COMPUTING LOW-RANK APPROXIMATIONS OF LARGESCALE MATRICES WITH THE TENSOR NETWORK RANDOMIZED SVD

By
KIM BATSELIER, WENJIAN YU , LUCA DANIEL, AND NGAI WONG

Beheshteh T. Rakhshan
Maziar Sargordi

Table of Contents

- Conversion of very large sparse matrices to an MPO form
- Tensor Randomized SVD
- Randomized SVD algorithm
- Matrix Multiplication
- QR decomposition in MPO format
- SVD decomposition in MPO format
- Subspace Iteration
- TNrSVD
- Numerical Experiments
- Conversion of real-life sparse matrices to MPO form
- Comparison proposed TNrSVD with (M)ALS-SVD matrices

Preliminaries

- Matrix Product Operator (MPO)
- Particular tensor network representation for matrices.
- The matrix \boldsymbol{A} of size $I_{1} I_{2} I_{3} I_{4} \times J_{1} J_{2} J_{3} J_{4}$ can be represented as

- If the MPO-ranks are all one then the matrix A is the outer product of core tensors.

Preliminaries

- Theorem

A matrix A of size $I_{1} I_{2} I_{3} I_{4} \times J_{1} J_{2} J_{3} J_{4}$ that satisfies

$$
\boldsymbol{A}=\boldsymbol{A}^{(d)} \otimes \cdots \otimes \boldsymbol{A}^{(2)} \otimes \boldsymbol{A}^{(1)}
$$

has an MPO representation where the k th MPO tensor is $\boldsymbol{A}^{(k)}$ of size $1 \times I_{k} \times J_{k} \times$ $1,(k=1, \ldots, d)$ with unit canonical MPO ranks.

Converting a sparse matrix into an MPO

- The standard way to convert a matrix into MPO form is the TT-SVD algorithm
- Issues:

Computing the SVD of a sparse matrix destroys the sparsity
Real-life matrices are typically so large that it is infeasible to compute their SVD

- We explain new conversion to MPO algorithm by following example Suppose we have a sparse matrix $A \in \mathbb{R}^{I \times J}$
$\left(\begin{array}{cccc}0 & 0 & 0 & \boldsymbol{A}_{14} \\ 0 & \boldsymbol{A}_{22} & 0 & 0 \\ 0 & 0 & \boldsymbol{A}_{33} & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Converting a sparse matrix into an MPO

- The main idea of the method is to convert each nonzero block matrix into a rank-1 MPO and add them all together.

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & \boldsymbol{A}_{14} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\boldsymbol{E}_{14} \otimes \boldsymbol{A}_{14}
$$

- Where $\boldsymbol{E}_{14} \in \mathbb{R}^{I_{2} \times J_{2}}$ is a matrix of zeros except for $\boldsymbol{E}_{14}(1,4)=1$.

$$
\boldsymbol{A}=\boldsymbol{E}_{14} \otimes \boldsymbol{A}_{14}+\boldsymbol{E}_{22} \otimes \boldsymbol{A}_{22}+\boldsymbol{E}_{33} \otimes \boldsymbol{A}_{33}
$$

Converting a sparse matrix into an MPO

- We can also partition \boldsymbol{A}_{14} further into:

$$
\boldsymbol{A}_{14}=\left(\begin{array}{cc}
0 & 0 \\
\boldsymbol{X}_{14} & 0
\end{array}\right)=\boldsymbol{E}_{21} \otimes \boldsymbol{X}_{14}
$$

- Then the first term of
$\boldsymbol{A}=\boldsymbol{E}_{14} \otimes \boldsymbol{A}_{14}+\boldsymbol{E}_{22} \otimes \boldsymbol{A}_{22}+\boldsymbol{E}_{33} \otimes \boldsymbol{A}_{33}$ becomes $\boldsymbol{E}_{14} \otimes \boldsymbol{E}_{21} \otimes \boldsymbol{X}_{14}$ and likewise for the other terms:

$$
\boldsymbol{A}=\boldsymbol{A}^{(d)} \otimes \cdots \otimes \boldsymbol{A}^{(2)} \otimes \boldsymbol{A}^{(1)}
$$

