Tensor Factorization via Matrix Factorization

 (Kuleshov et al., 2015)Amir Zakeri, Sebastien Henwood

March 24, 2020

Outline

1 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Outline

11 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Introduction

Given a tensor $\mathcal{T} \in \mathbb{R}^{d \times d \times d}$ with the following CP-decomposition:

$$
\hat{\mathcal{T}}=\sum_{i=1}^{k} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}}+\text { noise }
$$

our goal is to estimate the factors $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$ and the factor weights $\pi \in \mathbb{R}^{k}$.

- To solve this, we saw ALS, gradient-based approaches in class
- This presentation \Rightarrow Tensor Factorization via Matrix Factorization (TFMF)

Introduction

Given a tensor $\mathcal{T} \in \mathbb{R}^{d \times d \times d}$ with the following CP-decomposition:

$$
\hat{\mathcal{T}}=\sum_{i=1}^{k} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}}+\text { noise }
$$

our goal is to estimate the factors $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$ and the factor weights $\pi \in \mathbb{R}^{k}$.
■ To solve this, we saw ALS, gradient-based approaches in class

- This presentation \Rightarrow Tensor Factorization via Matrix Factorization (TFMF)

Introduction

Given a tensor $\mathcal{T} \in \mathbb{R}^{d \times d \times d}$ with the following CP-decomposition:

$$
\hat{\mathcal{T}}=\sum_{i=1}^{k} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}}+\text { noise }
$$

our goal is to estimate the factors $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$ and the factor weights $\pi \in \mathbb{R}^{k}$.

- To solve this, we saw ALS, gradient-based approaches in class

■ This presentation \Rightarrow Tensor Factorization via Matrix Factorization (TFMF)

The core idea
Projection \mathcal{T} along a vector w to do eigendecomp. repeated L times

Introduction

Given a tensor $\mathcal{T} \in \mathbb{R}^{d \times d \times d}$ with the following CP-decomposition:

$$
\hat{\mathcal{T}}=\sum_{i=1}^{k} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}}+\text { noise }
$$

our goal is to estimate the factors $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$ and the factor weights $\pi \in \mathbb{R}^{k}$.

- To solve this, we saw ALS, gradient-based approaches in class

■ This presentation \Rightarrow Tensor Factorization via Matrix Factorization (TFMF)

The core idea

Projection \mathcal{T} along a vector w to do eigendecomp. repeated L times

Outline

1 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Tensor Factorization via Matrix Factorization(TFMF)

TFMF algorithm overview

1 Input : L random vectors w, a tensor \mathcal{T}
2 Project \mathcal{T} onto a set of random vectors w_{L} producing \mathcal{M} matrices
3 Simultaneously diagonalize \mathcal{M} producing CP decomp. factors estimates $\tilde{u}_{\mathcal{I}}$
4 Refine by repeating with the factor estimates instead of the random vectors
5 Output: CP factor matrices $\tilde{u}_{\mathcal{I}}$

- Application: to orthogonal, non-orthogonal and asymmetric tensors of arbitrary order.
- Novelty: Simultaneous matrix diagonalization.

Factors u ?

■ When $a_{i}=b_{i}=c_{i}=u_{i} \forall i \Rightarrow$ symmetric factorization ! We have :
Finm

- Project along a vector w !

■ Estimate u_{i} by eigendecomposition of Eq. $2 \Rightarrow \tilde{u}_{i}$

- The error $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is noise sensitive
- Sensitivity \approx smallest diff. between eigenvalues : the eigengap

Factors u ?

■ When $a_{i}=b_{i}=c_{i}=u_{i} \forall i \Rightarrow$ symmetric factorization! We have :

$$
\begin{equation*}
\sum_{i} \pi_{i} u_{i}^{\otimes 3} \tag{1}
\end{equation*}
$$

■ Project along a vector w !

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{2}
\end{equation*}
$$

- Estimate u_{i} by eigendecomposition of Eq. $2 \Rightarrow \tilde{u}_{i}$
- The error $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is noise sensitive
- Sensitivity \approx smallest diff. between eigenvalues : the eigengap

Factors u ?

■ When $a_{i}=b_{i}=c_{i}=u_{i} \forall i \Rightarrow$ symmetric factorization! We have :

$$
\begin{equation*}
\sum_{i} \pi_{i} u_{i}^{\otimes 3} \tag{1}
\end{equation*}
$$

■ Project along a vector w !

