COMPUTING LOW-RANK APPROXIMATIONS OF LARGE-SCALE MATRICES WITH THE TENSOR NETWORK RANDOMIZED SVD

By

KIM BATSELIER, WENJIAN YU , LUCA DANIEL, AND NGAI WONG

Beheshteh T. Rakhshan Maziar Sargordi

Table of Contents

- Conversion of very large sparse matrices to an MPO form
- Tensor Randomized SVD
 - Randomized SVD algorithm
 - Matrix Multiplication
 - QR decomposition in MPO format
 - SVD decomposition in MPO format
 - Subspace Iteration
 - TNrSVD
- Numerical Experiments
 - Conversion of real-life sparse matrices to MPO form
 - Comparison proposed TNrSVD with (M)ALS-SVD matrices

Preliminaries

- Matrix Product Operator (MPO)
 - Particular tensor network representation for matrices.
 - The matrix **A** of size $I_1 I_2 I_3 I_4 \times J_1 J_2 J_3 J_4$ can be represented as

• If the MPO-ranks are all one then the matrix A is the outer product of core tensors.

Preliminaries

• Theorem

A matrix **A** of size $I_1 I_2 I_3 I_4 \times J_1 J_2 J_3 J_4$ that satisfies

$$\boldsymbol{A} = \boldsymbol{A}^{(d)} \otimes \cdots \otimes \boldsymbol{A}^{(2)} \otimes \boldsymbol{A}^{(1)}$$

has an MPO representation where the kth MPO tensor is $A^{(k)}$ of size $1 \times I_k \times J_k \times I_k$, (k = 1, ..., d) with unit canonical MPO ranks.

- The standard way to convert a matrix into MPO form is the TT-SVD algorithm
 - Issues:

Computing the SVD of a sparse matrix destroys the sparsity Real-life matrices are typically so large that it is infeasible to compute their SVD

• We explain new conversion to MPO algorithm by following example Suppose we have a sparse matrix $A \in \mathbb{R}^{I \times J}$

$$\begin{pmatrix} 0 & 0 & 0 & \boldsymbol{A}_{14} \\ 0 & \boldsymbol{A}_{22} & 0 & 0 \\ 0 & 0 & \boldsymbol{A}_{33} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• The main idea of the method is to convert each nonzero block matrix into a rank-1 MPO and add them all together.

• Where $E_{14} \in \mathbb{R}^{I_2 \times J_2}$ is a matrix of zeros except for $E_{14}(1,4) = 1$.

 $\boldsymbol{A} = \boldsymbol{E}_{14} \otimes \boldsymbol{A}_{14} + \boldsymbol{E}_{22} \otimes \boldsymbol{A}_{22} + \boldsymbol{E}_{33} \otimes \boldsymbol{A}_{33}$

• We can also partition A_{14} further into:

$$oldsymbol{A}_{14} = egin{pmatrix} 0 & 0 \ oldsymbol{X}_{14} & 0 \end{pmatrix} = oldsymbol{E}_{21} \otimes oldsymbol{X}_{14}$$

• Then the first term of

 $A = E_{14} \otimes A_{14} + E_{22} \otimes A_{22} + E_{33} \otimes A_{33}$ becomes $E_{14} \otimes E_{21} \otimes X_{14}$ and likewise for the other terms:

$$oldsymbol{A} = oldsymbol{A}^{(d)} \otimes \cdots \otimes oldsymbol{A}^{(2)} \otimes oldsymbol{A}^{(1)}$$

ALGORITHM 4.1. Sparse matrix to MPO conversion Input: matrix \mathbf{A} , dimensions $I_1, \ldots, I_d, J_1, \ldots, J_d$. Output: MPO \mathbf{A} with tensors $\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(d)}$. Initialize MPO \mathbf{A} with zero tensors. for all nonzero matrix blocks $\mathbf{X} \in \mathbb{R}^{I_1 \times J_1}$ do Determine d - 1 \mathbf{E}_{ij} matrices. Construct rank-1 MPO \mathbf{T} with \mathbf{X} and \mathbf{E}_{ij} matrices. $\mathbf{A} \leftarrow \mathbf{A} + \mathbf{T}$ end for

- Some properties of algorithm 4.1
 - How to partition the matrix **A** is optional.
 - The maximal number of core tensors in an MPO representation of A is max $(d_I, d_J) + 1$
 - The MPO obtained from Algorithm 4.1 has a uniform MPO-rank equal to the total number of nonzero matrix blocks *X* as determined by the partitioning of *A*.
 - Since the addition of MPOs can be done by concatenation of the respective tensors, no actual computation is required, which allows a fast execution of Algorithm 4.1.

