
COMPUTING	LOW-RANK	APPROXIMATIONS	OF	LARGE-
SCALE	MATRICES	WITH	THE	TENSOR	NETWORK	

RANDOMIZED	SVD

By	

KIM	BATSELIER,	WENJIAN	YU	,	LUCA	DANIEL,	AND	NGAI	WONG	

Beheshteh	T.	Rakhshan
Maziar	Sargordi

Table	of	Contents
• Conversion	of	very	large	sparse	matrices	to	an	MPO	form
• Tensor	Randomized	SVD
• Randomized	SVD	algorithm
• Matrix	Multiplication
• QR	decomposition	in	MPO	format
• SVD	decomposition	in	MPO	format
• Subspace	Iteration
• TNrSVD

• Numerical	Experiments
• Conversion	of	real-life	sparse	matrices	to	MPO	form
• Comparison	proposed	TNrSVD with	(M)ALS-SVD	matrices	

2/22

Preliminaries

• Matrix	Product	Operator	(MPO)
• Particular	tensor	network	representation	for	matrices.	
• The	matrix	𝑨 of	size	𝐼#	𝐼%	𝐼&	𝐼'×𝐽#	𝐽%	𝐽&	𝐽' can	be	represented	as

• If	the	MPO-ranks	are	all	one	then	the	matrix	𝐴 is	the	outer	product	of	core	
tensors.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1225

I1 J1 I2 J2 I3 J3 I4 J4

A
(1)

A
(2)

A
(3)

A
(4)

R1

R2 R3 R4A

I1I2I3I4 J1J2J3J4

Fig. 3.1. Representation of an I1I2I3I4 ⇥ J1J2J3J4 matrix A as an MPO.

connecting edge between A
(1) and A

(4). For the remainder of this article, we assume
that R1 = R5 = 1, which is also called an open boundary condition. An MPO that
satisfies R1 = R5 > 1 has a periodic boundary condition. The tensor obtained from
doing all summations in the network can then be permuted and reshaped back into
the original matrix with entries A([i1i2i3i4], [j1j2j3j4]). The dimensions Rk, Rk+1

of the connecting indices in an MPO are called the MPO-ranks and play a crucial
role in the computational complexity of our developed algorithms. The MPO-ranks
are called canonical if they attain their minimal value such that the MPO represents
a given matrix exactly. A very special MPO is obtained when all MPO-ranks are
unity. The contraction of a rank-1 MPO corresponds with the outer product of the
individual MPO-tensors. Indeed, suppose that the MPO-ranks in Figure 3.1 are all
unity. The 4-way tensors of the MPO are then reduced to matrices such that we can
write A(k) := A

(k)(1, :, :, 1) (k = 1, . . . , 4) and

A(i1, j1, i2, j2, i3, j3, i4j4) = A(1)(i1, j1)A
(2)(i2, j2)A

(3)(i3, j3)A
(4)(i4, j4),

which is exactly the outer product of the matrices A(1)
,A(2)

,A(3) with A(4) into a
8-way tensor. The relation between the Kronecker and outer products, together with
the previous example leads to the following important theorem.

Theorem 3.1. A matrix A 2 RI1I2···Id⇥J1J2···Jd that satisfies

A = A(d) ⌦ · · ·⌦A(2) ⌦A(1)

has an MPO representation where the kth MPO-tensor is A(k) 2 R1⇥Ik⇥Jk⇥1 (k =
1, . . . , d) with unit canonical MPO-ranks.

It is important to note that the order of the MPO-tensors is reversed with respect
to the order of the factor matrices in the Kronecker product. This means that the
last factor matrix A(1) in the Kronecker product of Theorem 3.1 is the first tensor in
the corresponding MPO representation. Theorem 3.1 can also be written in terms of
the matrix entries as

A([i1i2 · · · id], [j1j2 · · · jd]) = A(d)(id, jd) · · ·A(2)(i2, j2)A
(1)(i1, j1).

As mentioned earlier, the MPO-ranks play a crucial role in the computational com-
plexity of the algorithms. For this reason, only MPOs with small ranks are desired.
An upper bound on the canonical MPO-rank Rk for an MPO of d tensors for which
R1 = Rd+1 = 1 is given by the following theorem.

Theorem 3.2 (Modified version of Theorem 2.1 in [30]). For any matrix A 2
RI1I2···Id⇥J1J2···Jd there exists an MPO with MPO-ranks R1 = Rd+1 = 1 such that the

canonical MPO-ranks Rk satisfy

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
ist

rib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp

3/22

• Theorem
A	matrix	𝑨 of	size	𝐼#	𝐼%	𝐼&	𝐼'×𝐽#	𝐽%	𝐽&	𝐽'	that	satisfies	

has	an	MPO	representation	where	the	𝑘th MPO	tensor	is	𝑨(-) of	size		1×𝐼-×𝐽-×
1, (𝑘 = 1,… , 𝑑)with	unit	canonical	MPO	ranks.

Preliminaries

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1225

I1 J1 I2 J2 I3 J3 I4 J4

A
(1)

A
(2)

A
(3)

A
(4)

R1

R2 R3 R4A

I1I2I3I4 J1J2J3J4

Fig. 3.1. Representation of an I1I2I3I4 ⇥ J1J2J3J4 matrix A as an MPO.

connecting edge between A
(1) and A

(4). For the remainder of this article, we assume
that R1 = R5 = 1, which is also called an open boundary condition. An MPO that
satisfies R1 = R5 > 1 has a periodic boundary condition. The tensor obtained from
doing all summations in the network can then be permuted and reshaped back into
the original matrix with entries A([i1i2i3i4], [j1j2j3j4]). The dimensions Rk, Rk+1

of the connecting indices in an MPO are called the MPO-ranks and play a crucial
role in the computational complexity of our developed algorithms. The MPO-ranks
are called canonical if they attain their minimal value such that the MPO represents
a given matrix exactly. A very special MPO is obtained when all MPO-ranks are
unity. The contraction of a rank-1 MPO corresponds with the outer product of the
individual MPO-tensors. Indeed, suppose that the MPO-ranks in Figure 3.1 are all
unity. The 4-way tensors of the MPO are then reduced to matrices such that we can
write A(k) := A

(k)(1, :, :, 1) (k = 1, . . . , 4) and

A(i1, j1, i2, j2, i3, j3, i4j4) = A(1)(i1, j1)A
(2)(i2, j2)A

(3)(i3, j3)A
(4)(i4, j4),

which is exactly the outer product of the matrices A(1)
,A(2)

,A(3) with A(4) into a
8-way tensor. The relation between the Kronecker and outer products, together with
the previous example leads to the following important theorem.

Theorem 3.1. A matrix A 2 RI1I2···Id⇥J1J2···Jd that satisfies

A = A(d) ⌦ · · ·⌦A(2) ⌦A(1)

has an MPO representation where the kth MPO-tensor is A(k) 2 R1⇥Ik⇥Jk⇥1 (k =
1, . . . , d) with unit canonical MPO-ranks.

It is important to note that the order of the MPO-tensors is reversed with respect
to the order of the factor matrices in the Kronecker product. This means that the
last factor matrix A(1) in the Kronecker product of Theorem 3.1 is the first tensor in
the corresponding MPO representation. Theorem 3.1 can also be written in terms of
the matrix entries as

A([i1i2 · · · id], [j1j2 · · · jd]) = A(d)(id, jd) · · ·A(2)(i2, j2)A
(1)(i1, j1).

As mentioned earlier, the MPO-ranks play a crucial role in the computational com-
plexity of the algorithms. For this reason, only MPOs with small ranks are desired.
An upper bound on the canonical MPO-rank Rk for an MPO of d tensors for which
R1 = Rd+1 = 1 is given by the following theorem.

Theorem 3.2 (Modified version of Theorem 2.1 in [30]). For any matrix A 2
RI1I2···Id⇥J1J2···Jd there exists an MPO with MPO-ranks R1 = Rd+1 = 1 such that the

canonical MPO-ranks Rk satisfy

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

4/22

• The	standard	way	to	convert	a	matrix	into	MPO	form	is	the	TT-SVD	
algorithm
• Issues:	
Computing	the	SVD	of	a	sparse	matrix	destroys	the	sparsity
Real-life	matrices	are	typically	so	large	that	it	is	infeasible	to	compute	their	
SVD

• We	explain	new	conversion	to	MPO	algorithm	by	following	example
Suppose	we	have	a	sparse	matrix	𝐴	 ∈ 	ℝ6×7

Converting	a	sparse	matrix	into	an	MPO

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

5/22

• The	main	idea	of	the	method	is	to	convert	each	nonzero	block	matrix	
into	a	rank-1	MPO	and	add	them	all	together.