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{2}
\end{equation*}
$$

■ Estimate u_{i} by eigendecomposition of Eq. $2 \Rightarrow \tilde{u}_{i}$

- The error $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is noise sensitive

■ Sensitivity \approx smallest diff. between eigenvalues: the eigengap

Factors u ?

■ When $a_{i}=b_{i}=c_{i}=u_{i} \forall i \Rightarrow$ symmetric factorization! We have :

$$
\begin{equation*}
\sum_{i} \pi_{i} u_{i}^{\otimes 3} \tag{1}
\end{equation*}
$$

■ Project along a vector w !

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{2}
\end{equation*}
$$

- Estimate u_{i} by eigendecomposition of Eq. $2 \Rightarrow \tilde{u}_{i}$
- The error $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is noise sensitive
- Sensitivity \approx smallest diff. between eigenvalues : the eigengap

Factors u ?

■ When $a_{i}=b_{i}=c_{i}=u_{i} \forall i \Rightarrow$ symmetric factorization! We have :

$$
\begin{equation*}
\sum_{i} \pi_{i} u_{i}^{\otimes 3} \tag{1}
\end{equation*}
$$

■ Project along a vector w !

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{2}
\end{equation*}
$$

- Estimate u_{i} by eigendecomposition of Eq. $2 \Rightarrow \tilde{u}_{i}$
- The error $\left\|u_{i}-\tilde{u}_{i}\right\|_{2}$ is noise sensitive

■ Sensitivity \approx smallest diff. between eigenvalues : the eigengap

$$
\max _{j \neq i} \frac{1}{\left|\lambda_{i}-\lambda_{j}\right|}
$$

Solving the eigengap with multiple projections (orth. case)

- Using L random projections we have the matrices M_{ℓ}

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w_{\ell}^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{3}
\end{equation*}
$$

- The set of matrices M_{ℓ} has common eigenvectors \Rightarrow simultaneous diagonalization

■ The error bound then follows
with $C(\delta)=\mathcal{O}\left(\log \left(k d / \delta \sqrt{\frac{d}{L}}\right)\right.$
\Rightarrow The bigger L the lower the error bound !

Solving the eigengap with multiple projections (orth. case)

- Using L random projections we have the matrices M_{ℓ}

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w_{\ell}^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{3}
\end{equation*}
$$

■ The set of matrices M_{ℓ} has common eigenvectors \Rightarrow simultaneous diagonalization !

- The error bound then follows
with $C(\delta)=\mathcal{O}\left(\log \left(k d / \delta \sqrt{\frac{d}{L}}\right)\right.$
\Rightarrow The bigger L the lower the error bound !

Solving the eigengap with multiple projections (orth. case)

■ Using L random projections we have the matrices M_{ℓ}

$$
\begin{equation*}
\sum_{i} \pi_{i}\left(w_{\ell}^{T} u_{i}\right) u_{i}^{\otimes 2} \tag{3}
\end{equation*}
$$

■ The set of matrices M_{ℓ} has common eigenvectors \Rightarrow simultaneous diagonalization !
■ The error bound then follows

$$
\begin{equation*}
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq\left(\frac{2 \sqrt{2\|\pi\|_{1} \pi_{\max }}}{\pi_{i}^{2}}+\frac{C(\delta)}{\pi_{i}}\right) \epsilon+o(\epsilon) \tag{4}
\end{equation*}
$$

with $C(\delta)=\mathcal{O}\left(\log \left(k d / \delta \sqrt{\frac{d}{L}}\right)\right.$
\Rightarrow The bigger L the lower the error bound !

Using estimates instead of random W

- After a first pass w/ random W the paper proposes to use \tilde{u} as the projection

- The error bound then becomes

\Rightarrow same as prev. slide when $L \rightarrow \infty$

What about non orth. tensors ?

The papers extends this analysis with a new coef. >1 (spoiler: the error bound grows)

Using estimates instead of random W

- After a first pass w/ random W the paper proposes to use \tilde{u} as the projection
- The error bound then becomes

$$
\begin{equation*}
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \frac{2 \sqrt{\|\pi\|_{1} \pi_{\max }}}{\pi_{i}^{2}} \epsilon+o(\epsilon) \tag{5}
\end{equation*}
$$

\Rightarrow same as prev. slide when $L \rightarrow \infty$

What about non orth. tensors ?

The papers extends this analysis with a new coef. >1 (spoiler: the error bound grows)

Using estimates instead of random W

- After a first pass w/ random W the paper proposes to use \tilde{u} as the projection
- The error bound then becomes

$$
\begin{equation*}
\left\|\tilde{u}_{i}-u_{i}\right\|_{2} \leq \frac{2 \sqrt{\|\pi\|_{1} \pi_{\max }}}{\pi_{i}^{2}} \epsilon+o(\epsilon) \tag{5}
\end{equation*}
$$

\Rightarrow same as prev. slide when $L \rightarrow \infty$

What about non orth. tensors ?

