
IFT 6760A - Lecture 2
SVD and Orthogonality

Scribe(s): Genevieve Chafouleas, David Ferland
(adapted from Yann BOUTEILLER, Parviz HAGGI last year’s notes) Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we reviewed the basics of linear algebra and introduced briefly the concept of Singular Value
Decomposition of a matrix, often called SVD. In this lecture we will first look into the concepts of orthogonality and
orthogonal projections, and then we will expand on the concept of SVD and introduce QR decomposition.

2 Orthogonality and Projections

Definition 1 (The dot product). The dot product on Rn has the following properties:

• The dot product 〈a,b〉 := aTb is an inner product on Rn

• The inner product induces a norm on Rn: ‖v‖ =
√
〈v,v〉

Definition 2 (Orthogonal vectors). We say that a,b ∈ Rnareorthogonaliff〈a,b〉 = 0.

Definition 3 (Orthogonal basis). A basis u1,u2, · · · ,uk ∈ Rn of a sub-space U is orthonormal iff

〈ui,uj〉 =

{
1 ∀ i = j
0 ∀ i 6= j

; for all i, j ∈ {1, 2, .., k}

This means the vectors u1, ..,uk are all of norm 1 and pairwise orthogonal.

Definition 4 (Orthogonal matrix). A matrix U ∈ Rn×k is orthogonal if its columns form an orthonormal basis of
R(U). Equivalently, U is orthogonal if and only if UTU = I.

Remark. UUT is not necessarily equal to the identity matrix: UUT 6= I. However, if the matrix U is square i.e.
U ∈ Rn×n, then UTU = I implies UUT = I

Definition 5 (Orthogonal complement). If U is a subspace of Rn, the orthogonal complement of U is defined as

U⊥ = {v ∈ Rn | 〈u,v〉 = 0 ∀u ∈ U}

U⊥ is the set of vectors that are orthogonal to every vector in U . A graphical illustration of the orthogonal complement
can be found in figure 1.
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Figure 1: Illustration of the orthogonal complement of U

Property 6. U⊥ is a sub-space of Rn.

Proof. U⊥ will be a subspace of Rn if and only if U⊥ is closed under addition and scalar multiplication, and that it
contains the 0 vector. Let v1,v2 ∈ U⊥,u ∈ U , and c be a constant, then

1. (v1 + v2) · u = v1 · u + v2 · u = 0, hence v1 + v2 ∈ U⊥.

2. (cv1) · u = c(v1 · u) = c(0) = 0, hence cv1 ∈ U⊥.

3. 0 · u = 0, hence 0 ∈ U⊥.

Property 7. Rn = U ⊕ U⊥, i.e. every vector in Rn can be decomposed uniquely into a sum of two vectors, one
belonging to U and the other to U⊥.

Proof. We know that both U and U⊥ are sub-spaces of Rn, and that zero is an element of every sub-space. It is easily
seen that zero is the only common element of these two sub-spaces (assuming that there is a non-zero vector w that
belongs to both of the sub-spaces U and U⊥, using the above definition of U⊥, we can prove that the inner product of
w with itself must be 0 i.e. 〈w,w〉 = 0 which is contradictory to the assumption that w 6= 0).
Any vector x ∈ Rn can be written as x = ΠU (x) + v. It can be proven (see property 11 below) that the vector
v = x−ΠU (x) must be orthogonal to ΠU (x) ∈ U and so it must belong to the orthogonal complement of U .
We conclude that Rn = U ⊕ U⊥, i.e. every vector in Rn can be decomposed uniquely into a sum of two vectors, one
belonging to U and the other to U⊥.

Figure 2: Splitting a vector into its components on two sub-spaces U and U⊥
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Property 8. Let u1,u2, · · · ,uk ∈ Rn be an orthonormal basis of a sub-space U , and let

U =

 | | |
u1 u2 · · · uk

| | |

 ∈ Rn×k

Then, for all x ∈ U ,

UUTx = x

and consequently,
‖x‖ = ‖UTx‖.

Note: Even though UUT is not the identity matrix, it acts as such on the sub-space U .

