs.