The papers extends this analysis with a new coef. > 1 (spoiler: the error bound grows)

Outline

1 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Simultaneous diagonalization

■ Symmetric matrices $\mathbf{M}_{\mathbf{1}}, \cdots, \mathbf{M}_{\mathbf{L}} \in \mathbb{R}^{d \times d}$ as:

$$
\mathbf{M}_{\mathbf{I}}=\mathbf{U} \Lambda, \mathbf{U}^{T}+\epsilon \mathbf{R}_{\mathbf{l}} .
$$

$■ U \in \mathbb{R}^{d \times k}$ is common, $\Lambda_{l} \in \mathbb{R}^{k \times k}$ and ϵR_{l} are individual.

- Goal: find inverse factors $\mathbf{V}^{-\mathbf{1}} \in \mathbb{R}^{d \times d}$ such that $\mathbf{V}^{\mathbf{- 1}} \mathbf{M}_{\mathbf{l}} \mathbf{V}^{-T}$ is nearly diagonal.
- Optimizing objective function to find V :

\Rightarrow this penalizes the off-diagonal terms!
- Use Jacobi \& QRJiD

Simultaneous diagonalization

■ Symmetric matrices $\mathbf{M}_{\mathbf{1}}, \cdots, \mathbf{M}_{\mathbf{L}} \in \mathbb{R}^{d \times d}$ as:

$$
\mathbf{M}_{\mathbf{I}}=\mathbf{U} \wedge_{l} \mathbf{U}^{T}+\epsilon \mathbf{R}_{\mathbf{I}} .
$$

$■ U \in \mathbb{R}^{d \times k}$ is common, $\Lambda_{l} \in \mathbb{R}^{k \times k}$ and ϵR_{l} are individual.
\square Goal: find inverse factors $\mathbf{V}^{-\mathbf{1}} \in \mathbb{R}^{d \times d}$ such that $\mathbf{V}^{\mathbf{- 1}} \mathbf{M}_{\mathbf{I}} \mathbf{V}^{-T}$ is nearly diagonal.

- Optimizing objective function to find V:

\Rightarrow this penalizes the off-diagonal terms!
- Use Jacobi \& QRJ1D

Simultaneous diagonalization

■ Symmetric matrices $\mathbf{M}_{1}, \cdots, \mathbf{M}_{\mathbf{L}} \in \mathbb{R}^{d \times d}$ as:

$$
\mathbf{M}_{\mathbf{I}}=\mathbf{U} \Lambda, \mathbf{U}^{T}+\epsilon \mathbf{R}_{\mathbf{l}} .
$$

$■ U \in \mathbb{R}^{d \times k}$ is common, $\Lambda_{l} \in \mathbb{R}^{k \times k}$ and ϵR_{l} are individual.

■ Goal: find inverse factors $\mathbf{V}^{\mathbf{- 1}} \in \mathbb{R}^{d \times d}$ such that $\mathbf{V}^{\mathbf{- 1}} \mathbf{M}_{\mathbf{l}} \mathbf{V}^{-T}$ is nearly diagonal.
■ Optimizing objective function to find \mathbf{V} :

$$
F(\mathbf{X}) \triangleq \sum_{l=1}^{L} \operatorname{off}\left(\mathbf{X}^{-1} \mathbf{M}_{\mathbf{l}} \mathbf{X}^{-T}\right), \quad \operatorname{off}(\mathbf{A})=\sum_{i \neq j} \mathbf{A}_{i j}^{2}
$$

\Rightarrow this penalizes the off-diagonal terms!

- Use Jacobi \& QRJ1D

Simultaneous diagonalization

■ Symmetric matrices $\mathbf{M}_{\mathbf{1}}, \cdots, \mathbf{M}_{\mathbf{L}} \in \mathbb{R}^{d \times d}$ as:

$$
\mathbf{M}_{\mathbf{I}}=\mathbf{U} \wedge, \mathbf{U}^{T}+\epsilon \mathbf{R}_{\mathbf{l}} .
$$

■ U $\in \mathbb{R}^{d \times k}$ is common, $\Lambda_{l} \in \mathbb{R}^{k \times k}$ and ϵR_{l} are individual.