• Where	𝑬#' ∈ ℝ69×79 is	a	matrix	of	zeros	except	for	𝑬#'(1,4)	=	1.

Converting	a	sparse	matrix	into	an	MPO

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

6/22

• We	can	also	partition	𝑨#' further	into:

• Then	the	first	term	of	

becomes	𝑬#'⨂𝑬%#⨂	𝑿#' and	likewise	for	the	other	terms:

Converting	a	sparse	matrix	into	an	MPO

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
ist

rib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1225

I1 J1 I2 J2 I3 J3 I4 J4

A
(1)

A
(2)

A
(3)

A
(4)

R1

R2 R3 R4A

I1I2I3I4 J1J2J3J4

Fig. 3.1. Representation of an I1I2I3I4 ⇥ J1J2J3J4 matrix A as an MPO.

connecting edge between A
(1) and A

(4). For the remainder of this article, we assume
that R1 = R5 = 1, which is also called an open boundary condition. An MPO that
satisfies R1 = R5 > 1 has a periodic boundary condition. The tensor obtained from
doing all summations in the network can then be permuted and reshaped back into
the original matrix with entries A([i1i2i3i4], [j1j2j3j4]). The dimensions Rk, Rk+1

of the connecting indices in an MPO are called the MPO-ranks and play a crucial
role in the computational complexity of our developed algorithms. The MPO-ranks
are called canonical if they attain their minimal value such that the MPO represents
a given matrix exactly. A very special MPO is obtained when all MPO-ranks are
unity. The contraction of a rank-1 MPO corresponds with the outer product of the
individual MPO-tensors. Indeed, suppose that the MPO-ranks in Figure 3.1 are all
unity. The 4-way tensors of the MPO are then reduced to matrices such that we can
write A(k) := A

(k)(1, :, :, 1) (k = 1, . . . , 4) and

A(i1, j1, i2, j2, i3, j3, i4j4) = A(1)(i1, j1)A
(2)(i2, j2)A

(3)(i3, j3)A
(4)(i4, j4),

which is exactly the outer product of the matrices A(1)
,A(2)

,A(3) with A(4) into a
8-way tensor. The relation between the Kronecker and outer products, together with
the previous example leads to the following important theorem.

Theorem 3.1. A matrix A 2 RI1I2···Id⇥J1J2···Jd that satisfies

A = A(d) ⌦ · · ·⌦A(2) ⌦A(1)

has an MPO representation where the kth MPO-tensor is A(k) 2 R1⇥Ik⇥Jk⇥1 (k =
1, . . . , d) with unit canonical MPO-ranks.

It is important to note that the order of the MPO-tensors is reversed with respect
to the order of the factor matrices in the Kronecker product. This means that the
last factor matrix A(1) in the Kronecker product of Theorem 3.1 is the first tensor in
the corresponding MPO representation. Theorem 3.1 can also be written in terms of
the matrix entries as

A([i1i2 · · · id], [j1j2 · · · jd]) = A(d)(id, jd) · · ·A(2)(i2, j2)A
(1)(i1, j1).

As mentioned earlier, the MPO-ranks play a crucial role in the computational com-
plexity of the algorithms. For this reason, only MPOs with small ranks are desired.
An upper bound on the canonical MPO-rank Rk for an MPO of d tensors for which
R1 = Rd+1 = 1 is given by the following theorem.

Theorem 3.2 (Modified version of Theorem 2.1 in [30]). For any matrix A 2
RI1I2···Id⇥J1J2···Jd there exists an MPO with MPO-ranks R1 = Rd+1 = 1 such that the

canonical MPO-ranks Rk satisfy

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

7/22

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1227

0

BB@

0 0 0 A14

0 A22 0 0
0 0 A33 0
0 0 0 0

1

CCA .

Assume that each of the nonzero block matrices has dimensions I1 ⇥ J1 and that
I = I1 I2, J = J1 J2 such that the rows and columns of A are now indexed by
[i1i2] and [j1j2], respectively. The main idea of our method is to convert each nonzero
block matrix into a rank-1 MPO and add them all together. Observe now that

0

BB@

0 0 0 A14

0 0 0 0
0 0 0 0
0 0 0 0

1

CCA = E14 ⌦A14,

where E14 2 RI2⇥J2 is a matrix of zeros except for E14(1, 4) = 1. From Theorem 3.1
we know that E14⌦A14 is equivalent with a rank-1 MPO where the first MPO-tensor
is A14 and the second MPO-tensor is E14. Generalizing the matrix E14 to the matrix
Eij of zero entries except for Eij(i, j) = 1 allows us to write

A = E14 ⌦A14 +E22 ⌦A22 +E33 ⌦A33,(4.1)

from which we conclude that the MPO representation of A is found from adding
the unit-rank MPOs of each of the terms. Another important conclusion is that the
MPO-rank for the particular MPO obtained from this algorithm is the total number
of summations. The number of factors in the Kronecker product is not limited to
two and depends on the matrix partitioning. Indeed, suppose we can partition A14

further into

A14 =

✓
0 0

X14 0

◆
= E21 ⌦X14;

then the first term of (4.1) becomes E14⌦E21⌦X14 and likewise for the other terms.
A crucial element is that the matrix A is partitioned into block matrices of equal
size, which is required for the addition of the MPOs. In general, for a given matrix
A 2 RI⇥J , we consider the partitioning of A determined by a Kronecker product of
d matrices

A(d) ⌦A(d�1) ⌦ · · ·⌦A(2) ⌦A(1)

with A(k) 2 RIk⇥Jk (k = 1, . . . , d) and I =
Qd

k=1 Ik, J =
Qd

k=1 Jk. The algorithm to
convert a sparse matrix into an MPO is given in pseudocode in Algorithm 4.1. The
MATLAB implementation of Algorithm 4.1 in the tensor network randomized SVD
(TNrSVD) package is matrix2mpo.m.

Algorithm 4.1. Sparse matrix to MPO conversion

Input: matrix A, dimensions I1, . . . , Id, J1, . . . , Jd.

Output: MPO A with tensors A
(1)

, . . . ,A
(d)

.

Initialize MPO A with zero tensors.

for all nonzero matrix blocks X 2 RI1⇥J1 do

Determine d� 1 Eij matrices.

Construct rank-1 MPO T with X and Eij matrices.

A A+ T

end for

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Converting	a	sparse	matrix	into	an	MPO

8/22

• Some	properties	of	algorithm	4.1
• How	to	partition	the	matrix	𝑨	is	optional.	
• The	maximal	number	of	core	tensors	in	an	MPO	representation	of	𝑨 is	max	
(𝑑6, 𝑑7) 	+ 	1	
• The	MPO	obtained	from	Algorithm	4.1	has	a	uniform	MPO-rank	equal	to	the	
total	number	of	nonzero	matrix	blocks	𝑿	as	determined	by	the	partitioning	of	
𝑨.	
• Since	the	addition	of	MPOs	can	be	done	by	concatenation	of	the	respective	
tensors,	no	actual	computation	is	required,	which	allows	a	fast	execution	of	
Algorithm	4.1.	

9/22

Converting	a	sparse	matrix	into	an	MPO

• The	goal	is	to	find		a	rank	K	factorization	that	consist	of	right	and	left	
singular	values	in	MPO	form	and	a	diagonal	matrix	of	singular	values.

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1231

Algorithm 5.1. Prototypical rSVD algorithm [16, p. 227]
Input: matrix A 2 RI⇥J

, target number K, oversampling parameter s,

and exponent q.

Output: approximate rank-(K + s) factorization USV T
, with U ,V orthogonal

and S is diagonal and nonnegative.

Generate an J ⇥ (K + s) random matrix O.

Y (AAT)q AO
Q Orthogonal basis for the range of Y
B QT A
Compute the SVD B = WSV T

.

U QW

For a large matrix A, it quickly becomes infeasible to compute orthogonal bases for
Y or to compute the SVD of B. This is the main motivation for doing all steps of
Algorithm 5.1 in MPO-form. We therefore assume that all matrices in Algorithm 5.1
can be represented by an MPO with relatively small MPO-ranks. In what follows, we
derive how each of the steps of Algorithm 5.1 can be implemented in MPO-form, re-
sulting in the TNrSVD as described in Algorithm 5.5. For a matrixA 2 RI1···Id⇥J1···Jd

with d MPO-tensors A(i) 2 RRi⇥Ii⇥Ji⇥Ri+1 (i = 1, . . . , d), TNrSVD computes a rank-
K factorization that consists of d MPO-tensors U (1)

, . . . ,U
(d) and V

(1)
, . . . ,V

(d) and
the K ⇥K diagonal and nonnegative S matrix.

5.2. Random matrix as a rank-1 MPO. The rSVD algorithm relies on mul-
tiplying the original matrix A with a random matrix O. Fortunately, it is possible to
directly construct a random matrix into MPO form.