Proof. A vector x in the sub-space U can, by definition, be written as a linear combination of its basis vectors.
x ∈ U ⇒ ∃ a ∈ Rk : x = Ua. To prove that UUT acts as an identity matrix, we look at what it does to x. Using the
fact that x can be written as a linear combination of the basis vectors of the sub-space U , and that U is defined as an
orthogonal matrix, we have:

UUTx = UUTUa = Ua = x

A consequence of this property is that x and UTx have the same norm (even though they are not of the same dimen-
sion):

‖x‖2 = xTx = (UUTx)Tx = xTUUTx = (UTx)T (UTx) = ‖UTx‖2

so,
‖x‖ = ‖UTx‖

Definition 9 (Linear map). A function f : V →W is said to be a linear map if for any two vectors u,v ∈ V and any
scalar c ∈ F the following two conditions are satisfied:

• Additivity: f(u + v) = f(u) + f(v)

• homogeneity (of degree 1): f(cu) = cf(u)

Given a linear map f : Rn → Rn, the kernel of f and the image of f are defiend by:

• Ker(f): {x ∈ Rn| f(x) = 0}

• Im(f): {f(x)| x ∈ Rn}

If f : x 7→Mx, thenR(M) = Im(f) and N (M) = ker(f)

Definition 10 (Orthogonal projection). Let u1, · · ·uk ∈ Rn an orthonormal basis of a subspace U and U ∈ Rn×k

such that

U =

 | |
u1 · · · uk

| |


The orthogonal projection onto U is defined as:

Πu : Rn → Rn

x 7→ UUTx

A graphical illustration of the orthogonal projection can be found in figure 3.
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Proof. We need to show that Πu does not depend on the particular choice of an orthonormal basis of U, that is, we
need to show that Πu is well-defined, i.e, if V ∈ Rn×k is orthogonal and R(V) = R(U) then UUT = VVT . Let
v1, · · ·vk be another orthogonal basis of U and V ∈ Rn×k such that

V =

 | |
v1 · · · vk

| |


SinceR(V) = R(U) then there exists P ∈ Rk×k such that V = UP.
Since:

• P is square

• I = VTV = PT UTU︸ ︷︷ ︸
I

P = PTP

we have PPT = I. Thus, VVT = UPPTUT = UUT

Figure 3: Illustration of the orthogonal projection of x onto U

Property 11. Based on the above definitions of orthogonality and orthogonal complement, we can summarize the
following properties of orthogonal projection:

• Π2
U = ΠU

• ∀x : 〈ΠU (x),x−ΠU (x)〉 = 0

• Im(ΠU ) = U

• Ker(ΠU ) = U⊥

• ∀x : ‖ΠU (x)‖ ≤ ‖x‖

Proof. These properties can be proven as follows :

• Π2
U = ΠU .

To prove this we use the definition of projection in terms of matrices and the fact that UTU = I when U is an
orthogonal matrix. Knowing that ΠU (x) = UUTx, we evaluate the expression Π2

U (x):

Π2
U (x) = ΠU (ΠU (x)) = ΠU (UUTx) = U (UTU)︸ ︷︷ ︸

I

UTx = UUTx = ΠU (x).
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• ∀x : 〈ΠU (x),ΠU (x)− x〉 = 0.

To prove this we use the definition of projection in terms of matrices and the fact that UTU = I when U is an
orthogonal matrix. Knowing that ΠU (x) = UUTx, we evaluate the expression:

〈ΠU (x),ΠU (x)− x〉 = 〈UUTx,UUTx− x〉
= xTU (UTU)︸ ︷︷ ︸

I

UTx− xTUUTx

= xTUUTx− xTUUTx

= 0

• Im(ΠU ) = U .

We first show that Im(ΠU ) ⊂ U . Let v ∈ Im(ΠU ), this means that there exists x such that v = ΠU (x) =
UUTx = U(UTx), showing that v is a linear combination of the columns of U, hence v ∈ U sinceR(U) = U
by definition.

The inclusion Im(ΠU ) ⊃ U directly follows for Property 8: for all x ∈ U , we have x = UUTx = ΠU (x) ∈
Im(ΠU ).

• Ker(ΠU ) = U⊥.

Let x ∈ Ker(ΠU ), and u ∈ U , we first show that their dot product is 0:

〈x,u〉 = xTu

= xT (UUTu)

= (xTUUT )u

= (UUTx)Tu

= 〈UUTx,u〉
= 〈ΠU (x),u〉
= 〈0,u〉
= 0.

This shows that Ker(ΠU ) is a subspace of the orthogonal complement of U .