■ Goal: find inverse factors $\mathbf{V}^{\mathbf{- 1}} \in \mathbb{R}^{d \times d}$ such that $\mathbf{V}^{\mathbf{- 1}} \mathbf{M}_{\mathbf{l}} \mathbf{V}^{-T}$ is nearly diagonal.

- Optimizing objective function to find \mathbf{V} :

$$
F(\mathbf{X}) \triangleq \sum_{l=1}^{L} \operatorname{off}\left(\mathbf{X}^{-1} \mathbf{M}_{l} \mathbf{X}^{-T}\right), \quad \operatorname{off}(\mathbf{A})=\sum_{i \neq j} \mathbf{A}_{i j}^{2}
$$

\Rightarrow this penalizes the off-diagonal terms!
■ Use Jacobi \& QRJ1D

For asymmetric and higher-order tensors

Asymmetric tensors:

■ The l-th projection $\left(\mathbf{M}_{\mathbf{I}}\right)$ of an asymmetric tensor has the following form:

$$
\mathbf{M}_{\mathbf{I}}=\sum_{i} \lambda_{i} \mathbf{u}_{\mathbf{i}} \mathbf{V}_{\mathbf{i l}}^{T}=\mathbf{U} \wedge, \mathbf{V}^{T}
$$

where Λ_{l} is diagonal but not necessarily positive matrix, and \mathbf{U}, \mathbf{V} are common but not necessarily orthogonal.
n for each M_{I} we define another matrix N_{I} as:

- The \mathbf{N}_{1} are symmetric matrices with common (in general, non-orthogonal) factors.

For asymmetric and higher-order tensors

Asymmetric tensors:

■ The l-th projection $\left(\mathbf{M}_{\mathbf{I}}\right)$ of an asymmetric tensor has the following form:

$$
\mathbf{M}_{\mathbf{I}}=\sum_{i} \lambda_{i} \mathbf{u}_{\mathbf{i}} \mathbf{V}_{\mathbf{i l}}^{T}=\mathbf{U} \wedge, \mathbf{V}^{T},
$$

where $\Lambda_{\text {, }}$ is diagonal but not necessarily positive matrix, and \mathbf{U}, \mathbf{V} are common but not necessarily orthogonal.
\square for each $\mathbf{M}_{\mathbf{I}}$ we define another matrix $\mathbf{N}_{\mathbf{I}}$ as:

$$
\mathbf{N}_{\mathbf{I}}=\left[\begin{array}{cc}
0 & \mathbf{M}_{\mathbf{l}}^{T} \\
\mathbf{M}_{\mathbf{I}} & 0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
\mathbf{V} & \mathbf{V} \\
\mathbf{U} & -\mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Lambda_{l} & 0 \\
0 & -\Lambda_{l}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{V} & \mathbf{V} \\
\mathbf{U} & -\mathbf{U}
\end{array}\right]^{T} .
$$

- The $\mathbf{N}_{\mathbf{I}}$ are symmetric matrices with common (in general, non-orthogonal) factors.

For asymmetric and higher-order tensors

Asymmetric tensors:

■ The l-th projection $\left(\mathbf{M}_{\mathbf{I}}\right)$ of an asymmetric tensor has the following form:

$$
\mathbf{M}_{\mathbf{I}}=\sum_{i} \lambda_{i} \mathbf{u}_{\mathbf{i l}} \mathbf{v}_{\mathbf{i l}}^{T}=\mathbf{U} \Lambda, \mathbf{V}^{T},
$$

where Λ_{l} is diagonal but not necessarily positive matrix, and \mathbf{U}, \mathbf{V} are common but not necessarily orthogonal.

■ for each $\mathbf{M}_{\mathbf{I}}$ we define another matrix $\mathbf{N}_{\mathbf{I}}$ as:

$$
\mathbf{N}_{\mathbf{I}}=\left[\begin{array}{cc}
0 & \mathbf{M}_{\mathbf{l}}^{T} \\
\mathbf{M}_{\mathbf{I}} & 0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
\mathbf{V} & \mathbf{V} \\
\mathbf{U} & -\mathbf{U}
\end{array}\right]\left[\begin{array}{cc}
\Lambda_{I} & 0 \\
0 & -\Lambda_{l}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{V} & \mathbf{V} \\
\mathbf{U} & -\mathbf{U}
\end{array}\right]^{T} .
$$

■ The \mathbf{N}_{I} are symmetric matrices with common (in general, non-orthogonal) factors.