Lemma 5.1. A particular random J1J2 · · · Jd ⇥ K matrix O with rank(O) = K

and K J1 can be represented by a unit-rank MPO with the following random MPO-

tensors:

O
(1) 2 R1⇥J1⇥K⇥1

,

O
(i) 2 R1⇥Ji⇥1⇥1 (2 i d).

Proof. All MPO-ranks being equal to one implies that Theorem 3.1 applies. The
random matrix O is constructed from the Kronecker product of d�1 random column
vectors O(i) 2 RJi , (i = 2, . . . , d) with the matrix O(1) 2 RJ1⇥K . The Kronecker
product has the property that

rank(O) = rank(O(d)) · · · rank(O(1)).

The fact that O(1) is a random matrix then ensures that rank(O) = K.

Probabilistic error bounds for Algorithm 5.1 are typically performed for random
Gaussian matrices O [16, p. 273]. Another type of test matrices O are subsampled
random Fourier transform matrices [16, p. 277]. The random matrix in MPO form
from Lemma 5.1 will not be Gaussian, as the multiplication of Gaussian random
variables is not Gaussian. This prevents the straightforward determination of error
bounds for the MPO-implementation of Algorithm 5.1 that we propose. In spite of
the lack of any probabilistic bounds on the error, all numerical experiments that we
performed demonstrate that the orthogonal basis that we obtain for the range of A
can capture the action of A su�ciently. Once the matrix A has been converted into

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

10/22

• Lemma
A	particular	random	𝐽#	𝐽%	 … 𝐽=×𝐾 matrix	𝑶 with	rank(𝑶)	=	𝐾 and	𝐾 ≤	
𝐽#	can	be	represented	by	a	unit-rank	MPO	with	the	following	random	
MPO- tensors:

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1231

Algorithm 5.1. Prototypical rSVD algorithm [16, p. 227]
Input: matrix A 2 RI⇥J

, target number K, oversampling parameter s,

and exponent q.

Output: approximate rank-(K + s) factorization USV T
, with U ,V orthogonal

and S is diagonal and nonnegative.

Generate an J ⇥ (K + s) random matrix O.

Y (AAT)q AO
Q Orthogonal basis for the range of Y
B QT A
Compute the SVD B = WSV T

.

U QW

For a large matrix A, it quickly becomes infeasible to compute orthogonal bases for
Y or to compute the SVD of B. This is the main motivation for doing all steps of
Algorithm 5.1 in MPO-form. We therefore assume that all matrices in Algorithm 5.1
can be represented by an MPO with relatively small MPO-ranks. In what follows, we
derive how each of the steps of Algorithm 5.1 can be implemented in MPO-form, re-
sulting in the TNrSVD as described in Algorithm 5.5. For a matrixA 2 RI1···Id⇥J1···Jd

with d MPO-tensors A(i) 2 RRi⇥Ii⇥Ji⇥Ri+1 (i = 1, . . . , d), TNrSVD computes a rank-
K factorization that consists of d MPO-tensors U (1)

, . . . ,U
(d) and V

(1)
, . . . ,V

(d) and
the K ⇥K diagonal and nonnegative S matrix.

5.2. Random matrix as a rank-1 MPO. The rSVD algorithm relies on mul-
tiplying the original matrix A with a random matrix O. Fortunately, it is possible to
directly construct a random matrix into MPO form.

Lemma 5.1. A particular random J1J2 · · · Jd ⇥ K matrix O with rank(O) = K

and K J1 can be represented by a unit-rank MPO with the following random MPO-

tensors:

O
(1) 2 R1⇥J1⇥K⇥1

,

O
(i) 2 R1⇥Ji⇥1⇥1 (2 i d).

Proof. All MPO-ranks being equal to one implies that Theorem 3.1 applies. The
random matrix O is constructed from the Kronecker product of d�1 random column
vectors O(i) 2 RJi , (i = 2, . . . , d) with the matrix O(1) 2 RJ1⇥K . The Kronecker
product has the property that

rank(O) = rank(O(d)) · · · rank(O(1)).

The fact that O(1) is a random matrix then ensures that rank(O) = K.

Probabilistic error bounds for Algorithm 5.1 are typically performed for random
Gaussian matrices O [16, p. 273]. Another type of test matrices O are subsampled
random Fourier transform matrices [16, p. 277]. The random matrix in MPO form
from Lemma 5.1 will not be Gaussian, as the multiplication of Gaussian random
variables is not Gaussian. This prevents the straightforward determination of error
bounds for the MPO-implementation of Algorithm 5.1 that we propose. In spite of
the lack of any probabilistic bounds on the error, all numerical experiments that we
performed demonstrate that the orthogonal basis that we obtain for the range of A
can capture the action of A su�ciently. Once the matrix A has been converted into

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

11/22

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1232 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

I1

J1

I2

J2

I3

J3

I4

J4

A
(1)

A
(2)

A
(3)

A
(4)

K

O
(1)

O
(2)

O
(3)

O
(4)

R2 R3 R4

S2 S3 S4

Fig. 5.1. The matrix multiplication AO as contraction of a tensor network.

an MPO using Algorithm 4.1 and a random MPO has been constructed using Lemma
5.1, what remains are matrix multiplications and computing low-rank QR and SVD
factorizations. We will now explain how these steps can be done e�ciently using
MPOs.

5.3. Matrix multiplication. Matrix multiplication is quite straightforward.
Suppose the matrices A 2 RI1I2···Id⇥J1J2···Jd ,O 2 RJ1J2···Jd⇥K have MPO represen-
tations of 4 tensors. This implies that the rows and columns of A are indexed by the
multi-indices [i1i2i3i4] and [j1j2j3j4], respectively. The matrix multiplication AO
then corresponds with the summation of the column indices of A

AO =
X

j1,j2,j3,j4

A(:, [j1j2j3j4])O([j1j2j3j4], :)

and is visualized as contractions of two MPOs meshed into one tensor network in
Figure 5.1. All edges with a dimension of one are not shown but one has to keep
in mind that all tensors are 4-way. The contraction

P
ji
A

(i)(:, :, ji, :)O
(i)(:, ji, :, :)

for each of the four MPO-tensors results in a new MPO that represents the matrix
multiplication AO. If A(i) 2 RRi⇥Ii⇥Ji⇥Ri+1 and O

(i) 2 RSi⇥Ji⇥1⇥Si+1 , then the
summation over the index Ji results in an MPO-tensor with dimensions RiSi ⇥ Ii ⇥
1 ⇥ Ri+1Si+1 with a computational complexity of O(RiSiIiJiRi+1Si+1) flops. Cor-
responding MPO-ranks Ri, Si and Ri+1, Si+1 are multiplied with one another, which
necessitates a rounding step in order to reduce the dimensions of the resulting MPO-
tensors. Note, however, that the random matrix O constructed via Lemma 5.1 has a
unit-rank MPO, which implies that S1 = S2 = · · · = Sd+1 = 1 such that the MPO
corresponding with the matrix AO will retain the MPO-ranks of A.

5.4. Thin QR and economical SVD in MPO-form. An orthogonal basis for
the range of Y 2 RI⇥K can be computed through a thin QR decomposition Y = QR,
where Q 2 RI⇥K has orthogonal columns and R 2 RK⇥K . The algorithm to compute
a thin QR decomposition from a matrix in MPO-form is given in pseudocode in Algo-
rithm 5.2 and its MATLAB implementation in the TNrSVD pacakge is qrTN.m. The
thin QR is computed by an orthogonalization sweep from right-to-left, which means
we start with the orthogonalization of A(d), and absorbing the R factor matrix into
the preceding MPO-tensor. The main operations in the orthogonalization sweep are
tensor reshaping and the matrix QR decomposition. The final computation is the or-
thogonalization of A(1), which is orthogonalized in a slightly di↵erent way such that
the K ⇥K R matrix is obtained. This last computation distinguishes Algorithm 5.2

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

12/22

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1232 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

I1

J1

I2

J2

I3

J3

I4

J4

A
(1)

A
(2)

A
(3)

A
(4)

K

O
(1)

O
(2)

O
(3)

O
(4)

R2 R3 R4

S2 S3 S4

Fig. 5.1. The matrix multiplication AO as contraction of a tensor network.

an MPO using Algorithm 4.1 and a random MPO has been constructed using Lemma
5.1, what remains are matrix multiplications and computing low-rank QR and SVD
factorizations. We will now explain how these steps can be done e�ciently using
MPOs.