To show that U⊥ is a subspace of Ker(ΠU ), we nedd to show that if 〈x,u〉 = 0 for all u ∈ U , then x ∈
ker(ΠU ) :

〈x,u〉 = 0 for all u ∈ U ⇒ UTx = 0⇒ UUTx = 0⇒ x ∈ ker(ΠU )

• ∀x : ‖ΠU (x)‖ ≤ ‖x‖.
We know that any vector x can be uniquely decomposed into two components: one is ΠU (x) ∈ U , and the
other is in U⊥. For simplicity we call the other component v, which gives us x = ΠU (x) + v. Developing the
expression of the norm of x we find:

‖x‖2 = ‖ΠU (x) + v‖2 = 〈ΠU (x) + v,ΠU (x) + v〉 = 〈ΠU (x),ΠU (x)〉+ 〈ΠU (x),v〉+ 〈v,ΠU (x)〉+ 〈v,v〉

Since the vector v is in the orthogonal complement of U , it must be orthogonal to all the vectors on U , therefore

〈v,ΠU (x)〉 = 〈ΠU (x),v〉 = 0

and ‖x‖2 = ‖ΠU (x)‖2 + ‖v‖2︸ ︷︷ ︸
≥ 0

⇒ ‖ΠU (x)‖2 ≤ ‖x‖2 ⇒ ‖ΠU (x)‖ ≤ ‖x‖
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Property 12. Let U be a subspace of Rn. Then, for any x ∈ Rn we have

arg min
u∈U

‖u− x‖ = ΠU (x).

Which means the orthogonal projection of x onto U is the closest point to x in U .

Proof. We want to show that for all x ∈ Rn, we have arg minv∈U ‖x− v‖ = Πu(x), where v ∈ U .
We first show that the vectors x−ΠU (x) and v −ΠU (x) are orthogonal.

〈x−ΠU (x),v −ΠU (x)〉 = 〈x−ΠU (x),v〉 − 〈x−ΠU (x),ΠU (x)〉
= 〈x−ΠU (x),v〉 − 0 Using 2nd element of property 11
= 〈x,u〉 − 〈ΠU (x),v〉
= xTv − (UUTx)Tv

= xTv − xTUUTv

= 0

Note that the last equality is due to the fact that vectors in U are projected onto themselves (u = UUTu).
Knowing that x−ΠU (x) and v−ΠU (x) are orthogonal, we can then use the Pythagorean theorem to express ‖x− v‖2

as ‖x− v‖2 = ‖x−Πu(x)‖2 + ‖v −Πu(x)‖2. Therefore, the minimum distance between x and v is when v is the
orthogonal projection of x onto U which gives us ‖v −Πu(x)‖2 = 0 as shown in figure 4.

Figure 4: Illustration of the distance between x and v

3 Singular Value Decomposition

Theorem 13 (SVD). Any matrix A ∈ Rm×n with rank(A) = r can be decomposed as:

A = UΣVT

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices (i.e. UTU = Im and VTV = In) and Σ ∈ Rm×n

is a diagonal rectangular with positive entries matrix such that Σi,i 6= 0 if and only if i ≤ rank(A)

The form A = UΣVT is called the full Singular-Value Decomposition (SVD) of A.
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Property 14. Let r be the rank of a matrix A ∈ Rm×n. Let U and V be the matrices from the SVD of A with columns
u1, . . . ,um ∈ Rm and v1, . . . ,vm ∈ Rm respectively. Then the following hold:

• u1, . . . ,ur forms a basis a basis of R(A)

• ur+1, . . . ,um forms a basis of N (AT )

• v1, . . . ,vr forms a basis a basis of R(AT )

• vr+1, . . . ,vn forms a basis of N (A)

In order to prove the above properties we can rewrite the SVD as follows:

A
(m×n)

= U
(m×m)

Σ
(m×n)

VT

(n×n)
=
[

U1
(m×r)

U2
(m×m−r)

] Λ
(r×r)

0
(r×n−r)

0
(m−r×r)

0
(m−r×n−r)


 V1

T

(r×n)
V2

T

(n−r×n)

 (1)

We can solve for Σ of the SVD as follows:

Σ =

 Λ
(r×r)

0
(r×n−r)

0
(m−r×r)

0
(m−r×n−r)

 =

 U1
T

(r×m)

U2
T

(m−r×m)

 A
(m×n)

[
V1

(n×r)
V2

(n×n−r)

]
=

[
U1

TAV1 U1
TAV2

U2
TAV1 U2

TAV2

]
(2)

Here are the following proofs for the properties of the SVD1

Proof.