Converting a sparse matrix into an MPO

```
Algorithm 4.1. Sparse matrix to MPO conversion
Input: matrix A, dimensions }\mp@subsup{I}{1}{},\ldots,\mp@subsup{I}{d}{},\mp@subsup{J}{1}{},\ldots,\mp@subsup{J}{d}{}
Output: MPO \mathcal{A with tensors }\mp@subsup{\mathcal{A}}{}{(1)},\ldots,\mp@subsup{\mathcal{A}}{}{(d)}.
    Initialize MPO \mathcal{A}}\mathrm{ with zero tensors.
    for all nonzero matrix blocks }\boldsymbol{X}\in\mp@subsup{\mathbb{R}}{}{\mp@subsup{I}{1}{}\times\mp@subsup{J}{1}{}}\mathrm{ do
    Determine d - 1 E
    Construct rank-1 MPO \mathcal{T}}\mathrm{ with }\boldsymbol{X}\mathrm{ and }\mp@subsup{\boldsymbol{E}}{ij}{}\mathrm{ matrices.
    \mathcal{A}\leftarrow\mathcal{A}+\boldsymbol{T}
    end for
```


Converting a sparse matrix into an MPO

- Some properties of algorithm 4.1
- How to partition the matrix \boldsymbol{A} is optional.
- The maximal number of core tensors in an MPO representation of \boldsymbol{A} is max $\left(d_{I}, d_{J}\right)+1$
- The MPO obtained from Algorithm 4.1 has a uniform MPO-rank equal to the total number of nonzero matrix blocks \boldsymbol{X} as determined by the partitioning of A.
- Since the addition of MPOs can be done by concatenation of the respective tensors, no actual computation is required, which allows a fast execution of Algorithm 4.1.

Tensor network randomized SVD

- The goal is to find a rank K factorization that consist of right and left singular values in MPO form and a diagonal matrix of singular values.

```
AlgORITHM 5.1. Prototypical rSVD algorithm [16, p. 227]
Input: matrix A}\in\mp@subsup{\mathbb{R}}{}{I\timesJ}\mathrm{ , target number K, oversampling parameter s,
    and exponent q.
Output: approximate rank-(K+s) factorization }\boldsymbol{U}\boldsymbol{S}\mp@subsup{\boldsymbol{V}}{}{T}\mathrm{ , with }\boldsymbol{U},\boldsymbol{V}\mathrm{ orthogonal
    and S}\mathrm{ is diagonal and nonnegative.
    Generate an J }\times(K+s) random matrix O.
    Y}\leftarrow(\boldsymbol{A}\mp@subsup{\boldsymbol{A}}{}{T}\mp@subsup{)}{}{q}\boldsymbol{A}\boldsymbol{O
    Q}\leftarrow\mathrm{ Orthogonal basis for the range of }\boldsymbol{Y
    B}\leftarrow\mp@subsup{\boldsymbol{Q}}{}{T}\boldsymbol{A
    Compute the SVD B=W S}\mp@subsup{\boldsymbol{V}}{}{T}
    \boldsymbol { U } \leftarrow \boldsymbol { Q } \boldsymbol { W }
```


Tensor network randomized SVD

- Lemma

A particular random $J_{1} J_{2} \ldots J_{d} \times K$ matrix \boldsymbol{O} with $\operatorname{rank}(\boldsymbol{O})=K$ and $K \leq$ J_{1} can be represented by a unit-rank MPO with the following random MPO- tensors:

$$
\boldsymbol{\mathcal { O }}^{(1)} \in \mathbb{R}^{1 \times J_{1} \times K \times 1},
$$

$$
\mathcal{O}^{(i)} \in \mathbb{R}^{1 \times J_{i} \times 1 \times 1} \quad(2 \leq i \leq d)
$$