5.3. Matrix multiplication. Matrix multiplication is quite straightforward.
Suppose the matrices A 2 RI1I2···Id⇥J1J2···Jd ,O 2 RJ1J2···Jd⇥K have MPO represen-
tations of 4 tensors. This implies that the rows and columns of A are indexed by the
multi-indices [i1i2i3i4] and [j1j2j3j4], respectively. The matrix multiplication AO
then corresponds with the summation of the column indices of A

AO =
X

j1,j2,j3,j4

A(:, [j1j2j3j4])O([j1j2j3j4], :)

and is visualized as contractions of two MPOs meshed into one tensor network in
Figure 5.1. All edges with a dimension of one are not shown but one has to keep
in mind that all tensors are 4-way. The contraction

P
ji
A

(i)(:, :, ji, :)O
(i)(:, ji, :, :)

for each of the four MPO-tensors results in a new MPO that represents the matrix
multiplication AO. If A(i) 2 RRi⇥Ii⇥Ji⇥Ri+1 and O

(i) 2 RSi⇥Ji⇥1⇥Si+1 , then the
summation over the index Ji results in an MPO-tensor with dimensions RiSi ⇥ Ii ⇥
1 ⇥ Ri+1Si+1 with a computational complexity of O(RiSiIiJiRi+1Si+1) flops. Cor-
responding MPO-ranks Ri, Si and Ri+1, Si+1 are multiplied with one another, which
necessitates a rounding step in order to reduce the dimensions of the resulting MPO-
tensors. Note, however, that the random matrix O constructed via Lemma 5.1 has a
unit-rank MPO, which implies that S1 = S2 = · · · = Sd+1 = 1 such that the MPO
corresponding with the matrix AO will retain the MPO-ranks of A.

5.4. Thin QR and economical SVD in MPO-form. An orthogonal basis for
the range of Y 2 RI⇥K can be computed through a thin QR decomposition Y = QR,
where Q 2 RI⇥K has orthogonal columns and R 2 RK⇥K . The algorithm to compute
a thin QR decomposition from a matrix in MPO-form is given in pseudocode in Algo-
rithm 5.2 and its MATLAB implementation in the TNrSVD pacakge is qrTN.m. The
thin QR is computed by an orthogonalization sweep from right-to-left, which means
we start with the orthogonalization of A(d), and absorbing the R factor matrix into
the preceding MPO-tensor. The main operations in the orthogonalization sweep are
tensor reshaping and the matrix QR decomposition. The final computation is the or-
thogonalization of A(1), which is orthogonalized in a slightly di↵erent way such that
the K ⇥K R matrix is obtained. This last computation distinguishes Algorithm 5.2

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1233

Algorithm 5.2. MPO-QR algorithm [25, p. 2302]
Input : rank- K matrix A � R I × K in MPO-form with A (1) � R 1× I 1 × K × R 2 , I 1 ≥ K .
Output : d MPO-tensors of Q � R I × K with Q (1) � R 1× I 1 × K × R 2 , Q T Q = I K ,

and R � R K × K .
for i=d:- 1 : 2 do
Reshape A (i) into R i × I i R i+1 matrix A i .
A i = R i Q i with R i � R R i × R i and Q iQ T

i = I R i .
Q (i) � reshape Q i into R i × I i × 1 × R i+1 tensor.
A (i− 1) � A (i− 1) × 4 R i .

end for
Permute A (1) into K × 1 × I 1 × R 2 tensor.
Reshape A (1) into K × I 1R 2 matrix A 1 .
A 1 = RQ 1 with R � R K × K and Q 1Q T

1 = I K .
Reshape Q 1 into K × 1 × I 1 × R 2 tensor Q (1) .
Permute Q (1) into 1 × I 1 × K × R 2 tensor.

Fig. 5.2 . Thin QR decomposition QR as a tensor network with Q � R I 1 I 2 I 3 I 4 × K and R �
R K × K .

from the standard orthogonalization algorithm. The computational cost of Algorithm
5.2 is dominated by the QR computation of the first MPO-tensor, as it normally
has the largest dimensions. Using Householder transformations to compute this QR
decomposition costs approximately O (I 1R 2K 2) flops. The proof of the procedure can
be found in [25, p. 2302]. The thin QR decomposition in MPO-form is illustrated for
an MPO o!our tensors in Figure 5.2. Again, all indices of dimension one are not
shown.

The TNrSVD algorithm also requires an economical SVD computation of the
K × J 1 · · · J d matrix B = W S V T , where both W , S are K × K matrices, W is
orthogonal, and S is diagonal and nonnegative. The matrix V is stored in MPO-
form. Only a slight modification of Algorithm 5.2 is required to obtain the desired
matrices. Indeed, the only di!erence with Algorithm 5.2 is that now the SVD of A 1
needs to be computed. From this SVD we obtain the desired W , S matrices and can
reshape and permute the right singular vectors into the desired V (1) MPO-tensor.
Again, the overall computational cost will be dominated by this SVD step, which
costs approximately O (J 1R 2K 2) flops. The economical SVD of a matrix in MPO-
form is given in pseudocode in Algorithm 5.3 and its MATLAB implementation in
the TNrSVD package is svdTN.m. A graphical representation of the corresponding
tensor network for a simple example o!our MPO-tensors is depicted in Figure 5.3.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

𝓨(#) 𝓨(%) 𝓨(&) 𝓨(')

𝐼# 𝐼% 𝐼& 𝐼'

𝐾
𝑅# 𝑅% 𝑅&

• MPO-QR	(Algorithm	5.2)

13/22

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1233

Algorithm 5.2. MPO-QR algorithm [25, p. 2302]
Input : rank- K matrix A � R I × K in MPO-form with A (1) � R 1× I 1 × K × R 2 , I 1 ≥ K .
Output : d MPO-tensors of Q � R I × K with Q (1) � R 1× I 1 × K × R 2 , Q T Q = I K ,

and R � R K × K .
for i=d:- 1 : 2 do
Reshape A (i) into R i × I i R i+1 matrix A i .
A i = R i Q i with R i � R R i × R i and Q iQ T

i = I R i .
Q (i) � reshape Q i into R i × I i × 1 × R i+1 tensor.
A (i− 1) � A (i− 1) × 4 R i .

end for
Permute A (1) into K × 1 × I 1 × R 2 tensor.
Reshape A (1) into K × I 1R 2 matrix A 1 .
A 1 = RQ 1 with R � R K × K and Q 1Q T

1 = I K .
Reshape Q 1 into K × 1 × I 1 × R 2 tensor Q (1) .
Permute Q (1) into 1 × I 1 × K × R 2 tensor.

Fig. 5.2 . Thin QR decomposition QR as a tensor network with Q � R I 1 I 2 I 3 I 4 × K and R �
R K × K .

from the standard orthogonalization algorithm. The computational cost of Algorithm
5.2 is dominated by the QR computation of the first MPO-tensor, as it normally
has the largest dimensions. Using Householder transformations to compute this QR
decomposition costs approximately O (I 1R 2K 2) flops. The proof of the procedure can
be found in [25, p. 2302]. The thin QR decomposition in MPO-form is illustrated for
an MPO o!our tensors in Figure 5.2. Again, all indices of dimension one are not
shown.

The TNrSVD algorithm also requires an economical SVD computation of the
K × J 1 · · · J d matrix B = W S V T , where both W , S are K × K matrices, W is
orthogonal, and S is diagonal and nonnegative. The matrix V is stored in MPO-
form. Only a slight modification of Algorithm 5.2 is required to obtain the desired
matrices. Indeed, the only di!erence with Algorithm 5.2 is that now the SVD of A 1
needs to be computed. From this SVD we obtain the desired W , S matrices and can
reshape and permute the right singular vectors into the desired V (1) MPO-tensor.
Again, the overall computational cost will be dominated by this SVD step, which
costs approximately O (J 1R 2K 2) flops. The economical SVD of a matrix in MPO-
form is given in pseudocode in Algorithm 5.3 and its MATLAB implementation in
the TNrSVD package is svdTN.m. A graphical representation of the corresponding
tensor network for a simple example o!our MPO-tensors is depicted in Figure 5.3.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

𝓨(#) 𝓨(%) 𝓨(&) 𝓨(')

𝐼# 𝐼% 𝐼& 𝐼'

𝐾
𝑅# 𝑅% 𝑅&

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1233

Algorithm 5.2. MPO-QR algorithm [25, p. 2302]
Input: rank-K matrix A 2 RI⇥K

in MPO-form with A
(1) 2 R1⇥I1⇥K⇥R2 , I1 � K.

Output: d MPO-tensors of Q 2 RI⇥K
with Q

(1) 2 R1⇥I1⇥K⇥R2 , QTQ = IK ,

and R 2 RK⇥K
.

for i=d:-1 : 2 do

Reshape A
(i)

into Ri ⇥ IiRi+1 matrix Ai.

Ai = Ri Qi with Ri 2 RRi⇥Ri and QiQT
i = IRi .

