
IFT 6760A - Lecture 4
Linear Algebra Refresher

Scribe(s): Michel Ma, Shenyang Huang
(adapted from Arthur Dehgan, Adrien Mainka last year’s notes) Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we discussed linear regression and its connection to orthogonal projection. We also introduced
various forms of Singular Value Decomposition or SVD. Then, we talked about matrix inverse and determinant as well
as how those are related to Moore-Penrose pseudo-inverse. Lastly, we gave definition for eigenvalues and eigenvectors
and saw how they relate to matrix diagonalization.

In this lecture we will go more in depth on eigenvalues and eigenvectors and then introduce the Spectral Theorem and
its connection to diagonalizable matrices. We will also see the Schur Decomposition and Jordan Canonical Form.

2 Eigenvalues and eigenvectors (continued)

Definition 1 (Eigenvalues multiplicities). Let λ be an eigenvalue of A then :

• The geometric multiplicity, mg(λ) is the dimension of Eλ where Eλ = {v ∣ Av = λv}

• The algebric multiplicity ma(λ), is the multiplicity of λ as root of det(A − λI) (the characteristic polynomial
of A). Equivalently, ma(λ) is the dimension of the generalized eigenspace ⋃

k≥0
N((A − λI)k)

where ⋃
k≥0
N((A − λI)k) = N(I) ⋃ N(A − λI) ⋃ N((A − λI)2) ⋃ . . .⋃ N((A − λI)k)

Observe that :

• N(A − λI) = Eλ.

Proof. By definition, N(A − λI) = {v ∣ (A − λI)v = 0} = {v ∣ Av = λv} = Eλ

• mg(λ) ≤ma(λ).

Proof. As seen above, ma(λ) is the dimension of the generalized eigenspace ⋃
k≥0
N((A−λI)k) which includes

N(A − λI) = Eλ (the dimension of mg(λ)). Thus, we have mg(λ) ≤ma(λ).

• If the geometric multiplicity is strictly smaller than the algebraic multiplicity of an eigenvalue of A ∈ Rn×n,
mg(λ) <ma(λ), then A is not diagonalizable.

Proof. Let λ1,⋯, λk be the eigenvalues of A. Suppose mg(λ1) <ma(λ1). Then, it follows that the eigenspace
E1 has dimension strictly less than ma(λ1), and consequently the dimension of ∪ki=1Ek is strictly less than n
and there cannot exists a basis of Rn consisting of eigenvectors of A.
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Example 2. Let A = [2 1
0 2

], the corresponding characteristic polynomial is (2 − λ)2. The eigenvalue of A is 2 with

multiplicity ma(λ) = 2.

Eλ = N(A − 2I)

= N([0 1
0 0

])

= span([1
0
])

(1)

We have mg(λ) = dim(Eλ) = 1 which is different from its eigenvalue multiplicity ma(λ) = 2 hence the matrix A is
not diagonalizable.

Property 3. The eigenvectors v1, ...,vn associated with distinct eigenvalues of A are linearly independent.

Proof. Let v1 and v2 two eigenvectors of A associated with the distinct eigenvalues λ1 and λ2 and let a and b such
that av1 + bv2 = 0. It follows that :

A(av1 + bv2) = 0

aAv1 + bAv2 = 0

aλ1v1 + bλ2v2 = 0

(2)

But by multiplying av1 + bv2 = 0 by λ2, we also have :

aλ2v1 + bλ2v2 = 0 (3)

Hence by substracting (3) and (4) we have :

(aλ1v1 + bλ2v2) − (aλ2v1 + bλ2v2) = 0

a(λ1 − λ2) = 0
(4)

If the eigenvalues λ1 and λ2 are distinct, i.e, λ1 ≠ λ2, we can conclude a = 0. Similar conclusion can be drawn for
b = 0. Therefore the eigenvectors v1 and v2 are linearly independent.
We can then repeat the process for each pair of eigenvectors of A and we would conclude that the eigenvectors
v1, ...,vn associated with distinct eigenvalues of A are linearly independent.

3 Spectral Theorem

Definition 4 (Positive definite and semi-definite matrices). A symmetric matrix A ∈ Rm×m is :

• positive definite if and only if all of its eigenvalues are strictly positive.

• positive semi-definite or non-negative definite if all of its eigenvalues are non-negative.

Property 5. For any matrix A ∈ Rm×n, A⊺A is positive semi-definite

Proof. Suppose A ∈ Rm×n. Let v be an eigenvector of ATA, and λ the corresponding eigenvalue. Therefore, we
have

ATAv = λv
vTATAv = vTλv

vTATAv = λ∣∣v∣∣2
(5)
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Since (AB)T = BTAT

(Av)TAv = λ∣∣v∣∣2

∣∣Av∣∣2 = λ∣∣v∣∣2
(6)

We also have
∣∣Av∣∣2 ≥ 0 and ∣∣v∣∣2 ≥ 0 (7)

Therefore, λ ≥ 0

Theorem 6 (Spectral theorem). If A ∈ Rm×m is symmetric then:

(i) All of its eigenvalues are real

(ii) A is diagonalizable by an orthogonal matrix meaning that there exists an orthogonal matrix U ∈ Rm×m such
that A =UDU⊺ with D ∈ Rm×m being diagonal

Proof.

