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Introduction

Two assets: a risk-free asset yielding

interest r, and a risky asset, with price

St = S0 e
µt+σWt.

• European Call Option: Op-

tion to buy one unit of stock at

strike price K at the exercise time

T . Only if ST > K the holder of

the option will exercise it. Profit:

(ST −K)+.

• European Average Call Op-

tion: Instead of the terminal

value ST , the average is compared

to K.

K

S0

T
t=0

S t

Geometric Brownian Motion

Asset Pricing: Under the risk-neutral measure P, discounted asset prices {e−rtSt} form

a martingale. The price π is the expectation w.r.t. P of the discounted gain. Discrete model:

Si+1 = Si exp

(r +
σ2

2
)h + σ

√
hZi

, Zi i.i.d. ∼ N (0, 1), h =
T

N

π = E

e−rT
 1

N

N∑
i=1
Si −K


+

 If K >> S0 out of the money⇒ rare event estimation.
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Simulation Methods I

Zi ∼ N (0, 1), i = 1, . . . , N, are independent standard normal variables.

Xu
i = uσh + σ

√
hZi, 1 ≤ i ≤ N, where uσ = u− σ2

2 ⇒ Xu
i ∼ N (uσh, σ

2h),

Sui = Sui−1 exp(Xu
i ), 1 ≤ i ≤ N, are the asset prices,

Au =
1

N

N∑
i=1
Sui is the arithmetic average of asset prices,

Näıve Estimation: Take u = r above, and use

D0 = Y r
1 = e−rT (Ar −K)+.

Confidence Intervals: Approximate Confidence Interval: apply the Central Limit Theo-

rem to M replications of the simulation. Use a confidence level α = 0.05.

π̂ ± 1.96

√ ̂

Var[D0]

M

The precision of the estimation can be reduced if we use other estimators with smaller

variance than the näıve estimator. We shall discuss the methods:

• Control Variable • Change of Measure • Hybrid Estimation
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Simulation Methods II

Zi ∼ N (0, 1), i = 1, . . . , N, Xu
i = uσh+ σ

√
hZi,

Sui = Sui−1 exp(Xu
i ), 1 ≤ i ≤ N,

Au =
1

N

N∑
i=1
Sui is the arithmetic average of asset prices,

Gu =

 N∏
i=1
Sui


1
N

is the geometric average of asset prices.

The Control Variable Method: Take u = r, and let Y r
2 be some other estimator Y r

2

whose expected value is known. Use:

D1 = Y r
1 + α( EY r

2 − Y r
2 ), which implies that ED1 = π

It can be shown that α = Cov(Y r
1 , Y

r
2 )/VarY r

2 minimizes the variance. Use as a control variable

the option price when the geometric mean is used in the average, that is:

Y r
2 = e−rT (Gr −K)+.

Mean and variance of Y r
2 are known. Variance reduction:

Var[D1] = Var[D0]

1− Cov(Y r
1 , Y

r
2 )√

Var(Y r
1 )Var(Y r

2 )

 ≤ Var[D1]
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Simulation Methods III

Zi ∼ N (0, 1), i = 1, . . . , N, Bi = Z1 + · · ·+ Zi, 1 ≤ i ≤ N, B0 = 0

Xu
i = uσh + σ

√
hZi, Sui = Sui−1 exp(Xu

i ), 1 ≤ i ≤ N, Au =
1

N

N∑
i=1
Sui .

The Change of Measure Approach: Girsanov’s Theorem for one-dimensional Brow-

nian Motion implies for the discrete model:

∀v ∈ IR, Ef(Z1, . . . , ZN) = E e−
Nv2

2 −vBNf(Z1 + v, . . . , ZN + v).

