
IFT 6760A - Lecture 3
Linear regression, inverse and pseudo inverse, eigenvalues and

eigenvectors

Scribe(s): Sebastien Henwood, Amir Zakeri
(adapted from Tayssir Doghri, Bogdan Mazoure last year’s notes) Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we introduced one of the matrix decomposition methods called the Singular Value Decompo-
sition(SVD). Then, we introduced some definitions related to orthogonality and projections such as orthonormal basis
and orthogonal matrix.
In this lecture, we will continue to introduce some notions related to orthogonality and projections which are or-
thogonal complement and orthogonal projection. Then we will present another matrix decomposition called the QR
decomposition along with an application in linear regression. In addition, we will present matrix inverse, eigenvalues
and eigenvectors.

2 The QR decomposition
In order to solve some matrix problems, we use matrix decompositions (factorizations). In this section, we present the
QR decomposition which can be used to solve the linear least squares problem.

Theorem 1. Any matrix A ∈ Rm×n can be written as A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is
upper triangular. This decomposition of A is called the QR decomposition.

If m > n then the reduced (thin) QR decomposition of A is defined as:

A = [Q1 Q2]
⎡⎢⎢⎢⎢⎢⎣

R1

0

⎤⎥⎥⎥⎥⎥⎦
= Q1R1

where Q1 ∈ Rm×n is orthogonal and R1 ∈ Rn×n is upper triangular.

Remark 2. If U ∈ Rn×k and rank(U) = k then its thin QR decomposition U = QR is such that:

• R(Q) = R(U)

• R is invertible

where Q ∈ Rn×k and R ∈ Rk×k

If u1,⋯uk ∈ Rn is a basis of U , which is not necessarily orthonormal, and U ∈ Rn×k such that

U =
⎡⎢⎢⎢⎢⎢⎣

∣ ∣
u1 ⋯ uk
∣ ∣

⎤⎥⎥⎥⎥⎥⎦
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then we have the following property: Πu(x) = U(UTU)−1UTx , with U(UTU)−1UT the matrix of the orthogonal
projection ontoR(u).

Proof. In order to show the previous property, let’s consider the thin QR decomposition of U, i.e, U = QR where
Q ∈ Rn×k is orthogonal and R ∈ Rk×k is upper triangular and invertible. We have

U(UTU)−1UTx = QR(RTQTQR)−1RT

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

QTx

= QQTx

= Πu(x)

(1)

3 Linear regression
In the context of statistical learning theory, we are often interested in fitting the best model to a training set (i.e. perform
regression).
Formally, we aim to learn a function f ∶ Rd → R from a training set of examples which has the following form:

D = {(x1, y1), .., (xN , yN)} ⊆ Rd ×R (2)

where yi ≈ f(xi) for each i = 1,2, ..,N .
Suppose the function f is linear, meaning f(x) = wTx, for all x ∈ Rd, and some weight vector w ∈ Rd. One plausible
approach to learning this function is by minimizing the Squared Error (SE) loss on an observed dataset D:

w∗ = arg min
w∈Rd

N

∑
i=1

(wTxi − yi)2 (3)

If we take

X =
⎛
⎜
⎝

xT1
⋮

xTN

⎞
⎟
⎠
∈ RN×d,y =

⎛
⎜
⎝

y1
⋮
yN

⎞
⎟
⎠
∈ RN , (4)

then (3) can be written in matrix form as

w∗ = arg min
w∈Rd

∣∣Xw − y∣∣2, (5)

in which case Xw ∈ R(X).

