

IFT3390/6390 Fondements de l'apprentissage machine

http://www.iro.umontreal.ca/~vincentp/ift3390

Troisième cours:

Méthodes de type histogramme: curse of dimensionality Formalisation du problème de l'apprentissage

Professeur: Pascal Vincent

Dimensionalité Ensemble de données d'entrainement (training set) (3.5, -2, ... , 127, 0, ...) prétraitement, Taille de extraction de ensemble? caractéristiques nombre "chat" (-9.2, 32, ..., 24, 1, ...) l'exemple n preprocessing, etc... feature extraction (6.8, 54, ..., 17, -3, ...) +1 Point de test: $\chi = (5.7, -27, ..., 64, 0, ...)$

Au programme aujourd'hui

- ◆ Petit rappel de terminologie.
- ◆ Méthodes de type histogramme, illustrées pour classification, régression, estimation de densité.
- Malédiction de la dimensionalité.
- ◆ Formalisation mathématique du problème de l'apprentissage. Notion de capacité.

Une idée simple: découper l'espace en petits cubes...

Les algorithmes à base de quadrillages de l'espace (de type histogramme)

Une idée simple pour la classification

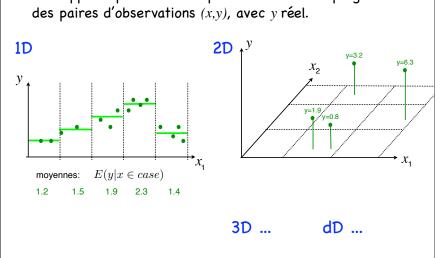
Tout algo d'apprentissage doit pouvoir effectuer une prédiction pour n'importe quel point de test de l'espace d'entrée... (ex: $x \in \mathbb{R}^d$) Partant de là, voici une idée simple d'algorithme:

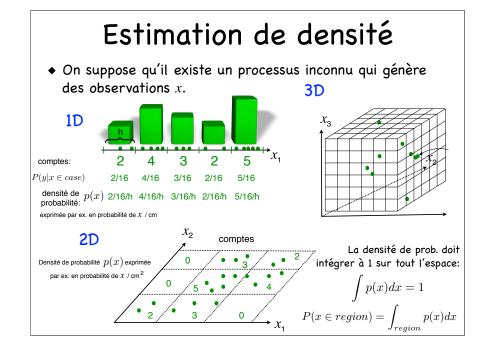
- ◆ Quadriller l'espace!
- ◆ Entraînement: Compter, pour chaque case, combien de points de chaque classe y tombent (parmi les points de l'ensemble d'apprentissage).
- ◆ Test: trouver la case dans laquelle tombe le point de test. Répondre la classe majoritaire tombée dans cette case.

Classification ♦ On suppose qu'il existe un processus inconnu qui génère des paires d'observations (x,y), ou y indique la classe (\bullet ou \bullet) **3D** comptes: | 2 0 | 3 1 | 3 0 | 0 2 | 1 4 | $P(y|x \in case)$ 1 0 | 3/4 1/4 | 1 0 | 0 1 | 1/5 4/5 | 2D comptes dD ...

Régression

♦ On suppose qu'il existe un processus inconnu qui génère des paires d'observations (x,y), avec y réel.



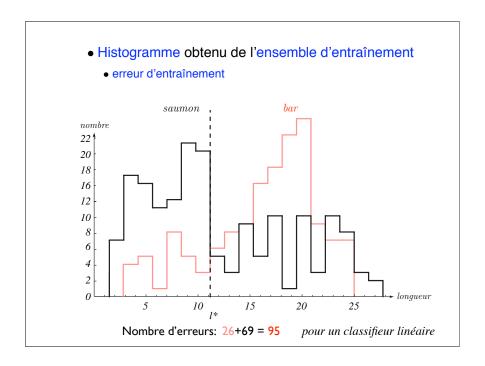


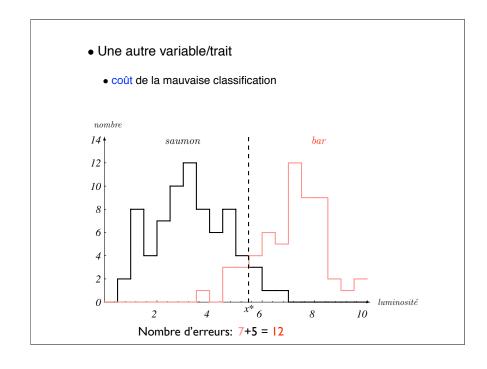
Quelle dimensionalité? exemple...