Let v = (u− r)
√
h/σ, then for

f(Z1, . . . , ZN) = Ar =
1

N

N∑
i=1
Sri−1e

Xr
i , f(Z1 + v, . . . , ZN + v) =

1

N

N∑
i=1
Sui−1e

Xu
i = Au

Call Lu = e−
Nv2

2 −vBN = exp

−
N

2

(u− r)
√
h

σ


2

− (u− r)
√
h

σ
BN

 , then it follows that:

D2(u) = LuY
u

1 = Lu(Au −K)+ is unbiased for π, ∀u ∈ IR.

Now we simulate at drift uσ instead of rσ. The optimal value of u is that which minimizes

VarD2(u). We shall write:

D2 = D2(u∗)

Likelihood Ratio Estimators, rare events: Importance Sampling.
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Simulation Methods IV

The Hybrid Estimators: Adding a control variable to D2, we simulate at u and thus

we can calculate Gu, yielding another unbiased estimator:

D3(u) = LuY
u

1 + α( EY u
2 − Y u

2 ), D3 = D3(u∗)

where u∗ minimizes the variance.

Finally, consider changing the measure of the controlled estimator D1:

D4(u) = LuY
u

1 + α( EY r
2 − LuY u

2 ), D4 = D4(u∗)

where u∗ minimizes the variance.

Summarizing:

• D0 : Näıve Estimator

• D1 : Controlled Estimator

• D2 : Näıve Estimator under Importance Sampling

• D3 : Controlled Likelihood Ratio Estimator

• D4 : Likelihood Ratio Estimator under Importance Sampling
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Efficient Importance Sampling

The change of measure approach yields estimators that can improve efficiency. When rare

events are involved, Importance Sampling will simulate more often the rare situations and Lu
weighs appropriately the estimate to yield unbiasedness.

Problem: For a likelihood estimator D(u), the optimal value of u∗ is problem-dependent.

Minimize: Var[D(u)], ⇒ Find u∗ :
∂

∂u

Var[D(u)]


u=u∗

= 0

Solutions:

• The first solution and most commonly used is to perform pilot simulations. We used

Functional Estimation to save computational time.

Use the same random numbers to evaluate in parallel the Likelihood Ratio Estimators for

different values of u and each value of K.

Zi ∼ N (0, 1), i = 1, . . . , N, Bi = Z1 + · · ·+ Zi, 1 ≤ i ≤ N, B0 = 0

Au =
S0

N

N∑
i=1
ei(u+σ

2 )h+σ
√
hBi, Lu = e

{
−(u−r)2T

2σ2 −(u−r)
√
hBN

σ

}

• New Approach: optimize the parameter u at the same time D(u) is simulated.
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Functional Estimation

Functional Estimation: We performed functional estimation for 10 values of u ∈ [0, 1],

with r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 10, 000. It took 20-28 seconds for each K,

both for D2 and D4.

0.2 0.4 0.6 0.8
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0.2

0.4

0.6

0.8

1

Estimated Variance of D2 and D4 as a function of u.

Notice the difference in scale of ̂

Var(D2) compared with ̂

Var(D4).

Conjecture: The variance is locally convex and has a unique minimum, which depends on

K/S0. The optimal values of u for D2 and D4 seem to be the same (or very close).
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Optimal values of u∗

Optimal values of u∗ found by pilot simulations with Functional Estimation (≈ 24 secs CPU).

Optimal Values for Change of Measure: u∗

Method K= 30 K= 45 K=50 K= 55 K = 75

D2 0.25 0.40 0.50 0.60 0.80
D3 0.07 0.07 0.07 0.07 0.07
D4 0.25 0.40 0.50 0.60 0.80

-0.05 0.05 0.1 0.15 0.2

5

10

15

20

Estimated Variance of D3

Summarizing: The behaviour of the

variances of the estimators:

• VarD2(u) and VarD4(u) are similar,

but D4(u) has variances several orders

of magnitud smaller.

• For D2 and D4 the optimal u∗ seems to

be the same and it depends on K/S0.