(i) Let λ ∈ C be an eigenvalue and v ≠ 0, a corresponding eigenvector of A. we denote v by the complex conjugate
of v.

v⊺Av = v⊺A⊺v = (Av)⊺ v = λv⊺v (8)

Since A is real and symmetric, hence we have A =A and A⊺ =A. We also have :

v⊺Av = v⊺ ⋅A ⋅ v = v⊺Av = v⊺λv = λv⊺v (9)

Now we have λv⊺v = λv⊺v and since v⊺v ≠ 0, then λ = λ hence λ ∈ R.

(ii) Let v ≠ 0 a unit eigenvector for λ, i.e. Av = λv, and v⊺v = 1. Let U = span(v)� = {u ∈ Rm∣⟨u,v⟩ = 0}. We
observe that U is A invariant, i.e. if u ∈ U , then Au ∈ U . ⟨Au,v⟩ = (Au)⊺v = u⊺A⊺v = u⊺Av = λu⊺v = 0
which implies that we have Au ∈ U .

Let u1, ...,um−1 ∈ Rm be an orthonormal basis of U , and let U =
⎛
⎜
⎝

∣ ∣ ∣
v u1 ⋯ um−1

∣ ∣ ∣

⎞
⎟
⎠
∈ Rm×m.

We claim that U is orthogonal and Rm = U⊕U⊺ = U⊕span(v), with dim(span(v)) = 1. We first prove that U
is orthogonal since U = span(v)�. Let’s look at the first column of U⊺AU. (AU)∶1 =AU∶1 =Av = λv. Thus,

we have (U⊺AU)∶1 = λU⊺v = λ
⎛
⎜⎜⎜
⎝

1
0
0
⋮

⎞
⎟⎟⎟
⎠

Since U is A-invariant, for each i, we have Aui ∈ U , which means that

Aui = U( 0
bi

) for some bi ∈ Rm−1 (indeed, Aui is orthogonal to v). We also have Av = λv = U

⎛
⎜⎜⎜
⎝

λ
0
⋮
0

⎞
⎟⎟⎟
⎠

,

from which AU =U

⎛
⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0

⋮ B
0

⎞
⎟⎟⎟⎟
⎠

follows.

(iii) Now, we want to prove that B is symmetric or B = B⊺. Since U is square and U ∈ Rm×m, UU⊺ = I. We

have A = U

⎛
⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0

⋮ B
0

⎞
⎟⎟⎟⎟
⎠

U⊺. Then, A⊺ = (U

⎛
⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0

⋮ B
0

⎞
⎟⎟⎟⎟
⎠

U⊺)⊺. Because we know A is

3



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 4: Jan.21st 2020

symmetric, A⊺ =A =U

⎛
⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0

⋮ B
⊺

0

⎞
⎟⎟⎟⎟
⎠

U⊺ =U

⎛
⎜⎜⎜⎜
⎝

λ 0 ⋯ 0
0

⋮ B
0

⎞
⎟⎟⎟⎟
⎠

U⊺. Therefore, B = B⊺.

(iv) Since B is symmetric, we can reiterate the process m − 1 times to diagonalize B and end up with A =

⎛
⎜
⎝

∣ ∣
v1 ⋯ vm

∣ ∣

⎞
⎟
⎠

⎛
⎜⎜⎜
⎝

λ1 0
⋱

0 λm

⎞
⎟⎟⎟
⎠

⎛
⎜
⎝

– v1 –
⋮

– vm –

⎞
⎟
⎠

where vi is the eigenvector associated with an eigenvalue

λi for each i ∈ {1,⋯,m}.

4 Schur decomposition and the Jordan canonical form

Definition 7 (Conjugate transpose and unitary matrices). Let U ∈ Cm×m:

• The conjugate transpose of U, denoted U∗, is the transpose of the conjugate matrix U. Therefore, U∗ =U
T

• U is a unitary matrix if U∗U = I
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Theorem 8 (Schur decomposition). For any matrix A ∈ Rm×m:

• There exists a unitary matrix U ∈ Cm×m such that U∗AU is upper triangular.

• There exists an orthogonal matrix Q ∈ Rm×m such that:

QTAQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R1,1 ⋯ ⋯ R1,k

0 ⋱ ⋮
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 Rk,k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where for all i ∈ {1,2,⋯, k}, Ri,i is either a 1 × 1 matrix (corresponding to a real eigenvalue of A) is a 2 × 2

matrix (corresponding to a pair of conjugate complex eigenvalues, with the block having the form ( α −β
β −α ).

Theorem 9 (Jordan canonical form). For any matrix A ∈ Cm×m:

• There is an invertible matrix P ∈ Cm×m such that:

P−1AP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

J1 0 ⋯ 0
0 J2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 Jp

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where Ji for all i ∈ {1,2,⋯, p} are called Jordan blocks.

• A Jordan block, Ji, corresponding to eigenvalue λi contains repeated values of λi in its diagonal, and 1s above
this diagonal. All other elements of the block are 0s. Visually, the Jordan blocks are of the form

Ji =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λi 1 0 0
0 λi 1 0
⋮ ⋱ ⋱ 1
0 ⋯ 0 λi

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ Cmi×mi (12)

where λi corresponds to an eigenvalue of A.

• The eigenvalues λi associated with each Ji do not need to be distinct

• The number of Jordan blocks associated with an eigenvalue λ is the geometric multiplicity of λ in A.

• The above decomposition is unique up to the ordering of the Jordan blocks

• The sum of the the sizes of each Jordan block sums to the size of P and A, i.e., m1 +m2 +⋯ +mp =m
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