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Review of Tensor Networks



Tensor Train (MPS)
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Graphical models and Tensor
Networks



Graphical models

- probabilistic graphical model (PGM) : the factorization of joint
probability distribution of random variables with a graph
(directed or undirected)

- Here, we consider the undirected case

- Efficient tool for parameterizing probability models
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Undirected PGM and factor graph

Any set of nodes that are all connected to each other in G is called a
clique.
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Undirected PGM and factor graph

To resolve, we use factor graphs
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General PGMs in TN representation
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Hidden states play the role of bond dimension and the number of
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TN with copy tensor

Sometimes, Hidden states or Visible states or both are connected to
several factors ( like in restricted Boltzmann machine)
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Fixing the visible random variable
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Restricted Boltzmann machine (RBM) and TN with copy tensor

RBM is an example of PGM with both hidden and visible variables
connecting to several factors.
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(binary) RBM probability function

Joint probability function :
P(X,H) = Lemoum
Z
with

HXH) = wigHiX;
i

For binary RBM :

1 1
P(X) = 7 Z e < 7 H(1 + 2 “i%)
H

I

index i goes over the number of hidden variables.
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Physics inspired TNs as generalizations of RBMs

entangled plaquette states (EPS) : Ty, .. x, = [],—

X1 Xy X3 Xy

P(X1,X2,X3,Xa) = T1 (X1, X2) T2 (X2, X3) T3(X3,X4)

equivalent PGM : short-range RBM : X;'s connected to the same H;

reside in the same plaquette
H, H, H;

YN

TH =14 eXiwiX
! 1/28



Physics inspired TNs as generalizations of RBMs

string-bond states(SBS) : Ty, xy = [1s Tr([Tjes SJ)

X Xa X3 Xy

equivalent PGM : RBM : X;'s connected to the same H; reside on the
same string

Hy Hy Hj
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“ N O'ClO n i ng" i n Te nSO r N etWO rkS [Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua Phys. Rev.

Lett. 122, 065301 - Published 12 February 2019]

- The required operation of duplicating a vector and sending it to
be part of two different calculations, which is simply achieved in
any practical setting, is actually impossible to represent in the
framework of TNs [2]

- proof by contradiction :
P

do, Vv € R” : Z d),-j,?v,- = VjVg

i=1

for basis vectors :

(bu = é (a)
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i i



Generalized Tensor Networks
(GTNSs)




Motivating GTNs

- a key factor that boosts the power of deep learning
representations relative to common TNs :
inherent re-use of information in CNNs that cannot be naively
represented in TN language

- To overcome, they introduce a new copy operation in tensor
networks — Generalized tensor network
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Input features

- We are concerned with data in the form of real numbers
(non-discrete data)

- We make feature vectors as suggested in [4]

1
X17...,XN%V1®V2®"'®VN7 ?V):(X>
I

The function of inputs is given by the contraction of weights in
TN format with feature vectors
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Copy operation with vector inputs

- Tensor Netvvork + copy operation — Generalized Tensor Network

B, = A4

Y-l

- Example of GTN
- several copies of the inputs can be used
- GTNs use weight sharing between some tensors
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GTNs used in the paper for 2-dim inputs : images

- EPS and SBS with copy tensors replaced by copy operations

- EPS with 2 x 2 overlapping plaquettes with weight sharing such
that the tensor for each plaquette is the same

- SBS defined with horizontal and vertical strings covering the 2D
lattice.
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SUPERVISED LEARNING
ALGORITHM




Supervised Learning with Restricted Boltzmann Machines

Given the label training data D = {(x;,y;)} A RBM can be used to
approximate the joint probability distribution of the variables and labels as

_1 Hhy) gy _ hxe
p(xvy)_i;e H 7H_ZW!/h/Xj (1)
i
In supervised learning we are interested in calculating the conditional
probability
p(X,y)
pYIX) = =7~ ()
el SIS
An optimal label predicted by the model is obtained minimizing the cost
function
D
L=-> logp(yix) (3)
i=1

H] Hz I'].'i

RBM taken from [1] 18/28



Supervised Learning with Generalized Tensor Networks

The joint probability distribution of the variables and labels are
approximated as a tensor network

p(X,y) ~ GIN((x,Y)) (4)

GTN is the function resulting of the contraction of a generalized tensor
network with the inputs features and with the discrete label. The contraction
must be positive so

p(x,y) ~ TN (5)
We then define, by analogy with the graphical model case
eGTN<XMyh>
PWelX) = =——may (6)

- GTN(X;,y:)
2o, €

and the cost function

D
L=="3 logp(yix) )
=1
The gradient of the cost function can then be expressed as
dlogp(yi, %) _ OGIN(Xi,yi) 1 OGTN(x;, )
ow N ow = 2P0y x) ow (®) 19/28
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Supervised Learning with Generalized Tensor Networks

X, Xo Xy Xi Y

SBS adds a node corresponding to the label, and corresponding tensors
which connect it to the rest of the tensor network. Taken from [1]

Linear classifier

X Xo Xa X4 Y

EPS output is a tensor that can be combined with a linear classifier. Taken
from [1] 20/28



LEARNING FEATURE VECTORS OF
DATA




Learning features vectors of data

- Strategies that can be used to deal with data that is not discrete

- An approach is to map the real data to a higher dimensional feature
space. Each variable is independently mapped to a vector of length (at
least) two in order to be contracted with the open legs of the tensor
network

Generallzed Tensor Network

I T

= (hx)

(a) Real inputs X; are mapped to a feature vector. Taken from [1]
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Learning features vectors of data
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Dataset with two features (X1, X2) and two classes (colors) that cannot be
learned by a MPS of bond dimension 2 using Eq.9) Taken from [1]

o T 0

Two normalized features learned by a tensor classifying the previous data
set with a MPS of bond dimension 2. Taken from [1]
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Learning features vectors of data
Generaliz |

‘\—-I Tensor Netw
—"l

Splitting  Coutraction

Couvolutions Pooling
CNN used as feature vector extractors from real data. The output of the CNN
is seen as an image with a third dimension collecting the different features.
For each pixel of this image, the vector of features is contracted with the
open legs of a tensor network. Taken from [1]

23/28



NUMERICAL EXPERIMENTS




Numerical experiments
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?2 7 / 7 44 9 Test set accuracy of different
generalized tensor networks on the

MNIST data set. Taken from [1]

MNIST data set. Taken from [1]
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Numerical experiments
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Training and testing accuracy of a MPS
and a SBS with 4 strings on the
UrbanSound8K data set. The density
of parameters is the total number of
parameters divided by 174 (the length
of the strings). Taken from [1]

UrbanSound8K data set. Taken from

(1]
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Conclusions




Conclusions

- The authors show the relation between tensor network
structures and graphical models such as RBM and SBS .

- One can generalize tensor networks to apply on data with vector
features and strategies were discussed to use TN with
real-valued data.

- Provide algorithms to train the models in supervised learning
tasks, even when coupled with neural networks.

- The GTN show a better accuracy in multiclass classification tasks
than regular TN and can be used as well in sound recognition.
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