Q
(i) reshape Qi into Ri ⇥ Ii ⇥ 1⇥Ri+1 tensor.

A
(i�1) A

(i�1) ⇥4 Ri.

end for

Permute A
(1)

into K ⇥ 1⇥ I1 ⇥R2 tensor.

Reshape A
(1)

into K ⇥ I1R2 matrix A1.

A1 = RQ1 with R 2 RK⇥K
and Q1QT

1 = IK .

Reshape Q1 into K ⇥ 1⇥ I1 ⇥R2 tensor Q
(1)

.

Permute Q
(1)

into 1⇥ I1 ⇥K ⇥R2 tensor.

I1

K

I2 I3 I4

Q
(1)

Q
(2)

Q
(3)

Q
(4)

K

R

R2 R3 R4

Fig. 5.2. Thin QR decomposition QR as a tensor network with Q 2 RI1I2I3I4⇥K and R 2
RK⇥K .

from the standard orthogonalization algorithm. The computational cost of Algorithm
5.2 is dominated by the QR computation of the first MPO-tensor, as it normally
has the largest dimensions. Using Householder transformations to compute this QR
decomposition costs approximately O(I1R2K

2) flops. The proof of the procedure can
be found in [25, p. 2302]. The thin QR decomposition in MPO-form is illustrated for
an MPO of four tensors in Figure 5.2. Again, all indices of dimension one are not
shown.

The TNrSVD algorithm also requires an economical SVD computation of the
K ⇥ J1 · · · Jd matrix B = W SV T , where both W ,S are K ⇥ K matrices, W is
orthogonal, and S is diagonal and nonnegative. The matrix V is stored in MPO-
form. Only a slight modification of Algorithm 5.2 is required to obtain the desired
matrices. Indeed, the only di↵erence with Algorithm 5.2 is that now the SVD of A1

needs to be computed. From this SVD we obtain the desired W ,S matrices and can
reshape and permute the right singular vectors into the desired V

(1) MPO-tensor.
Again, the overall computational cost will be dominated by this SVD step, which
costs approximately O(J1R2K

2) flops. The economical SVD of a matrix in MPO-
form is given in pseudocode in Algorithm 5.3 and its MATLAB implementation in
the TNrSVD package is svdTN.m. A graphical representation of the corresponding
tensor network for a simple example of four MPO-tensors is depicted in Figure 5.3.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

14/22

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1233

Algorithm 5.2. MPO-QR algorithm [25, p. 2302]
Input : rank- K matrix A � R I × K in MPO-form with A (1) � R 1× I 1 × K × R 2 , I 1 ≥ K .
Output : d MPO-tensors of Q � R I × K with Q (1) � R 1× I 1 × K × R 2 , Q T Q = I K ,

and R � R K × K .
for i=d:- 1 : 2 do
Reshape A (i) into R i × I i R i+1 matrix A i .
A i = R i Q i with R i � R R i × R i and Q iQ T

i = I R i .
Q (i) � reshape Q i into R i × I i × 1 × R i+1 tensor.
A (i− 1) � A (i− 1) × 4 R i .

end for
Permute A (1) into K × 1 × I 1 × R 2 tensor.
Reshape A (1) into K × I 1R 2 matrix A 1 .
A 1 = RQ 1 with R � R K × K and Q 1Q T

1 = I K .
Reshape Q 1 into K × 1 × I 1 × R 2 tensor Q (1) .
Permute Q (1) into 1 × I 1 × K × R 2 tensor.

Fig. 5.2 . Thin QR decomposition QR as a tensor network with Q � R I 1 I 2 I 3 I 4 × K and R �
R K × K .

from the standard orthogonalization algorithm. The computational cost of Algorithm
5.2 is dominated by the QR computation of the first MPO-tensor, as it normally
has the largest dimensions. Using Householder transformations to compute this QR
decomposition costs approximately O (I 1R 2K 2) flops. The proof of the procedure can
be found in [25, p. 2302]. The thin QR decomposition in MPO-form is illustrated for
an MPO o!our tensors in Figure 5.2. Again, all indices of dimension one are not
shown.

The TNrSVD algorithm also requires an economical SVD computation of the
K × J 1 · · · J d matrix B = W S V T , where both W , S are K × K matrices, W is
orthogonal, and S is diagonal and nonnegative. The matrix V is stored in MPO-
form. Only a slight modification of Algorithm 5.2 is required to obtain the desired
matrices. Indeed, the only di!erence with Algorithm 5.2 is that now the SVD of A 1
needs to be computed. From this SVD we obtain the desired W , S matrices and can
reshape and permute the right singular vectors into the desired V (1) MPO-tensor.
Again, the overall computational cost will be dominated by this SVD step, which
costs approximately O (J 1R 2K 2) flops. The economical SVD of a matrix in MPO-
form is given in pseudocode in Algorithm 5.3 and its MATLAB implementation in
the TNrSVD package is svdTN.m. A graphical representation of the corresponding
tensor network for a simple example o!our MPO-tensors is depicted in Figure 5.3.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

𝓨(#) 𝓨(%) 𝓨(&) 𝓨(')

𝐼# 𝐼% 𝐼& 𝐼'

𝐾
𝑅# 𝑅% 𝑅&

Tensor	network	randomized	SVD

• MPO-SVD	(Algorithm	5.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1234 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

Algorithm 5.3. MPO-SVD algorithm

Input: d MPO-tensors of A 2 RK⇥J
with A

(1) 2 R1⇥K⇥J1⇥R2 and J1 � K.

Output: d MPO-tensors of V 2 RK⇥J
with V

(1) 2 R1⇥K⇥J1⇥R2 , V V T = IK
and W 2 RK⇥K

, W TW = I, and S 2 RK⇥K
diagonal and nonnegative.

for i=d:-1 : 2 do

Reshape A
(i)

into Ri ⇥ IiRi+1 matrix Ai.

Ai = Ri Qi with Ri 2 RRi⇥Ri and QiQT
i = IRi .

V
(i) reshape Qi into Ri ⇥ Ii ⇥ 1⇥Ri+1 tensor.

A
(i�1) A

(i�1) ⇥4 Ri.

end for

Permute A
(1)

into K ⇥ 1⇥ J1 ⇥R2 tensor.

Reshape A
(1)

into K ⇥ J1R2 matrix A1.

Compute SVD of A1 = W SQT
1 .

Reshape Q1 into K ⇥ 1⇥ J1 ⇥R2 tensor V
(1)

.

Permute V
(1)

into 1⇥K ⇥ J1 ⇥R2 tensor.

J1

K

J2 J3 J4

V
(1)

V
(2)

V
(3)

V
(4)

K

S

W

R2 R3 R4

K

Fig. 5.3. Economical SVD WSV
T as a tensor network with V 2 RJ1J2J3J4⇥K and W ,S 2

RK⇥K .

Both the thin QR and economical SVD of the matrix in MPO-form are computed
for each tensor of the MPO separately, which reduces the computational complexity
significantly. Unlike the ALS-SVD and MALS-SVD, no iterative sweeping over the
di↵erent MPO-tensors is required.

5.5. Randomized subspace iteration. The computation of the matrix Y =
(AAT)q AO is vulnerable to round-o↵ errors and an additional orthogonalization step
is required between each application ofA andAT . Indeed, the repeated multiplication
with A and AT results in the loss of information on singular values smaller than
✏
1/(2q+1)||A||, where ✏ is the machine precision [16, p. 244]. Instead of computing Y
and applying Algorithm 5.2, the randomized MPO-subspace iteration of Algorithm 5.4
is proposed. First, the random matrix O is multiplied onto A, after which a rounding
step is performed to reduce the MPO-ranks. Algorithm 5.2 is then applied to obtain
an orthogonal basis Q for the range of Y . One now proceeds with the multiplication
ATQ, after which another rounding step and orthogonalization through Algorithm 5.2
are performed. These steps are repeated until the desired number of multiplications

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1235

with A and AT has been done. The SVD-based rounding and orthogonalization
steps can actually be integrated into one another. Indeed, one can apply a left-to-
right rounding sweep first, followed by the right-to-left sweep of Algorithm 5.2. This
prevents performing the right-to-left sweep twice. Similarly, one can integrate the
rounding step after the multiplication ATQ with the computation of the economical
SVD WSV T . Note that the computational complexity and accuracy of the final
result will depend on by how much the ranks are chosen to be truncated during the
rounding step.

Algorithm 5.4. Randomized MPO-subspace iteration

Input: exponent q, A 2 RI⇥J
and random matrix O 2 RJ⇥K

in MPO-form.

Output: MPO-tensors of Q 2 RI⇥K
with QTQ = IK .