Tensor network randomized SVD

Tensor network randomized SVD

- MPO-QR (Algorithm 5.2)

Tensor network randomized SVD

- MPO-SVD (Algorithm 5.3)

Tensor network randomized SVD

```
Algorithm 5.4. Randomized MPO-subspace iteration
Input: exponent \(q, \boldsymbol{A} \in \mathbb{R}^{I \times J}\) and random matrix \(\boldsymbol{O} \in \mathbb{R}^{J \times K}\) in \(M P O\)-form.
Output: MPO-tensors of \(\boldsymbol{Q} \in \mathbb{R}^{I \times K}\) with \(\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}_{K}\).
    \(\boldsymbol{Y} \leftarrow \boldsymbol{A O}\)
    \(\boldsymbol{Q} \leftarrow\) Use Algorithm 5.2 on \(\boldsymbol{Y}\)
    for \(i=1: q\) do
        \(\boldsymbol{Y} \leftarrow \boldsymbol{A}^{T} \boldsymbol{Q}\)
        \(\boldsymbol{Q} \leftarrow\) Use Algorithm 5.2 on \(\boldsymbol{Y}\) with rounding
        \(\boldsymbol{Y} \leftarrow \boldsymbol{A} \boldsymbol{Q}\)
        \(\boldsymbol{Q} \leftarrow\) Use Algorithm 5.2 on \(\boldsymbol{Y}\) with rounding
    end for
```


Tensor network randomized SVD

Algorithm 5.5. Tensor network randomized SVD
Input: matrix $\boldsymbol{A} \in \mathbb{R}^{I \times J}$ in MPO-form, target number K, oversampling
parameter s and exponent q.
Output: approximate rank-K factorization $\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}$, where $\boldsymbol{U}, \boldsymbol{V}$ are orthogonal and in MPO-form, \boldsymbol{S} is diagonal and nonnegative.
Generate an $J \times(K+s)$ random matrix \boldsymbol{O} in MPO-form using Lemma 5.1 $\boldsymbol{Q} \leftarrow$ Orthogonal basis for the range of $\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)^{q} \boldsymbol{A} \boldsymbol{O}$ using Algorithm 5.4 Compute $\boldsymbol{B}=\boldsymbol{Q}^{T} \boldsymbol{A}$ according to subsection 5.3
Compute the economical SVD $\boldsymbol{B}=\boldsymbol{W} \boldsymbol{S} \boldsymbol{V}^{T}$ using Algorithm 5.3
Compute $\boldsymbol{U}=\boldsymbol{Q} \boldsymbol{W}$ as $\mathcal{Q}^{(1)} \times{ }_{3} \boldsymbol{W}^{T}$

Tensor network randomized SVD

```
Algorithm 5.6. q-adaptive TNrSVD
Input: matrix \(\boldsymbol{A} \in \mathbb{R}^{I \times J}\) in \(M P O\)-form, target number \(K\), oversampling
    parameter \(s\).
Output: approximate rank-K factorization \(\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}\), where \(\boldsymbol{U}, \boldsymbol{V}\) are orthogonal
    and in MPO-form, \(\boldsymbol{S}\) is diagonal and nonnegative.
    Generate an \(J \times(K+s)\) random matrix \(\boldsymbol{O}\) in \(M P O\)-form using Lemma 5.1
\(\boldsymbol{Q} \leftarrow\) Orthogonal basis for the range of \(\boldsymbol{A} \boldsymbol{O}\) using Algorithm 5.2
Compute \(\boldsymbol{B}=\boldsymbol{Q}^{T} \boldsymbol{A}\) according to subsection 5.3
Compute the economical SVD \(\boldsymbol{B}=\boldsymbol{W} \boldsymbol{S} \boldsymbol{V}^{T}\) using Algorithm 5.3
Compute \(\boldsymbol{U}=\boldsymbol{Q} \boldsymbol{W}\) as \(\mathcal{Q}^{(1)} \times_{3} \boldsymbol{W}^{T}\)
while Termination criterion not met do
    \(\boldsymbol{Q} \leftarrow\) Orthogonal basis for the range of \(\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) \boldsymbol{Q}\)
    Compute \(\boldsymbol{B}=\boldsymbol{Q}^{T} \boldsymbol{A}\) according to subsection 5.3
    Compute the economical SVD \(\boldsymbol{B}=\boldsymbol{W} \boldsymbol{S} \boldsymbol{V}^{T}\) using Algorithm 5.3
    Compute \(\boldsymbol{U}=\boldsymbol{Q} \boldsymbol{W}\) as \(\mathcal{Q}^{(1)} \times_{3} \boldsymbol{W}^{T}\)
end while
```