For asymmetric and higher-order tensors

Higher order tensors:

■ For higher order tensor (say fourth order):

$$
\mathcal{T}=\sum_{i} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}} \otimes \mathbf{d}_{\mathbf{i}}
$$

■ We first determine $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}$ by projecting into matrices:

$$
T=\sum \pi\left(w^{\top} c_{i}\right)\left(u^{\top} \mathrm{d}_{\mathrm{i}}\right) \mathrm{a}_{\mathrm{i}} \otimes \mathrm{~b}_{\mathrm{i}},
$$

■ Then determine $\mathbf{c}_{\mathbf{i}}, \mathbf{d}_{\mathbf{i}}$ by projecting along the first two components.

For asymmetric and higher-order tensors

Higher order tensors:

■ For higher order tensor (say fourth order):

$$
\mathcal{T}=\sum_{i} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}} \otimes \mathbf{d}_{\mathbf{i}}
$$

$■$ We first determine $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}$ by projecting into matrices:

$$
\mathbf{T}=\sum_{i} \pi\left(\omega^{T} \mathbf{c}_{\mathbf{i}}\right)\left(u^{T} \mathbf{d}_{\mathbf{i}}\right) \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}}
$$

- Then determine $\mathbf{c}_{\mathbf{i}}, \mathbf{d}_{\mathbf{i}}$ by projecting along the first two components.

For asymmetric and higher-order tensors

Higher order tensors:

■ For higher order tensor (say fourth order):

$$
\mathcal{T}=\sum_{i} \pi_{i} \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}} \otimes \mathbf{c}_{\mathbf{i}} \otimes \mathbf{d}_{\mathbf{i}}
$$

$■$ We first determine $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}$ by projecting into matrices:

$$
\mathbf{T}=\sum_{i} \pi\left(\omega^{T} \mathbf{c}_{\mathbf{i}}\right)\left(u^{T} \mathbf{d}_{\mathbf{i}}\right) \mathbf{a}_{\mathbf{i}} \otimes \mathbf{b}_{\mathbf{i}}
$$

■ Then determine $\mathbf{c}_{\mathbf{i}}, \mathbf{d}_{\mathbf{i}}$ by projecting along the first two components.

Convergence properties

- Convergence depends on the choice of joint diagonalization subroutine.
- Theoretically:

■ Empirically, convergence to global minima achieved.

Convergence properties

■ Convergence depends on the choice of joint diagonalization subroutine.
■ Theoretically:

- Convergence to Local minimum at a quadratic rate guaranteed.
- Convergence to Global minimum is an open question!
- Empirically, convergence to global minima achieved.

Convergence properties

- Convergence depends on the choice of joint diagonalization subroutine.

■ Theoretically:
■ Convergence to Local minimum at a quadratic rate guaranteed.

- Convergence to Global minimum is an open question!

■ Empirically, convergence to global minima achieved.

Convergence properties

- Convergence depends on the choice of joint diagonalization subroutine.

■ Theoretically:

- Convergence to Local minimum at a quadratic rate guaranteed.
- Convergence to Global minimum is an open question!
- Empirically, convergence to global minima achieved.

Convergence properties

- Convergence depends on the choice of joint diagonalization subroutine.
- Theoretically:
- Convergence to Local minimum at a quadratic rate guaranteed.
- Convergence to Global minimum is an open question!
- Empirically, convergence to global minima achieved.

Outline

1 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Experiments

- Examining convergence to global minima in orthogonal setting (Jacobi Algo.): \Rightarrow Using 1000 random starting points, getting the same solution!

Figure 1: Histogram of objective function values, in orthogonal setting

Experiments

- Plotting histogram for different ϵ values ($\epsilon=0, \epsilon=1 e-4, \epsilon=1 e-3$)

Figure 2: Comparing Histograms for different ϵ sizes, in orthogonal setting

■ For small enough ϵ convergence is guaranteed.

Experiments

- Examning convergence to global minimum in Non-orthogonal setting:

Figure 3: Histograms when μ is big

Experiments

- Examning convergence to global minimum in Non-orthogonal setting,(for small μ)

Figure 4: Histogram when μ is small

Experiments

- Comparing random vs. plugin projection

Orthogonal case

Non-orthogonal case

Experiments

- Performance comparison:

Outline

1 Introduction

2 Tensor Factorization via Matrix Factorization(TFMF)

3 Simultaneous diagonalization

4 Experiments

5 Conclusion

Conclusion

- TFMF, another take on CP decomposition
- TFMF = random projections + simultaneous diagonalization + plugin estimates
- Works for orthogonal, non-orthogonal, symmetric, asymetric, high order tensors
- Is more accurate that state-of-the-art.