• D3 does not reduce the variance consid-

erably, but u∗ seems to be independent

of K/S0.
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Comparison of the Methods

D1 = Y r
1 + α̂∗( EY r

2 − Y r
2 ), D3 = LuY

u
1 + α̂∗( EY r

2 − Y r
2 ), Y u

1 = (Au −K)+

D0 = Y r
1 , D2 = LuY

u
1 , D4 = LuY

u
1 + α̂∗( EY r

2 − LuY u
2 ), Y u

2 = (Gu −K)+

D1, D3, D4: Control Variable methods, estimated parameter α̂∗.

D2, D3 and D4: Likelihood Ratio estimators, estimated optimal value u∗.

r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 10, 000

Estimators

Method K= 30 K= 45 K=50 K= 55 K = 75

D0 20.46 ± 0.26 8.45 ± 0.216 5.80 ± 0.189 3.83 ± 0.160 0.630 ± 0.068
D2 20.34 ± 0.137 8.32 ± 0.115 5.66 ± 0.096 3.74 ± 0.075 0.583 ± 0.020
D1 20.31 ± 0.016 8.28 ± 0.013 5.64 ± 0.012 3.72 ± 0.011 0.585 ± 0.010
D3 20.31 ± 0.014 8.28 ± 0.011 5.64 ± 0.010 3.71 ± 0.010 0.583 ± 0.009
D4 20.31 ± 0.014 8.27 ± 0.009 5.62 ± 0.008 3.70 ± 0.006 0.573 ± 0.003

Variance

Method K= 30 K= 45 K=50 K= 55 K = 75

D0 176.09 121.70 92.58 66.28 12.04
D2 49.04 34.59 23.76 14.95 1.07
D1 0.64 0.42 0.36 0.33 0.25
D3 0.48 0.28 0.25 0.24 0.23
D4 0.53 0.207 0.150 0.095 0.028

α̂∗ 0.998 1.05 1.07 1.10 1.20
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Accelerating the Simulation

Of all the estimators, D4 seems to be a better Likelihod Ratio estimator, especially in the

cases of interest, when the option is out of the money. But efficiency is a measure of precision

and speed, and pilot tests take long time.

Problem: For a likelihood estimator D(u), the optimal value of u∗ is problem-dependent.

Minimize: Var[D(u)], ⇒ Find u∗ :
∂

∂u

Var[D(u)]


u=u∗

= 0

Solutions:

• Pilot tests with Functional Estimation. It took about five times as long to simulate as a

single run.

• Proposed approach: apply Robbins-Monroe procedure to search for the optimal u∗ at the

same time that D(u) is simulated.

un+1 = un − εn F (un)

F (un) ≈ ∂

∂u
Var[D(u)]


u=un

Adjust the value of the parameter u in the direction of variance reduction.

=⇒ Derivative Estimation . . .
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Stochastic Approximation

un+1 = un − εn F (un)

F (un) ≈ ∂

∂u

Var[D(u)]


u=un

F  (n)

4D  (n)
Average of Estimates

UPDATE

CONTROL

Simulations with M u n

Final Estimator
D

K

S t

T

n

5

Parallel Estimation and Optimization

• It has the potential of variance improvement compared to the control variable estimator,

• It does not need preliminary simulations, but rather finds the most variance reduction as it

estimates the option value.
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Derivative Estimation via IPA (Infinitesimal Perturbation Analysis)

IPA uses the stochastic derivative to estimate the derivative of an expectation. Consider

the estimator D2(u) = Lu(Au −K)+. Both Lu and Au are differentiable functions of u, given

a fixed trajectory Z1, . . . , ZN , that is:

Au =
S0

N

N∑
i=1
ei(u+σ

2 )h+σ
√
hBi, Lu = exp

−
(u− r)2T

2σ2
− (u− r)

√
hBN

σ


A′u =

1

N

N∑
i=0
ihSuih, l′u = −

(u− r)T +
√
σ2hBN

σ2


Use the fact that E[LuY

u
i ] is independent of u and show that we can interchange the derivative

and the expectation to get:

∂

∂u

Var[D2(u)] =
∂

∂u

E{L2
u[(Au −K)+]2} = E[2L2

ul
′
u((Y

u
1 )2) + 2L2

uY
u

1 A
′
u].

Theorem 1 The IPA estimators

F2(u) = 2D2(u)(l′uD2(u) + LuA
′
u)

F4(u) = 2D4(u)

l′uD4(u) + Lu

A′u1{Y u1 >0} − α
(T + h)

2
Gu1{Y u2 >0}




are unbiased, that is:

E[Fi] =
∂

∂u

Varu(Di), i = 2, 4
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IPA Estimation

The table shows the results for r = 0.05, σ2 = 0.2, S0 = 50, K = 50, T = 1.0 and M =

50, 000.

Derivative Estimation via IPA

Value of u Var(D2) F2 Var(D4) F4

0.2 45.32 −175.5± 15.7 0.21 −2.08± 0.29

0.3 32.01 −93.4± 9.2 0.16 −1.13± 0.17

0.4 25.44 −38.7± 7.3 0.15 −0.28± 0.35

0.5 23.69 3.89± 8.3 0.17 0.25± 0.77

0.6 26.05 45.44± 12.0 0.20 0.34± 0.53

0.7 32.94 94.88± 20.2 0.22 0.36± 0.78

0.8 45.80 168.82± 41.6 0.49 6.29± 21.68

Conjecture: The optimal values of u for D2 and D4 are close, but by construction,

Var[D4] < Var[D2] and it’s easier to estimate Var[D2].

Idea: Drive the procedure faster towards the optimum, with a correction for asymptotic

optimality towards the solution of

∂

∂u

Var[D(u)] = 0

Use first the (larger) IPA estimate F2 and F4 later.
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Stochastic Approximation for Accelerated Simulation

To speed up the simulation, we let the algorithm change the value of u towards the optimum

in an adaptive way using derivative information. We implement a stochastic approximation

algorithm as:

un+1 = un − εn F̄n(un) (1)

where:

F̄n(u) = ρnF2(u) + (1− ρn)F4(u), ρn = ρn0 , 0 < ρ0 < 1,

then E[F̄n(u)]→ E[F4(u)] as n→∞. Let u be constrained to some compact interval U . It

can be shown that

un → u∗ with probability 1,

provided that:

∀u ∈ U, E[F̄n(u)] =
∂

∂u

Var(D4) + βn, sup
u∈U,n

Var[F̄n(u)] <∞
∞∑
n=1

εn = +∞,
∞∑
n=1

ε2
n <∞,

∞∑
n=1

εnβn <∞

Our proposed estimator is:

D5 =
1

B

B∑
n=1

D4(un)

It uses un for M simulations to obtain the sample mean of D4(un) while estimating the sen-

sitivity F̄n(un). Then the control value is changed in the direction of variance reduction, with

εn = ε0/n.
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Results of the Accelerated Simulation Method.

Control value un against the number of simulations performed. r = 0.05, σ2 = 0.2, S0 =

50, T = 1.0, K = 30,M = 500, B = 20, ε0 = 5×10−4, U = [0, 1]. Total number of simulations:

MB = 10, 000.

The optimal value found by inspection was u∗ ≈ 0.25. In the plot the the simulation starts

at three different initial values for u0. Convergence can be achieved within the first iterations.

2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1

Values of u for K = 30 and different µ0.
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Plot of the Accelerated Simulation.

r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0, K = 30,M = 500, B = 20, U = [−0.05, 1]. Total

number of simulations: MB = 10, 000.

• Solid line: K = 75,

ε0 = 0.008, u∗ ≈ 0.75.

• Long dashes: K = 50,

ε0 = 0.001, u∗ ≈ 0.5.

• Short dashes: K = 30,

ε0 = 0.0001, u∗ ≈ 0.26.