Y AO
Q Use Algorithm 5.2 on Y
for i=1:q do

Y AT Q
Q Use Algorithm 5.2 on Y with rounding

Y AQ
Q Use Algorithm 5.2 on Y with rounding

end for

5.6. TNrSVD algorithm. All ingredients to perform each of the steps of
Algorithm 5.1 in MPO-form are now available. The pseudocode of the TNrSVD al-
gorithm is given as Algorithm 5.5 and its MATLAB implementation in the TNrSVD
package is TNrSVD.m. First, a random matrix O is created in rank-1 MPO-form
using Lemma 5.1. The MPO-subspace iteration algorithm is then used to generate an
orthogonal basis Q in MPO-form for the range of (AAT)q AO. The matrix multipli-
cation B = QT A is then performed as the contraction of the corresponding tensor
networks as explained in subsection 5.3. Using Algorithm 5.3, we then compute the
economical SVD of B, which provides us with a (K + s)⇥ (K + s) orthogonal matrix
W , diagonal S, and orthogonal V in MPO-form. Since W 2 R(K+s)⇥(K+s), the
multiplication QW in MPO-form is obtained from Q

(1)⇥3 W T , which results in the
desired orthogonal matrix U in MPO-form.

Algorithm 5.5. Tensor network randomized SVD

Input: matrix A 2 RI⇥J
in MPO-form, target number K, oversampling

parameter s and exponent q.

Output: approximate rank-K factorization USV T
, where U ,V are orthogonal

and in MPO-form, S is diagonal and nonnegative.

Generate an J ⇥ (K + s) random matrix O in MPO-form using Lemma 5.1
Q Orthogonal basis for the range of (AAT)q AO using Algorithm 5.4
Compute B = QT A according to subsection 5.3
Compute the economical SVD B = WSV T

using Algorithm 5.3
Compute U = QW as Q

(1) ⇥3 W T

The computational complexities for each of the steps of the TNrSVD algorithm are
listed in Table 5.1. These computational complexities are always dominated by the
computation on A

(1), as this tensor usually has the largest size. The R
2
2 factor

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

15/22

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1235

with A and AT has been done. The SVD-based rounding and orthogonalization
steps can actually be integrated into one another. Indeed, one can apply a left-to-
right rounding sweep first, followed by the right-to-left sweep of Algorithm 5.2. This
prevents performing the right-to-left sweep twice. Similarly, one can integrate the
rounding step after the multiplication ATQ with the computation of the economical
SVD WSV T . Note that the computational complexity and accuracy of the final
result will depend on by how much the ranks are chosen to be truncated during the
rounding step.

Algorithm 5.4. Randomized MPO-subspace iteration

Input: exponent q, A 2 RI⇥J
and random matrix O 2 RJ⇥K

in MPO-form.

Output: MPO-tensors of Q 2 RI⇥K
with QTQ = IK .

Y AO
Q Use Algorithm 5.2 on Y
for i=1:q do

Y AT Q
Q Use Algorithm 5.2 on Y with rounding

Y AQ
Q Use Algorithm 5.2 on Y with rounding

end for

5.6. TNrSVD algorithm. All ingredients to perform each of the steps of
Algorithm 5.1 in MPO-form are now available. The pseudocode of the TNrSVD al-
gorithm is given as Algorithm 5.5 and its MATLAB implementation in the TNrSVD
package is TNrSVD.m. First, a random matrix O is created in rank-1 MPO-form
using Lemma 5.1. The MPO-subspace iteration algorithm is then used to generate an
orthogonal basis Q in MPO-form for the range of (AAT)q AO. The matrix multipli-
cation B = QT A is then performed as the contraction of the corresponding tensor
networks as explained in subsection 5.3. Using Algorithm 5.3, we then compute the
economical SVD of B, which provides us with a (K + s)⇥ (K + s) orthogonal matrix
W , diagonal S, and orthogonal V in MPO-form. Since W 2 R(K+s)⇥(K+s), the
multiplication QW in MPO-form is obtained from Q

(1)⇥3 W T , which results in the
desired orthogonal matrix U in MPO-form.

Algorithm 5.5. Tensor network randomized SVD

Input: matrix A 2 RI⇥J
in MPO-form, target number K, oversampling

parameter s and exponent q.

Output: approximate rank-K factorization USV T
, where U ,V are orthogonal

and in MPO-form, S is diagonal and nonnegative.

Generate an J ⇥ (K + s) random matrix O in MPO-form using Lemma 5.1
Q Orthogonal basis for the range of (AAT)q AO using Algorithm 5.4
Compute B = QT A according to subsection 5.3
Compute the economical SVD B = WSV T

using Algorithm 5.3
Compute U = QW as Q

(1) ⇥3 W T

The computational complexities for each of the steps of the TNrSVD algorithm are
listed in Table 5.1. These computational complexities are always dominated by the
computation on A

(1), as this tensor usually has the largest size. The R
2
2 factor

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

16/22

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1236 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

Table 5.1
Computational complexity of each step in Algorithm 5.5.

Computational complexity

Algorithm 5.2 O(I1R2(K + s)2)
Algorithm 5.3 O(J1R2(K + s)2)
SVD-based rounding O(I1(K + s)R2

2)
A

T
Q, AQ O(R2I1J1(K + s)S2)

QW O(J1R2(K + s)2)

in the SVD-based rounding algorithm is due to a di↵erent reshaping of A
(1) be-

ing orthogonalized. The matrix multiplication AQ step in the subspace iterations
are the most expensive step. Note that S2 denotes the MPO-rank of Q(1). Com-
paring Table 5.1 with Table 1 in [19, p. 1005], which lists the computational com-
plexity of the computations in the ALS-SVD and MALS-SVD algorithms, we see
that the TNrSVD algorithm has lower computational complexities consistently. The
three main computations of the ALS-SVD algorithm have complexities O(KIRAR

3+
KI

2
R

2
AR

2), O(KI
2
R

3), and O(IRAR
3 + I

2
R

2
AR

2), where R denotes the maximal
MPO-rank for both the orthogonal U and V matrices, and RA denotes the maximal
MPO-rank of A.

Algorithm 5.5 requires the user to fix the values of K, s, and q in advance. In
practice, one will run Algorithm 5.5 for incremental values of q until more power
iterations are no longer useful. Alternatively, one can use the q-adaptive algorithm
shown in Algorithm 5.6, which will use additional power iterations until some termi-
nation criterion is met. In [20], both the ALS-SVD and MALS-SVD algorithms run
for a fixed number of iterations or until the relative residual ||ATU � V S||F /||S||F
decreases below a given tolerance parameter ✏. However, we have that

||ATU � V S||F = ||A�USV T ||F < ✏||S||F ,

Algorithm 5.6. q-adaptive TNrSVD

Input: matrix A 2 RI⇥J
in MPO-form, target number K, oversampling

parameter s.

Output: approximate rank-K factorization USV T
, where U ,V are orthogonal

and in MPO-form, S is diagonal and nonnegative.

Generate an J ⇥ (K + s) random matrix O in MPO-form using Lemma 5.1
Q Orthogonal basis for the range of AO using Algorithm 5.2
Compute B = QT A according to subsection 5.3
Compute the economical SVD B = WSV T

using Algorithm 5.3
Compute U = QW as Q

(1) ⇥3 W T

while Termination criterion not met do

Q Orthogonal basis for the range of (AAT)Q
Compute B = QT A according to subsection 5.3
Compute the economical SVD B = WSV T

using Algorithm 5.3
Compute U = QW as Q

(1) ⇥3 W T

end while

which implies that the user needs to know the relative approximation error of the
best rank-K approximation before even using the (M)ALS-SVD algorithms. There
is therefore a possibility that these algorithms never terminate, i.e., when ✏ is chosen

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

17/22

• Termination	Criterion	for	q-adaptive

• Where	𝜎C
(-)denotes	the	ith singular	value	computed	at	the	kth	

iteration.	

18/22

Tensor	network	randomized	SVD

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1237

smaller than the optimal rank-K approximation error. An alternative stopping crite-
rion that we propose is

� := max
1iK

|�(k)
i

2
� �

(k�1)
i

2
|

�
(k)
1

2 ,(5.1)

where �(k)
i denotes the ith singular value computed at the kth iteration. Experiments

in section 6 demonstrate that this heuristical criterion provides an estimate of the
correct number of estimated digits of the obtained singular values. Note that the
criterion (5.1) does not require any a priori knowledge of the best rank-K approxi-
mation error. Furthermore, as the estimates for the singular values and vectors are
guaranteed to improve with increasing q values [23], it is less likely for Algorithm 5.6
to get stuck in an endless loop compared to the (M)ALS-SVD algorithms.