Exemple de classification

- Séparer deux types de poissons (saumon et bar) sur un tapis roulant
 - entrée des données (caméra)
 - traitement d'image
 - extraction des caractéristiques/traits (largeur, longueur, luminosité, etc.)
 - design d'une fonction de classification:

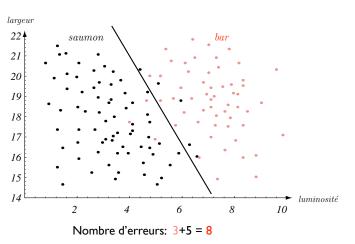
 $f: \{ \text{vecteur des traits} \} \mapsto \{ \text{saumon}, \text{bar} \}$





Deux variables

• vecteurs de traits, espace de traits, frontière de décision pour un classifieur linéaire



- ◆ Plus de dimensions (traits caractéristiques) c'est (généralement) plus d'information pour prendre la bone décision.
- ◆ Les classes en sont plus facilement séparables
- ♦ C'est bien mais....

Malédiction (fléau) de la dimensionalité CURSE OF DIMENSIONALITY

Ex: combien de cases pour un quadrillage découpé en 10 en dimension d ?

♦ d=1: 10 cases

♦ d=2: 10x10=100 cases

♦ d=10 : 10¹⁰ = 10 000 000 000 cases

 Pour un quadrillage où chaque dimension est découpé en m, on a d^m cases.

La "taille" de l'espace explorable à modéliser croît exponentiellemet avec la dimensionalité!

Si on a n=100 000 points d'entrainement répartis ± uniformément

d=1: 100 000/10 = 10000 points/case

d=2:100 000/100 = 1000 points/case

d=3: 100 000/1000 = 100 points/case

d=10 : 100 000/10¹⁰ = 10⁻⁵ points/case

d=100 : 100 000/10 = 10 points/case

En haute dimension, la plupart des cases (où risque d'apparaître un point de test...) vont ête vide!!!

Sensibilité à la malédiction

- ◆ Les méthodes de type histogramme (quadrillage) fonctionnent bien en faible dimension (1, 2, voire 3)
- ◆ Mais sont catastrophiques en haute dimension!
- ◆ La malédiction de la dimensionalité affecte ± tous les algorithmes d'apprentissage, mais certains y sont beaucoup plus sensible que d'autres.

Formalisation du problème de l'apprentissage

Machine d'apprentissage

Formellement

 $g(donn\acute{e}es, observation) \mapsto classe$

• données d'entraînement

 $donn\acute{e}s = \{(observation_1, classe_1), \dots, (observation_n, classe_n)\}$

• algorithme de classification

 $ALGO(donn\acute{e}es) \mapsto f$

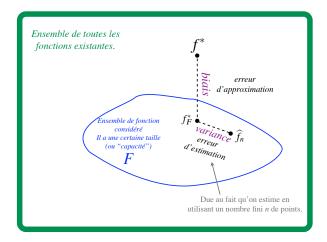
• fonction de décision/classification

 $f(observation) \mapsto classe$

Machine d'apprentissage

- Attributs des algorithmes
 - classe (parametrisée) de fonctions (linéaire, mélange de noyaux, etc.)
 - fonction d'objectif/cible/erreur
 (0 − 1, absolu, quadratique, etc.)
 - méthodes d'optimisation (descente de gradient, EM, optimisation quadratique, etc.)

Le dilemme biais-variance



Les notions de capacité et de surapprentissage

