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Introduction

Given a tensor T ∈ Rd×d×d with the following CP-decomposition:

T̂ =
k
∑
i=1
πiai ⊗ bi ⊗ ci + noise,

our goal is to estimate the factors ai,bi,ci and the factor weights π ∈ Rk .

To solve this, we saw ALS, gradient-based approaches in class

This presentation⇒ Tensor Factorization via Matrix Factorization (TFMF)

The core idea
Projection T along a vector w to do eigendecomp. repeated L times
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Tensor Factorization via Matrix Factorization(TFMF)

TFMF algorithm overview
1 Input : L random vectors w , a tensor T
2 Project T onto a set of random vectors wL producingM matrices
3 Simultaneously diagonalizeM producing CP decomp. factors estimates ũI
4 Refine by repeating with the factor estimates instead of the random vectors
5 Output : CP factor matrices ũI

Application: to orthogonal, non-orthogonal and asymmetric tensors of arbitrary
order.

Novelty: Simultaneous matrix diagonalization.
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Factors u ?

When ai = bi = ci = ui ∀i ⇒ symmetric factorization ! We have :

∑
i
πiu⊗3

i (1)

Project along a vector w !
∑

i
πi(wT ui)u⊗2

i (2)

Estimate ui by eigendecomposition of Eq. 2⇒ ũi

The error ∣∣ui − ũi ∣∣2 is noise sensitive

Sensitivity ≈ smallest diff. between eigenvalues : the eigengap

max
j≠i

1
∣λi − λj ∣
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Solving the eigengap with multiple projections (orth. case)

Using L random projections we have the matrices M`

∑
i
πi(wT

` ui)u⊗2
i (3)

The set of matrices M` has common eigenvectors⇒ simultaneous diagonalization !

The error bound then follows

∣∣ũi − ui ∣∣2 ≤ (2
√

2∣∣π∣∣1πmax

π2
i

+ C(δ)
πi

)ε + o(ε) (4)

with C(δ) = O(log(kd/δ
√

d
L )

⇒ The bigger L the lower the error bound !
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Using estimates instead of random W

After a first pass w/ random W the paper proposes to use ũ as the projection

The error bound then becomes

∣∣ũi − ui ∣∣2 ≤
2
√

∣∣π∣∣1πmax

π2
i

ε + o(ε) (5)

⇒ same as prev. slide when L→∞

What about non orth. tensors ?
The papers extends this analysis with a new coef. > 1 (spoiler: the error bound grows)
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Simultaneous diagonalization

Symmetric matrices M1,⋯,ML ∈ Rd×d as:

Ml = UΛlUT + εRl.

U ∈ Rd×k is common, Λl ∈ Rk×k and εRl are individual.

Goal: find inverse factors V−1 ∈ Rd×d such that V−1MlV−T is nearly diagonal.

Optimizing objective function to find V:

F(X) ≜
L
∑
l=1

off(X−1MlX−T ), off(A) = ∑
i≠j

A2
ij .

⇒ this penalizes the off-diagonal terms!

Use Jacobi & QRJ1D
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For asymmetric and higher-order tensors

Asymmetric tensors:
The l-th projection(Ml) of an asymmetric tensor has the following form:

Ml = ∑
i
λiuilvil

T = UΛlVT ,

where Λl is diagonal but not necessarily positive matrix, and U,V are common but not
necessarily orthogonal.

for each Ml we define another matrix Nl as:

Nl = [ 0 Ml
T

Ml 0
] = 1

2
[V V
U −U] [Λl 0

0 −Λl
] [V V

U −U]
T

.

The Nl are symmetric matrices with common (in general, non-orthogonal) factors.
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For asymmetric and higher-order tensors

Higher order tensors:
For higher order tensor (say fourth order):

T = ∑
i
πiai ⊗ bi ⊗ ci ⊗ di,

We first determine ai,bi by projecting into matrices:

T = ∑
i
π(ωT ci)(uT di)ai ⊗ bi,

Then determine ci,di by projecting along the first two components.
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Convergence properties

Convergence depends on the choice of joint diagonalization subroutine.

Theoretically:

Convergence to Local minimum at a quadratic rate guaranteed.

Convergence to Global minimum is an open question!

Empirically, convergence to global minima achieved.
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Experiments

Examining convergence to global minima in orthogonal setting (Jacobi Algo.): ⇒
Using 1000 random starting points, getting the same solution!
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Figure 1: Histogram of objective function values, in orthogonal setting
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Experiments

Plotting histogram for different ε values (ε = 0, ε = 1e − 4, ε = 1e − 3)
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Figure 2: Comparing Histograms for different ε sizes, in orthogonal setting

For small enough ε convergence is guaranteed.
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Experiments

Examning convergence to global minimum in Non-orthogonal setting:
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Figure 3: Histograms when µ is big
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Experiments

Examning convergence to global minimum in Non-orthogonal setting,(for small µ)
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Figure 4: Histogram when µ is small
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Experiments

Comparing random vs. plugin projection
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Figure 5: Comparing random vs. plug-in projections (d = k = 1, εortho = 0.05, εnonortho = 0.01
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Experiments

Performance comparison:
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Figure 6: ortho-comparison-latest.pdf
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Conclusion

TFMF, another take on CP decomposition

TFMF = random projections + simultaneous diagonalization + plugin estimates

Works for orthogonal, non-orthogonal, symmetric, asymetric, high order tensors

Is more accurate that state-of-the-art.
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