(i) u1, . . . ,ur forms a basis a basis of R(A). We will prove R(A) = R(U1) where u1, . . . ,ur are the columns
of U1. We have A = U1ΛV1

T . Since Λ is invertible and V1
TV1 = Ir, we have U1 = AV1Λ−1. Suppose

v ∈ R(U1). Then, there exists a such that v = U1a = AV1Λ−1a. Therefore, v ∈ R(A). It follows that
R(A) ⊃ R(U1). Conversely, if v ∈ R(A), there exists x such that v = Ax = U1ΛV1x ∈ R(U1), showing
thatR(A) ⊂ R(U1).

(ii) ur+1, . . . ,um forms a basis ofN (AT ). We need to show that the vector columns of U2 form a basis ofN (AT ).
From equation 2, we can extract the following:[
U2

TAV1 U2
TAV2

]
=
[
0 0

]
=⇒ U2

TA
[
V1

T V2
T
]

= 0 =⇒ U2
TAV = 0 =⇒ U2

TA =

0 =⇒ ATU2 = 0
This impliesR(U2) ⊂ N (AT ).

Conversely, if x ∈ N (AT ) we have 0 = ATx = V1ΛU1
Tx. Since V1 is orthogonal and Λ is invertible, this

implies U1
Tx− = 0 and therefore x ∈ R(U1)> = R(U2). Hence N (AT ) ⊂ R(U2).

The proofs for the null space and row space of A are similar.

Definition 15 (Thin SVD). If m ≥ n, Theorem 13 can be rewritten as:

A
(m×n)

= U
(m×m)

Σ
(m×n)

VT

(n×n)
= U

(m×m)

[
Σ

(n×n)
0

]
VT

(n×n)
= Un

(m×n)
Σ

(n×n)
VT

(n×n)

where:

• Λ ∈ Rr×r is diagonal with Λi,i 6= 0

• Un only keep the first n columns of U

• UTU = VTV = Ir (U and V are both orthogonal matrices)

The form A = UnΣVT is called the thin Singular-Value Decomposition (thin SVD) of A. If m ≤ n then rows of VT

or ommitted instead of columns of U.
1https://jekyll.math.byuh.edu/courses/m343/handouts/svdbasis.pdf

7



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 2: January 14, 2020

Definition 16 (Compact SVD). Given that the A = r, Theorem 13 can be rewritten as:

A
(m×n)

= U
(m×m)

Σ
(m×n)

VT

(n×n)
=

[
Ũ

(m×r)
Ũ⊥

(m×m−r)

] Λ
(r×r)

0
(r×n−r)

0
(m−r×r)

0
(m−r×n−r)


 ṼT

(r×n)

ṼT
⊥

(n−r×n)

 = Ũ
(m×r)

Λ
(r×r)

ṼT

(r×n)

where:

• Λ ∈ Rr×r is diagonal with Λi,i 6= 0, σ1 ≥ σ2 ≥ ... ≥ σr > 0

• ŨT Ũ = ṼT Ṽ = Ir (Ũ and Ṽ are both orthogonal matrices)

The form A = ŨΛṼT is called the Compact Singular-Value Decomposition (Compact SVD) of A.

4 The QR decomposition
In this section, we briefly present the QR decomposition which can be used to solve the linear least squares problem
for example.

Theorem 17. Any matrix A ∈ Rm×n can be written as A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n

is upper triangular. This decomposition of A is called the QR decomposition.
If m > n then the reduced (thin) QR decomposition of A is defined as:

A =
[
Q1 Q2

] R1

0

 = Q1R1

where Q1 ∈ Rm×n is orthogonal and R1 ∈ Rn×n is upper triangular.

Remark 18. If U ∈ Rn×k and rank(U) = k (i.e full rank) then its thin QR decomposition U = QR is such that:

• R(Q) = R(U)

• R is invertible

where Q ∈ Rn×k and R ∈ Rk×k

If u1, · · ·uk ∈ Rn is a basis of U , which is not necessarily orthonormal, and U ∈ Rn×k such that

U =

 | |
u1 · · · uk

| |


then we have the following property: Πu(x) = U(UTU)−1UTx

Proof. In order to show the previous property, let us consider the thin QR decomposition of U, i.e, U = QR where
Q ∈ Rn×k is orthogonal and R ∈ Rk×k is upper triangular and invertible. The invertability follows from the previous
remark since U is full rank. We have

U(UTU)−1UTx = Q R(RTQTQR)−1RT︸ ︷︷ ︸
I

QTx

= QQTx

= Πu(x)

(3)
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