Tensor network randomized SVD

- Termination Criterion for q-adaptive

$$
\gamma:=\max _{1 \leq i \leq K} \frac{\left|\sigma_{i}^{(k)^{2}}-\sigma_{i}^{(k-1)^{2}}\right|}{\sigma_{1}^{(k)^{2}}}
$$

-Where $\sigma_{i}^{(k)}$ denotes the i th singular value computed at the k th iteration.

Numerical experiments

- Fast matrix-to-MPO conversion

Test matrices from the SuiteSparse Matrix Collection [8].

Matrix	Dimensions	Dimension factorization
Erdos972	5488×5488	$7^{3} \times 2^{4}$
lhr10c	10672×10672	$29 \times 23 \times 2^{4}$
delaunay_n14	16384×16384	128×2^{7}
G7jac100	29610×29610	$329 \times 5 \times 3^{2} \times 2$
venkat01	62424×62424	$289 \times 3^{3} \times 2^{3}$

Numerical experiments

Runtimes and relative errors for three different matrix-to-MPO methods.

Matrix	Runtime [seconds]			Relative error		
	Alg. 4.1	TT-SVD	TT-cross	Alg. 4.1	TT-SVD	TT-cross
Erdos972	0.649	12.25	14.92	0	$8.11 \mathrm{e}-15$	1.016
lhr10c	1.075	22.32	135.37	0	$4.07 \mathrm{e}-15$	0.926
delaunay_n14	0.171	1302.2	18.77	0	$8.45 \mathrm{e}-15$	1.141
g7jac100	0.903	422.34	716.31	0	$4.67 \mathrm{e}-11$	0.791
venkat01	1.025	NA	NA	0	NA	NA

- Algorithm 4.1 always results in an exact representation.
- Applying the TT-SVD and TT-cross methods on the venkat01 matrix is not possible due to insufficient memory (64 GB).

Numerical experiments

- Comparison with ALS-SVD and MALS-SVD

Hilbert matrix, \boldsymbol{H} of size $2^{N} \times 2^{N}$ is a symmetric matrix with entries:
$\boldsymbol{H}(i, j)=(i+j-1)^{-1}, i, j=1,2, \ldots, 2^{N}$
The submatrix, \boldsymbol{A} of size $2^{N} \times 2^{N-1}$ is considered with $10<N<50$

Fig. 6.3. Runtimes for computing rank-16 approximations of $2^{N} \times 2^{N-1}$ Hilbert matrices for $10 \leq N \leq 50$.

Numerical experiments

- Random matrix with prescribed singular values

Considering a matrix with 50 prescribed singular values $0.5^{k},(\mathrm{k}=0, \ldots, 49)$ and random left and right singular vectors of size $2^{N} \times 50$, where N ranges from 10 to 50 .

Fig. 6.4. Runtimes for computing rank-50 decompositions of $2^{N} \times 2^{N}$ random matrices with prescribed singular values for $10 \leq N \leq 50$.