To solve for the Eq. 5, which is convex, we can take the gradient and solve it for 0 :

∇w∣∣Xw − y∣∣2 = 2(XTXw −XT y) = 0

⇒XTXw = XT y

w∗ = (XTX)−1XTy

(6)

In fact, finding a solution to the linear regression problem can be seen as projecting the dataset onto the hyperplane
spanned by X. For instance, assuming the rank of X is d (i.e. full-rank), the predictions ŷ follows

ŷ = arg min
v∈R(X)

∣∣v − y∣∣2

= ΠR(X)(y)
= X (XTX)−1XTy

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w∗

,

(7)
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3.1 Reduced SVD
Given A ∈ Rm×n, with the rank R(A) = r and m ≥ n, the Singular Value Decomposition of A can be written in the
following reduced forms. The idea behind these reduced forms is that, as the size of the matrix decreases, so does the
memory footprint. Therefore, the cost of storing the matrix in memory reduces substantially compared to full SVD.
This will also increase the speed of computation to some extent.
In Thin SVD, only the n column vectors of U corresponding to the n row vectors of VT are kept. Equivalently, we
keep only the top square sub-matrix from the diagonal matrix Σ. The remaining column vectors of U are not used
and therefore are discarded. This has a positive effect on the memory footprint as there are less parameters to store,
especially when n≪m.
In Compact SVD, only the r column vectors of U and r row vectors of VT corresponding to the r non-zero singular
values Σr are kept. Equivalently, the top-left square sub-matrix with non-zero diagonal element is kept from the
original Σ and the storage saving is increased. Up to this point, the Thin and Compact SVD were ”free” in the sense
that it didn’t change the resulting matrix A.
Finally, Truncated SVD is available to the user ready to forsake some accuracy in computations by discarding some
information from Σ. The Truncated SVD is an approximation to the full SVD, where the t column vectors of U and t
row vectors of VT corresponding to the t largest singular values Σt are kept. This again reduces the memory footprint
in proportion of the singular values of Σ that are discarded. When a lot of these singular values are ”close enough” to
0 to be deemed useless by the user chosen heuristic, we can eventually reach t≪ r.

Am×n =Um×mΣm×nVT
n×n (Full) Σm×n = (Σn×n

0
) ,

=Um×nΣn×nVT
n×n (Thin) Σn×n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ1
⋱

σr
0

⋱
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= (Σr×r 0
0 0

)
n×n

where, σ1 ≥ σ2 ≥ ⋯ ≥ σr > 0.

=Um×rΣr×rVT
r×n (Compact)

≈Um×tΣt×tVT
t×n (Truncated) for t≪ r

4 Matrix inverses and pseudo-inverses

Definition 3 (Matrix inversion). A matrix A ∈ Rm×m is invertible if ∃A−1 ∈ Rm×m such that A−1A = I.

The matrix inverse has the following properties:

• AA−1 = I⇔A−1A = I

• (AB)−1 = B−1A−1

The following statements regarding the matrix inverse are equivalent:

• det(A) ≠ 0

• A−1 exists, i.e. A is invertible

• A has full rank

• N(A) = {0}

Definition 4 (Moore-Penrose pseudo-inverse). Let A ∈ Rm×n and let A = U®
m×R

D VT

°
R×m

be a compact SVD where

R = rank(A).
Then, the Moore-Penrose pseudo-inverse of A is defined as A† = VD−1UT ∈ Rm×m.
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We note that D is a diagonal matrix with strictly positive entries. The Moore-Penrose pseudo-inverse has the following
properties:

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

Suppose (as a special case) that rank(A) =m ≤ n (i.e. A is full-rank). Then,

AA† = (UDVT )(V
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
identity

D−1UT )

= UUT

= I®
m×m

,

(8)

where the last equality holds since rank(A) =m hence U is square and UUT = UTU.
However, this simplification does not hold for A†A. For instance, if m < n, then

A†A = (VD−1UT )(UDVT )
= VVT ≠ I

= ΠR(A)

(9)

For this last equation, we can also note that sinceR(V) = R(A) and V is orthogonal the following ΠR(A) = VVT =
ΠR(V) is true.
In other words, we have shown that A†A = ΠR(A), i.e. the orthogonal projection onto the range; and AA† = ΠR(AT ),
i.e. the orthogonal projection onto the row space.
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Example 5 (Under-determined linear system of equations). We consider the problem of solving under-determined
system of equations, and will show how the smallest solution of such a system (in terms of the 2-norm) is related to the
pseudo-inverse of the matrix of the system.