6. Numerical experiments. In this section we demonstrate the e↵ectiveness of
Algorithms 4.1 and 5.6, discussed in this article. Algorithms 4.1–5.6 were implemented
in MATLAB and all experiments were done on a desktop computer with an 8-core
Intel i7-6700 cpu @ 3.4 GHz and 64 GB RAM. These implementations can be freely
downloaded from https://github.com/kbatseli/TNrSVD.

6.1. Matrix permutation prior to MPO conversion. Applying a permu-
tation prior to the conversion can e↵ectively reduce the maximal MPO-rank. Con-
sider the 150102⇥ 150102 AMD-G2-circuit matrix from the SuiteSparse Matrix Col-
lection [8] (formerly known as the University of Florida Sparse Matrix Collection),
with a bandwidth of 93719 and sparsity pattern shown in Figure 6.1. The spar-
sity pattern after applying the Cuthill–Mckee algorithm is shown in Figure 6.2 and
the bandwidth is reduced to 1962. We can factor 150102 as 2 ⇥ 3 ⇥ 3 ⇥ 31 ⇥ 269,
which sets the maximal number of tensors in the MPO to 6. The total number
of nonzero entries is 726674, which makes an MPO representation of 6 tensors in-
feasible as for this case all Rk = 726674 and there is insu�cient memory to store
the MPO-tensors. Table 6.1 lists the number of MPO-cores d, the obtained MPO-
rank for both the original matrix and after applying the Cuthill–Mckee algorithm

Fig. 6.1. Original matrixsparsity pattern.
Fig. 6.2. Sparsity pattern after the

Cuthill–Mckee permutation.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

• Fast	matrix-to-MPO	conversion

Numerical	experiments

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1238 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

Table 6.1
Maximal MPO-ranks for varying block matrix sizes.

Matrix block size d
Maximal rank

Runtime
Original Permuted [seconds]

269⇥ 269 5 9352 4382 NA
538⇥ 538 4 3039 1753 5.47
807⇥ 807 4 1686 1018 4.67
1614⇥ 1614 3 665 347 3.92

and the runtime for applying Algorithm 4.1 on the permuted matrix. Applying the
permutation e↵ectively reduces the MPO-rank approximately by half so we only con-
sider the permuted matrix. First, we order the prime factors in a descending fashion
269, 31, 3, 3, 2, which would result in an MPO that consists of the following five ten-
sors A(1) 2 R1⇥269⇥269⇥4382

,A
(2) 2 R4382⇥31⇥31⇥4382

,A
(3) 2 R4382⇥3⇥3⇥4382

,A
(4) 2

R4382⇥3⇥3⇥4381
, and A

(5) 2 R4382⇥2⇥2⇥4382. Due to the high MPO-rank, however,
it is not possible to construct this MPO. We can now try to absorb the prime factor
2 into 269 and construct the corresponding MPO that consists of four tensors with
A

(1) 2 R1⇥538⇥538⇥1753. This takes about 5 seconds. As Table 6.1 shows, increasing
the dimensions of A(1) by absorbing it with more prime factors further reduces the
MPO-rank and runtimes. Note that if MATLAB supported sparse tensors by default,
then it would be possible to use Algorithm 4.1 for both the original and permuted
matrices as all MPO-tensors are sparse. SVD-based rounding on the d = 3 MPO
with a tolerance of 10�10 reduces the MPO-rank from 347 down to 7 and takes about
61 seconds. Using the alternative parallel vector rounding from [17] truncates the
MPO-rank also down to 7 in about 5 seconds.

6.2. Fast matrix-to-MPO conversion. In this experiment, Algorithm 4.1 is
compared with the TT-SVD algorithm [27, p. 2135] and the TT-cross algorithm [30,
p. 82], [31], both state-of-the-art methods for converting a matrix into an MPO. Both
the TT-SVD and TT-cross implementations from the TT-Toolbox [26] were used. The
TT-cross method was tested with the DMRG CROSS function and was run for 10
sweeps and with an accuracy of 10�10. We test the three algorithms on five matrices
from the SuiteSparse Matrix Collection [8], which are listed in Table 6.2 together
with their size and the decomposition of both the row and column dimensions. For
example, the g7jac100 matrix has a dimension factorization of 329⇥ 5⇥ 32⇥ 2, which
implies that the MPO consists of five tensors with I1 = 329, I2 = 5, I3 = 3, I4 = 3,
and I5 = 2. Table 6.3 lists the runtimes and relative errors when converting these
matrices into the MPO format for the three considered methods. The relative errors
are obtained by contracting the obtained MPO back into a matrix Â and computing
||A � Â||F /||A||F . Algorithm 4.1 always results in an exact representation while
the TT-SVD obtains a result that is accurate up to machine precision. The TT-cross

Table 6.2
Test matrices from the SuiteSparse Matrix Collection [8].

Matrix Dimensions Dimension factorization

Erdos972 5488⇥ 5488 73 ⇥ 24

lhr10c 10672⇥ 10672 29⇥ 23⇥ 24

delaunay n14 16384⇥ 16384 128⇥ 27

g7jac100 29610⇥ 29610 329⇥ 5⇥ 32 ⇥ 2
venkat01 62424⇥ 62424 289⇥ 33 ⇥ 23

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

19/22

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1239

Table 6.3
Runtimes and relative errors for three di↵erent matrix-to-MPO methods.

Matrix
Runtime [seconds] Relative error

Alg. 4.1 TT-SVD TT-cross Alg. 4.1 TT-SVD TT-cross
Erdos972 0.649 12.25 14.92 0 8.11e-15 1.016
lhr10c 1.075 22.32 135.37 0 4.07e-15 0.926
delaunay n14 0.171 1302.2 18.77 0 8.45e-15 1.141
g7jac100 0.903 422.34 716.31 0 4.67e-11 0.791
venkat01 1.025 NA NA 0 NA NA

method fails to find a su�ciently accurate MPO. Applying the TT-SVD and TT-cross
methods on the venkat01 matrix was not possible due to insu�cient memory.

6.3. Influence of q on accuracy. In this experiment, we revisit the matrices
Erdos972 and lhr10c and illustrate how the value of q influences the obtained accuracy
of the results. For both matrices a rank-100 approximation Û , V̂ , Ŝ is computed with
oversampling parameter s = 100. The Erdos972 matrix is converted into an MPO of
five tensors with dimensions I1 = 343 and I2 = · · · = I5 = 2 and the lhr10c matrix
into an MPO of three tensors with dimensions I1 = 232, I2 = 23, I3 = 2. Given the
size of these two matrices it is possible to compute the first 100 singular vectors and
values using the svds command as a reference. Tables 6.4 and 6.5 list the relative error
on the singular values ||S � Ŝ||F /||S||F , the stopping criterion used in [19, p. 1006],
the runtime of Algorithm 5.5, and the maximal and minimal number of correct digits
of the computed singular values. The relative error on the singular values is seen to
consistently decrease as q increases, indicating that the estimates improve for each
additional subspace iteration. As expected, there is a large spread in number of

Table 6.4
TNrSVD results on the Erdos972 matrix for various q values.

q 0 1 2 3 4 5
||S�Ŝ||F
||S||F

0.1815 0.0569 0.0168 0.0063 0.0021 4.2e-4

||AT Û�V̂ Ŝ||F
||Ŝ||F

8.0e-15 5.9e-15 6.5e-15 6.7e-15 6.5e-15 7.0e-15

max
1iK

|�i(k)
2��i(k�1)2|
�1(k)2

1 0.1388 0.0163 0.0038 0.0048 8.8e-4

Runtime [seconds] 5.9 17.6 29.2 40.9 52.8 64.9
Max digits correct 1 2 4 6 8 11
Min digits correct 1 1 1 2 2 3

Table 6.5
TNrSVD results on the lhr10c matrix for various q values.

q 0 1 2 3 4 5
||S�Ŝ||F
||S||F

0.4515 0.0643 0.0175 0.0104 0.0035 0.0021

||AT Û�V̂ Ŝ||F
||Ŝ||F

4.7e-15 6.2e-15 5.1e-15 4.9e-15 4.9e-15 4.8e-15

max
1iK

|�i(k)
2��i(k�1)2|
�1(k)2

1 0.2438 0.0732 0.0316 0.0097 0.0016

Runtime [seconds] 5.5 18.1 28.7 40.9 52.7 64.7
Max digits correct 1 1 4 9 10 13
Min digits correct 0 1 1 1 2 2

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Numerical	experiments

• Algorithm	4.1	always	results	in	an	exact	representation.	
• Applying	the	TT-SVD	and	TT-cross	methods	on	the	venkat01	matrix	is	

not	possible	due	to	insufficient	memory	(64	GB).

