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Preliminaries

e Matrix Product Operator (MPO)
 Particular tensor network representation for matrices.
* The matrix A of size I, I, I3 1,X]1 ], J3 J4 can be represented as

R R R
—(— @@@@

IEWEYEY R J1JoJ3J4

1 1 2 2 3 3 4 4

* |If the MPO-ranks are all one then the matrix A is the outer product of core
tensors.



Preliminaries

* Theorem
A matrix A of size I; I, I5 [,X]1 |5 J3 J4 that satisfies

A:A(d)®...®A(2)®A(1)

has an MPO representation where the kth MPO tensor is A% of size 1XI,, X, X
1, (k =1, ..., d) with unit canonical MPO ranks.



Converting a sparse matrix into an MPO

* The standard way to convert a matrix into MPO form is the TT-SVD
algorithm

* Issues:
Computing the SVD of a sparse matrix destroys the sparsity
Real-life matrices are typically so large that it is infeasible to compute their
SVD

* We explain new conversion to MPO algorithm by following example
Suppose we have a sparse matrix A € R/

0O O 0 Ay
0 Ass O 0
0 0 Ass O
0O O 0 0



Converting a sparse matrix into an MPO

* The main idea of the method is to convert each nonzero block matrix
into a rank-1 MPO and add them all together.

(00 0 Ay
0 0 0 0

00 0 O
\0 0 0 0 /

* Where E, € R'2*Jzjs a matrix of zeros except for E{,(1,4) = 1.

= F14 ® Ay

A=F1,® A1y + Ey ® Asg 4+ F33 ® Ass



Converting a sparse matrix into an MPO

* We can also partition A, further into:

0 0
Ay = (X14 O) = Fy1 @ X4

 Then the first term of
A=F14 Q@ A1y + Eoo @ Agg + E33 ® Asj
becomes E{,®FE,1® X, and likewise for the other terms:

A=AD ... A2 AW



Converting a sparse matrix into an MPO

ALGORITHM 4.1. Sparse matriz to MPO conversion
Input: matrix A, dimensions I1,...,14,J1,...,Jq.
Output: MPO A with tensors AY ... AP,
Initialize MPO A with zero tensors.
for all nonzero matriz blocks X € RI**/1 do

Determine d — 1 E;; matrices.
Construct rank-1 MPO T with X and E;; matrices.
A— A+T

end for




Converting a sparse matrix into an MPO

* Some properties of algorithm 4.1
* How to partition the matrix A is optional.
* The maximal number of core tensors in an MPO representation of A4 is max
(d;d;) + 1

 The MPO obtained from Algorithm 4.1 has a uniform MPO-rank equal to the

total number of nonzero matrix blocks X as determined by the partitioning of
A.

* Since the addition of MPOs can be done by concatenation of the respective
tensors, no actual computation is required, which allows a fast execution of
Algorithm 4.1.



Tensor network randomized SVD

* The goal is to find a rank K factorization that consist of right and left
singular values in MPO form and a diagonal matrix of singular values.

ALGORITHM 5.1. Prototypical rSVD algorithm [16, p. 227]
Input: matriz A € R/ target number K, oversampling parameter s,

and exponent q.
Output: approrimate rank-(K + s) factorization USV™ | with U,V orthogonal

and S 1s diagonal and nonnegative.
Generate an J X (K + s) random matriz O.
Y + (AAT)2TAO
Q < Orthogonal basis for the range of Y
B+~ Q'A
Compute the SVD B = WSV,
U+~QW




Tensor network randomized SVD

* Lemma
A particular random J; J, ...J; XK matrix O with rank(0) = K and K <
J1 can be represented by a unit-rank MPO with the following random
MPO- tensors:

O(l) c RlXJ1><K><1

)




Tensor network randomized SVD




Tensor network randomized SVD

* MPO-QR (Algorithm 5.2)




Tensor network randomized SVD

* MPO-SVD (Algorithm 5.3)




Tensor network randomized SVD

ALGORITHM 5.4. Randomized MPO-subspace iteration
Input: exponent q, A € R’ and random matriz O € R7>*E in MPO-form.
Output: MPO-tensors of Q € RI>*% with Q1 Q = Iy.
Y « AO
Q < Use Algorithm 5.2 on'Y
for i=1:q do
Y « AT Q
Q < Use Algorithm 5.2 on'Y with rounding
Y — AQ
Q < Use Algorithm 5.2 on'Y with rounding
end for




Tensor network randomized SVD

ALGORITHM 5.5. Tensor network randomized SVD
Input: matric A € R/ in MPO-form, target number K, oversampling
parameter s and exponent q.
Output: approximate rank-K factorization USV™, where U,V are orthogonal
and in MPO-form, S is diagonal and nonnegative.