We consider an under-determined system of equations:

Solve A®
m×n

x = y, for x ∈ Rn, where m < n.

Since m < n, this systems has an infinite number of solutions. Assuming that A is full-rank, we want to show that
A†y is the least norm solution. For this, we make the following claims:

Claim 1 xLN = A†y is a solution, i.e. AxLN = y

Proof. We can easily show that AxLN = AA†

²
I

y = y, because A is full rank. But there are infinite number of

solutions to this equation! xLN is just one of them.

Now we make the following interesting claim:
Claim 2 xLN is the solution with the smallest 2-norm.

Proof. To prove that, let x be another solution, i.e., Ax = y. We want to show that this second solution has larger
norm than the first one, i.e., ∣∣x∣∣ ≥ ∣∣xLN∣∣.

The idea of the proof is to first show that x and (x − xLN) are orthogonal, and then use the Pythagorean theorem
(on the triangle with vertices 0,x and xLN) to show that ∣∣x∣∣ ≥ ∣∣xLN∣∣.

Let A = UDV⊺ be the compact SVD of A. The inner product of xLN and the difference between xLN and x is

⟨xLN ,x − xLN ⟩ = xTLN(x − xLN)
= yTA†T (x − xLN)
= yTUD−1VT (x − xLN)

(10)

Now observe that
A(x − xLN) = y − y = 0. (11)

Using the fact that U and D are both invertible (since m < n) this implies that V⊺(x − xLN) = 0 (multiply Eq. (11)
to the left by D−1U⊺).

It follows that ⟨xLN ,x − xLN ⟩ = 0 and we can use the Pythagorean theorem to obtain

∣∣x∣∣2 = ∣∣xLN ∣∣2 + ∣∣x − xLN ∣∣2

≥ ∣∣xLN ∣∣2.
(12)
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5 Eigenvalues

Definition 6 (Eigenvalue, eigenvector and eigenspace). Let A ∈ Rm×m. Any v ∈ Rm such that v ≠ 0 and satisfying

Av = λv

for λ ∈ C is called an eigenvector of A corresponding to the eigenvalue λ. The space Eλ = {v ∈ Rm∣Av = λv} is
called the eigenspace of A corresponding to λ.

For example, if A = I then Av = Iv = v for all v and 1 is an eigenvalue with corresponding eigenspace E1 = Rm.
Eigenvalues can be found by finding the roots of the characteristic polynomial:

Av = λv ⇐⇒ (A − λI)v = 0

⇐⇒ v ∈ N(A − λI)
⇐⇒ det(A − λI) = 0

(13)

As an example, let’s find the eigenvalues for a given matrix A.

A = (1 1
0 2

)

Its characteristic polynomial is

det((1 − λ 1
0 2 − λ)) = (1 − λ)(2 − λ)

which implies that the eigenvalues are λ ∈ {1,2}.
As a special case, if A is triangular, then its determinant is the product of its eigenvalues and the eigenvalues are the
diagonal entries of A.

Definition 7 (Diagonalization). A matrix A ∈ Rn×m is diagonalizable iff there exists a basis v1, ..,vn of Rn consisting
of eigenvectors of A.
In this case, V−1AV = D is diagonal.

An example of a matrix diagonalizable over C but not over R is

A = (0 −1
1 0

)

For instance, consider the problem of finding the eigenvectors of A. Simplifying the characteristic polynomial equa-
tion implies that we have to solve λ2 + 1 = 0. The equation has no real roots but has two complex roots, λ ∈ {i,−i},
which allows for A to be diagonalizable over C.
An example of a non-diagonalizable matrix is

A = (1 1
0 1

)
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