• The goal is to find a rank K factorization that consist of right and left singular values in MPO form and a diagonal matrix of singular values.

```
ALGORITHM 5.1. Prototypical rSVD algorithm [16, p. 227]
Input: matrix \mathbf{A} \in \mathbb{R}^{I \times J}, target number K, oversampling parameter s,
           and exponent q.
Output: approximate rank-(K + s) factorization USV^T, with U, V orthogonal
               and S is diagonal and nonnegative.
   Generate an J \times (K+s) random matrix O.
   \boldsymbol{Y} \leftarrow (\boldsymbol{A}\boldsymbol{A}^T)^q \, \boldsymbol{A} \, \boldsymbol{O}
   \boldsymbol{Q} \leftarrow Orthogonal \ basis \ for \ the \ range \ of \ \boldsymbol{Y}
   oldsymbol{B} \leftarrow oldsymbol{Q}^T oldsymbol{A}
   Compute the SVD \boldsymbol{B} = \boldsymbol{W}\boldsymbol{S}\boldsymbol{V}^{T}.
   oldsymbol{U} \leftarrow oldsymbol{Q} oldsymbol{W}
```

• Lemma

A particular random $J_1 J_2 \dots J_d \times K$ matrix O with rank(O) = K and $K \leq J_1$ can be represented by a unit-rank MPO with the following random MPO- tensors:

$$\mathcal{O}^{(1)} \in \mathbb{R}^{1 \times J_1 \times K \times 1},$$
$$\mathcal{O}^{(i)} \in \mathbb{R}^{1 \times J_i \times 1 \times 1} \qquad (2 \le i \le d).$$

• MPO-QR (Algorithm 5.2)

ALGORITHM 5.4. Randomized MPO-subspace iteration **Input**: exponent q, $A \in \mathbb{R}^{I \times J}$ and random matrix $O \in \mathbb{R}^{J \times K}$ in MPO-form. **Output:** MPO-tensors of $Q \in \mathbb{R}^{I \times K}$ with $Q^T Q = I_K$. $Y \leftarrow AO$ $\boldsymbol{Q} \leftarrow \textit{Use Algorithm 5.2 on } \boldsymbol{Y}$ *for i*=1:*q do* $\boldsymbol{Y} \leftarrow \boldsymbol{A}^T \, \boldsymbol{Q}$ $\boldsymbol{Q} \leftarrow Use \ Algorithm \ 5.2 \ on \ \boldsymbol{Y} \ with \ rounding$ $Y \leftarrow AQ$ $\boldsymbol{Q} \leftarrow Use \ Algorithm \ 5.2 \ on \ \boldsymbol{Y} \ with \ rounding$ end for

ALGORITHM 5.5. Tensor network randomized SVD **Input**: matrix $\mathbf{A} \in \mathbb{R}^{I \times J}$ in MPO-form, target number K, oversampling parameter s and exponent q. **Output:** approximate rank-K factorization USV^T , where U, V are orthogonal and in MPO-form, S is diagonal and nonnegative. Generate an $J \times (K+s)$ random matrix **O** in MPO-form using Lemma 5.1 $\boldsymbol{Q} \leftarrow Orthogonal \ basis \ for \ the \ range \ of \ (\boldsymbol{A}\boldsymbol{A}^T)^q \ \boldsymbol{A} \ \boldsymbol{O} \ using \ Algorithm \ 5.4$ Compute $\mathbf{B} = \mathbf{Q}^T \mathbf{A}$ according to subsection 5.3 Compute the economical SVD $\boldsymbol{B} = \boldsymbol{W} \boldsymbol{S} \boldsymbol{V}^T$ using Algorithm 5.3 Compute $\boldsymbol{U} = \boldsymbol{Q} \boldsymbol{W}$ as $\boldsymbol{\mathcal{Q}}^{(1)} \times_3 \boldsymbol{W}^T$