We chose initial values of u which we

knew to be far from the optimum.
2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1

It should be clear from these plots why the variance of our estimator is very close to the

optimal one (which was used for D4), since in all cases convergence was achieved within the

first three or four iterations of the stochastic approximation.
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Statistical Analysis the Self-Optimized Estimator

Table comparing D1 with D4 and D5. The CPU time reported in the table considers that a

pilot test with Functional Estimation was made for D4.

r = 0.05, σ2 = 0.2, S0 = 50, T = 1.0 and M = 500, B = 20

Estimators

Method K= 30 K=50 K = 75

D1 20.31 ± 0.016 5.64 ± 0.012 0.585 ± 0.010
D4 20.31 ± 0.014 5.62 ± 0.008 0.573 ± 0.003
D5 20.31 ± 0.015 5.62 ± 0.008 0.578 ± 0.004

Estimated Variance CPU Time

Method K= 30 K=50 K = 75 in seconds

D1 0.64 0.36 0.25 5
D4 0.53 0.15 0.03 26 + 6
D5 0.54 0.18 0.04 6

Notice that for K = 75, S0 = 50, D5 is six times more efficient than D1.

• The Self-Optimized Estimator D5 seems to show no larger variances than the currently

used Controlled Estimator D1.

• It can considerably improve the precision when the option is out of the money.

• The added computational effort for IPA derivatives is negligible.
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A Second Model

Overall behaviour is consistent for all the examples that we simulated: while D4 presents a

lower variance, it takes extra simulation time to determine its optimal parameter for the change

of measure. CPU times: about 5 seconds for each run of length 10, 000 simulations, plus 26

seconds of pilot tests to determine u∗ for D4.

r = 0.09, σ2 = 0.04, S0 = 100, T = 0.4 and M = 500, B = 20

Estimators

Method K= 90 K=95 K = 100 K = 105 K = 110 K=130

D0 11.6194 7.3281 3.9317 1.7225 0.6249 0.001366
D1 11.5486 7.2401 3.8398 1.6732 0.5930 0.001443
D4 11.5473 7.2386 3.8378 1.6701 0.5913 0.001380
D5 11.5473 7.2380 3.8375 1.6700 0.5914 0.001394

Variance

Method K= 90 K=95 K = 100 K = 105 K = 110 K=130

D0 50.960 41.400 26.200 12.430 4.400 0.006233
D1 0.0129 0.0103 0.0083 0.0069 0.0061 0.000245
D4 0.0101 0.0060 0.0040 0.0023 0.0014 0.000004
D5 0.0143 0.0077 0.0057 0.0032 0.0018 0.000005

Comment: Example from Fu, Madan and Wang (1997) “Pricing Asian Options: a Com-

parison of Analytical Results and Monte Carlo Methods”, Working paper.

As expected, our estimator is noticeably more efficient for larger values of K.
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Conclusions and Open Questions

Comparison between our estimator and the control variable estimator:

• Accelerated Simulation can be shown to achieve always greater precision in the limit, as the

learning algorithm (the stochastic approximation) gathers more samples.

• We use the variance of D2 to guide our search for u∗ and achieve faster convergence.

• The extra calculations compared to the control variable estimator take negligible computa-

tional time.

• The gain in precision can be very large when out of the money. Call/Put parity of Options

allows indirect estimation for options that are in the money.

Open Research Topics:

• Convexity of the variance as a function of u for different options.

• Relationship between the variance of D2 and D4 and their corresponding optima.

• Extension to pricing of general financial derivatives.

• Choice of ε0, ρ0,M and B. The choice of parameters for adaptive learning is usually a hard

problem. Given a computational budget in CPU time, for example, we would like to be

able to determine the parameters of the Accelearted Simulation program.

• State space: for now we have used U = [0, 1], which we decided by inspection of our prelim-

inary simulations. The question of how to project stochastic approximations to constrain

the control values u to a compact set U is not always obvious.