20/22

• Comparison	with	ALS-SVD	and	MALS-SVD

Numerical	experiments

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1241

6.4.2. Hilbert matrix. The first matrix that is considered in [19] is a rectangu-

lar submatrix of the Hilbert matrix. The Hilbert matrix H 2 R2N⇥2N is a symmetric
matrix with entries

H(i, j) = (i+ j � 1)�1
, i, j = 1, 2, . . . , 2N .

The submatrix A := H(:, 1 : 2N�1) is considered with 10 N 50. Following [19],
the corresponding MPO is constructed using the FUNCRS2 function of the
TT-Toolbox [26], which applies a TT-cross approximation method using a functional
description of the matrix entries, and consists of N MPO-tensors. The obtained MPO
approximates the Hilbert matrix with a relative error of 10�11. Maximal MPO-ranks
for all values of N were bounded between 18 and 24. A tolerance of 10�8 was chosen
for the residual ||AT Û � V̂ Ŝ||F /||Ŝ||F when computing rank-16 approximations with
both the ALS and MALS algorithms. As no information on the real singular values is
available, we therefore use the singular values obtained from the ALS-SVD method as
reference values. We use the q-adaptive TNrSVD method, Algorithm 5.6, to compute
a rank-16 approximation such that the obtained singular values are accurate up to at
least 8 digits. The tolerance for the stopping criterion is set to 10�3 and the rounding
tolerance is set to 10�9, which ensured that at least 8 digits of each of the obtained
singular values are identical with the reference singular values. In order to be able
to apply Algorithm 5.1, we first need to make sure that the MPO-tensor Y(1) of the
matrix Y = AO has dimensions 1 ⇥ I1 ⇥ (K + s) ⇥ R2 with I1 � (K + s). We set
the oversampling parameter s equal to K. By contracting the first 5 MPO-tensors
A

(1)
,A

(2)
,A

(3)
,A

(4)
,A

(5) into a tensor with dimensions 1⇥ 32⇥ 32⇥R6, we obtain
a new MPO of N �5+1 tensors that satisfies the I1 � K condition. Figure 6.3 shows
the runtimes of the ALS-SVD, MALS-SVD, and TNrSVD methods as a function of
N . The MALS-SVD method solves larger optimization problems than the ALS-SVD
method at each iteration and is therefore considerably slower. The TNrSVD method
is up to 5 times faster than the ALS-SVD method and 11 times faster than the MALS-
SVD method for this particular example. Using a standard matrix implementation
of Algorithm 5.1 we could compute low-rank approximations only for the N = 10
and N = 15 cases, with respective runtimes of 0.04 and 9.79 seconds. From this we

Fig. 6.3. Runtimes for computing rank-16 approximations of 2N ⇥ 2N�1 Hilbert matrices for
10 N 50.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Hilbert	matrix,	𝑯 of	size	
2F×2F is	a	symmetric	
matrix	with	entries:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

TNRSVD 1241

6.4.2. Hilbert matrix. The first matrix that is considered in [19] is a rectangu-

lar submatrix of the Hilbert matrix. The Hilbert matrix H 2 R2N⇥2N is a symmetric
matrix with entries

H(i, j) = (i+ j � 1)�1
, i, j = 1, 2, . . . , 2N .

The submatrix A := H(:, 1 : 2N�1) is considered with 10 N 50. Following [19],
the corresponding MPO is constructed using the FUNCRS2 function of the
TT-Toolbox [26], which applies a TT-cross approximation method using a functional
description of the matrix entries, and consists of N MPO-tensors. The obtained MPO
approximates the Hilbert matrix with a relative error of 10�11. Maximal MPO-ranks
for all values of N were bounded between 18 and 24. A tolerance of 10�8 was chosen
for the residual ||AT Û � V̂ Ŝ||F /||Ŝ||F when computing rank-16 approximations with
both the ALS and MALS algorithms. As no information on the real singular values is
available, we therefore use the singular values obtained from the ALS-SVD method as
reference values. We use the q-adaptive TNrSVD method, Algorithm 5.6, to compute
a rank-16 approximation such that the obtained singular values are accurate up to at
least 8 digits. The tolerance for the stopping criterion is set to 10�3 and the rounding
tolerance is set to 10�9, which ensured that at least 8 digits of each of the obtained
singular values are identical with the reference singular values. In order to be able
to apply Algorithm 5.1, we first need to make sure that the MPO-tensor Y(1) of the
matrix Y = AO has dimensions 1 ⇥ I1 ⇥ (K + s) ⇥ R2 with I1 � (K + s). We set
the oversampling parameter s equal to K. By contracting the first 5 MPO-tensors
A

(1)
,A

(2)
,A

(3)
,A

(4)
,A

(5) into a tensor with dimensions 1⇥ 32⇥ 32⇥R6, we obtain
a new MPO of N �5+1 tensors that satisfies the I1 � K condition. Figure 6.3 shows
the runtimes of the ALS-SVD, MALS-SVD, and TNrSVD methods as a function of
N . The MALS-SVD method solves larger optimization problems than the ALS-SVD
method at each iteration and is therefore considerably slower. The TNrSVD method
is up to 5 times faster than the ALS-SVD method and 11 times faster than the MALS-
SVD method for this particular example. Using a standard matrix implementation
of Algorithm 5.1 we could compute low-rank approximations only for the N = 10
and N = 15 cases, with respective runtimes of 0.04 and 9.79 seconds. From this we

Fig. 6.3. Runtimes for computing rank-16 approximations of 2N ⇥ 2N�1 Hilbert matrices for
10 N 50.

D
ow

nl
oa

de
d

03
/2

4/
20

 to
 1

32
.2

05
.2

20
.2

49
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The	submatrix,	𝑨 of	size	
2F×2FG# is	considered	with	
10 < 𝑁 < 50

21/22

Numerical	experiments

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1242 K. BATSELIER, W. YU, L. DANIEL, AND N. WONG

can conclude that all three tensor-based methods outperform the standard matrix
implementation of Algorithm 5.1 when N � 15 for this particular example.

6.4.3. Random matrix with prescribed singular values. The second and
final matrix that is considered in [19] is one with 50 prescribed singular values 0.5k,

(k = 0, . . . , 49) and random left and right singular vectors U 2 R2N⇥50
,V 2 R2N⇥50.

As with the Hilbert matrices, N ranges from 10–50 and equals the number of tensors in
the MPO. The maximal MPO-rank of all constructed MPOs was 25. The orthogonal
U ,V matrices were generated in MPO-form using the TT RAND function of the
TT-Toolbox. The MPO-representation of the matrix was then obtained by computing
USV T in MPO-form. A tolerance of 10�6 was set for the computation of rank-50
approximations with both the ALS and MALS algorithms, all singular values obtained
from either the ALS or MALS method are accurate up to 3 digits. Additional sweeps of
the ALS and MALS algorithms did not improve the accuracy any further and therefore
only one sweep was used for each experiment. The q-adaptive TNrSVD algorithm,
Algorithm 5.6, was run with a tolerance of 10�1 and the rounding tolerances were set
to 10�5

, 10�6
, 10�8

, 10�8
, 10�9

, 10�10
, 10�11

, 10�12
, 10�13 for N = 10, 15, 20, . . . , 50,

respectively. This ensured that the result of the TNrSVD method had a relative
error ||S � Ŝ||F /||S||F on the estimated 50 dominant singular values below 10�6,
implying that the obtained singular values were accurate up to 6 digits. Computing a
rank-50 approximation implies that K = 100 and the first 7 MPO tensors need to be
contracted prior to running the TNrSVD algorithm. These contractions result in a
new MPO where the first tensor has dimensions 1⇥128⇥128⇥R8 such that I1 = 128 �
K = 100 is satisfied. Figure 6.4 shows the runtimes of the ALS, MALS, and TNrSVD
methods as a function of N . Just like with the Hilbert matrices, the MALS algorithm
takes considerately longer to finish one sweep. The TNrSVD algorithm is up to 4
times faster than ALS and 13 times faster than MALS for this particular example.
Using a standard matrix implementation of Algorithm 5.1 we could compute low-rank
approximations only for the N = 10 and N = 15 cases, with respective runtimes of
0.04 and 7.59 seconds. For N = 15, the runtimes for the ALS, MALS, and TNrSVD
methods were 6.4, 16.9, and 2.9 seconds, respectively.

Fig. 6.4. Runtimes for computing rank-50 decompositions of 2N ⇥ 2N random matrices with
prescribed singular values for 10 N 50.D

ow
nl

oa
de

d
03

/2
4/

20
 to

 1
32

.2
05

.2
20

.2
49

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

• Random	matrix	with	
prescribed	singular	values

Considering	a	matrix	with	50	
prescribed	singular	values	
0.5-,	(k = 0,… , 49)	and	
random	left	and	right	singular	
vectors	of	size	2F×50, where	
N	ranges	from	10	to	50.

22/22