ALGORITHM 5.6. q-adaptive TNrSVD **Input**: matrix $\mathbf{A} \in \mathbb{R}^{I \times J}$ in MPO-form, target number K, oversampling parameter s. **Output:** approximate rank-K factorization USV^T , where U, V are orthogonal and in MPO-form, S is diagonal and nonnegative. Generate an $J \times (K+s)$ random matrix **O** in MPO-form using Lemma 5.1 $\boldsymbol{Q} \leftarrow Orthogonal \ basis \ for \ the \ range \ of \ \boldsymbol{AO} \ using \ Algorithm \ 5.2$ Compute $\mathbf{B} = \mathbf{Q}^T \mathbf{A}$ according to subsection 5.3 Compute the economical SVD $\boldsymbol{B} = \boldsymbol{W}\boldsymbol{S}\boldsymbol{V}^T$ using Algorithm 5.3 Compute $\boldsymbol{U} = \boldsymbol{Q} \boldsymbol{W}$ as $\boldsymbol{\mathcal{Q}}^{(1)} \times_3 \boldsymbol{W}^T$ while Termination criterion not met do $\boldsymbol{Q} \leftarrow Orthogonal \ basis \ for \ the \ range \ of \ (\boldsymbol{A}\boldsymbol{A}^T) \ \boldsymbol{Q}$ Compute $\mathbf{B} = \mathbf{Q}^T \mathbf{A}$ according to subsection 5.3 Compute the economical SVD $\boldsymbol{B} = \boldsymbol{W} \boldsymbol{S} \boldsymbol{V}^T$ using Algorithm 5.3 Compute $\boldsymbol{U} = \boldsymbol{Q} \boldsymbol{W}$ as $\boldsymbol{\mathcal{Q}}^{(1)} \times_3 \boldsymbol{W}^T$ end while

• Termination Criterion for q-adaptive

$$\gamma := \max_{1 \le i \le K} \frac{|\sigma_i^{(k)^2} - \sigma_i^{(k-1)^2}|}{\sigma_1^{(k)^2}}$$

• Where $\sigma_i^{(k)}$ denotes the *i*th singular value computed at the *k*th iteration.

• Fast matrix-to-MPO conversion

Test matrices from the SuiteSparse Matrix Collection [8].

Matrix	Dimensions	Dimension factorization
Erdos972	5488×5488	$7^3 \times 2^4$
lhr10c	10672×10672	$29 \times 23 \times 2^4$
delaunay_n14	16384×16384	128×2^7
g7jac100	29610×29610	$329 \times 5 \times 3^2 \times 2$
venkat01	62424×62424	$289 \times 3^3 \times 2^3$

Runtimes and relative errors for three different matrix-to-MPO methods.

Matrix	Runtime [seconds]			Relative error		
	Alg. 4.1	TT-SVD	TT-cross	Alg. 4.1	TT-SVD	TT-cross
Erdos972	0.649	12.25	14.92	0	8.11e-15	1.016
lhr10c	1.075	22.32	135.37	0	4.07 e- 15	0.926
delaunay_n14	0.171	1302.2	18.77	0	8.45e-15	1.141
g7jac100	0.903	422.34	716.31	0	4.67 e- 11	0.791
venkat01	1.025	NA	NA	0	NA	NA

- Algorithm 4.1 always results in an exact representation.
- Applying the TT-SVD and TT-cross methods on the venkat01 matrix is not possible due to insufficient memory (64 GB).

Comparison with ALS-SVD and MALS-SVD

FIG. 6.3. Runtimes for computing rank-16 approximations of $2^N \times 2^{N-1}$ Hilbert matrices for $10 \le N \le 50$.

 Random matrix with prescribed singular values

Considering a matrix with 50 prescribed singular values 0.5^k , (k = 0, ..., 49) and random left and right singular vectors of size $2^N \times 50$, where N ranges from 10 to 50.

FIG. 6.4. Runtimes for computing rank-50 decompositions of $2^N \times 2^N$ random matrices with prescribed singular values for $10 \le N \le 50$.