Generate an J x (K + s) random matrix O in MPO-form using Lemma 5.1
Q < Orthogonal basis for the range of (AAT)?1 A O using Algorithm 5.4
Compute B = Q' A according to subsection 5.3

Compute the economical SVD B = WSV using Algorithm 5.3

Compute U = QW as o) x3 W1




Tensor network randomized SVD

ALGORITHM 5.6. g-adaptive TNrSVD
Input: matriz A € R/ in MPO-form, target number K, oversampling
parameter s.
Output: approzimate rank-K factorization USV™, where U,V are orthogonal
and i MPO-form, S s diagonal and nonnegative.

Generate an J x (K + s) random matrix O in MPO-form using Lemma 5.1
Q < Orthogonal basis for the range of A O using Algorithm 5.2
Compute B = Q1 A according to subsection 5.3
Compute the economical SVD B = WSV using Algorithm 5.3
Compute U = QW as oW x, wT
whale Termination criterion not met do
Q < Orthogonal basis for the range of (AAT) Q
Compute B = Q1 A according to subsection 5.3
Compute the economical SVD B = W SVT using Algorithm 5.3
Compute U = QW as oW x, wT
end while




Tensor network randomized SVD

e Termination Criterion for g-adaptive

2 2
oV o]

.— IIlax
7 1<i<K (k)2
01

* Where ai(k)denotes the ith singular value computed at the kth
iteration.



Numerical experiments

e Fast matrix-to-MPO conversion

Test matrices from the SuiteSparse Matriz Collection [8].

Matrix Dimensions Dimension factorization
Erdos972 5488 x 5488 73 x 24
lhr10c 10672 x 10672 29 x 23 x 24
delaunay_nl4 16384 x 16384 128 x 27
g7jac100 29610 x 29610 329 x 5 x 32 x 2
venkat01 62424 x 62424 289 x 33 x 23




Numerical experiments

Runtimes and relative errors for three different matriz-to-MPO methods.

Matrs Runtime [seconds] Relative error
atrix

Alg. 4.1 TT-SVD TT-cross Alg. 4.1 TT-SVD  TT-cross
Erdos972 0.649 12.25 14.92 0 8.11e-15 1.016
lhr10c 1.075 22.32 135.37 0 4.07e-15 0.926
delaunay_nl4 0.171 1302.2 18.77 0 8.45e-15 1.141
g7jacl00 0.903 422.34 716.31 0 4.67e-11 0.791
venkatO1 1.025 NA NA 0 NA NA

* Algorithm 4.1 always results in an exact representation.
* Applying the TT-SVD and TT-cross methods on the venkat01 matrix is
not possible due to insufficient memory (64 GB).



Numerical experiments

 Comparison with ALS-SVD and MALS-SVD

20 :
Hilbert matrix, H of size 1§ [¢ALS-SVD D
No AN : _ —qg [FMALS-SVD
27X 2™ is a symmetric g, [ETNrSvD
matrix with entries: 12
&10_ _
H(i,j)=(+j-1"1ij=12,....2" 2 4. >
c g- I
. ) Z 4
The submatrix, A4 of size 2
2N % 2N=1is considered with 0l ——— S
10 15 20 25 30 35 40 45 50
10 < N < 50 Dimension N

F1G. 6.3. Runtimes for computing rank-16 approzimations of 2N x 2N—1 Hilbert matrices for
10 < N < 50.
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Numerical experiments

 Random matrix with
prescribed singular values

Considering a matrix with 50
prescribed singular values
0.5%,(k=0,...,49) and
random left and right singular
vectors of size 2V x50, where
N ranges from 10 to 50.
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FIG. 6.4. Runtimes for computing rank-50 decompositions of 2V x 2N random matrices with

prescribed singular values for 10 < N < 50.
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