
IFT 6760A - Lecture 5
SVD, Matrix Norms and Low Rank Approximation Theorem

Scribe(s): Joss Rakotobe, Haoyu Zhang
(adapted from Arthur Dehgan, Adrien Mainka, Erik-Olivier Riendeau
and William Dugua last year’s notes) Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we continued reviewing the fundamentals of linear algebra. We started by covering diagonaliz-
ability. Then, we looked at the difference between the geometric and algebraic multiplicity. In particular, for a matrix
to be diagonalizable, both these multiplicities must be equal. Also, we defined the definiteness property of a matrix
and gave the Spectral theorem. Moreover, we covered the Shur decomposition.

In this lecture, we started by proving the singular-value decomposition. Then, we reviewed matrix norms, in particular,
the p-norm and the Frobenius norm, to formalize the concept of low-rank approximation of a matrix, specifically the
Ecart-Young-Mirsky theorem. Finally, we proved a Rayleigh-Ritz theorem.

2 The Singular Value Decomposition
In a previous lecture we defined the Singular Value Decomposition (SVD), now that we have defined the spectral
theorem we can prove the SVD decomposition.

2.1 Singular Value Decomposition

Theorem 1 (SVD). Any matrix A ∈ Rm×n can be written as:

A = UΣV>

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices (i.e. U>U = Im and V>V = In) and Σ ∈ Rm×n

is a diagonal rectangular matrix such that Σi,i 6= 0 if and only if i ≤ rank(A)

The form A = UΣV> is called the Singular-Value Decomposition (SVD) of A.

Proof. Recall that A>A is positive semi-definite and symmetric. Using the spectral theorem we can write A>A =

VΣ2V> with V orthogonal and Σ diagonal. Let A>A = [V1V2]

(
Σ̃2

0

)[
V1
>

V2
>

]
with Σ̃ ∈ Rr×r with

strictly positive entries, where r is the rank of A>A. It follows that A>A = V1Σ̃2V1
>. Let U1 = AV1Σ̃−1. We

have to prove:

(i) U1
>U1 = I

(ii) U1
>AV1 = Σ̃
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For (i), we have:

U1
>U1 = Σ̃−1V1

>A>AV1Σ̃1

= Σ̃−1V1
>V1Σ̃2V1

>V1Σ̃−1

= I

(ii) simply follows from the equality U1
>AV1 = Σ̃−1V1

>A>AV1 = Σ̃−1V1
>V1Σ̃2V1

>V1 = Σ̃.

Now we define U2 ∈ Rm×(m−r) orthogonal such that R(U2) = R(U1)⊥ and let U = [U1U2] ∈ Rm×m. Observe
that U is orthogonal by construction. We have

U>AV =

[
U1
>

U2
>

]
A [V1V2]

=

[
U1
>AV1 U1

>AV2

U2
>AV1 U2

>AV2

]
By (ii), we already know that the top left block is equal to Σ̃. Since V is orthogonal, for any column v2 of V2,
V1
>v2 = 0 and

A>Av2 = V1Σ̃2V1
>v2 = 0

Hence, v2
>A>Av2 = ||Av2||22 = 0, which is equivalent to Av2 = 0. Therefore, the two blocks in the second

column are both zeros. It remains to show that U2
>AV1 = 0, which follows from the fact that U2

>U1 = 0 =
U2
>AV1Σ̃−1 and since Σ̃−1 is an invertible matrix.

In conclusion, we have

U>AV =

[
Σ̃ 0
0 0

]
= Σ

The columns of V (respectively U) contain the eigenvectors of A>A (respectively AA>), also called the left (re-
spectively right) singular vectors.
In the case where A is symmetric, its SVD can be retrieved from its spectral decomposition : A = UDUT. Since we
want a diagonal matrix Σ with non negative elements (the singular values), we can define Σ = |D|, where the absolute
value is taken element-wise and we construct V> = sign(Σ)U>, where the sign function is taken element-wise.

3 Matrix Norms

3.1 Matrix p-norm
We start by defining the basic building block of the matrix p-norm:

Definition 2 (Vector p-norm). The vector p-norm, where p ∈ R is greater than 1, is defined as:

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

See [1] for more information on vector norms.

Now, any norm on vectors induces a norm on matrices. The matrix p-norm of an arbitrary matrix A, denoted ‖A‖p,
is defined as:

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

.

Remember that the difference between the supremum and the maximum is that the maximum must be an element of
the set while the supremum need not to be. More specifically, if X is an ordered set, and S is a subset, then s0 is the
supremum of S iff:
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1. s ≤ s0,∀s ∈ S

2. if x ∈ X and s ≤ x, ∀s ∈ S, then s0 ≤ x

On the other hand, an element m is the maximum of S iff:

1. s ≤ m,∀s ∈ S

2. m ∈ S

Considering that a property of a vector norm is ‖cx‖p = |c|‖x‖p, for any scalar c, we choose c such that ‖x‖p = 1.
Therefore, the following equivalent1 statement defines the matrix p-norm.

Definition 3 (Matrix p-norm). The matrix p-norm, where p ∈ R, is defined as:

‖A‖p = max
‖x‖=1

‖Ax‖p

Some geometric intuition about the matrix p-norm can be seen in [2].

As a side note, the main difference between a norm and a distance is that one can consider the norm of only one
element, while a distance needs at least two elements.

3.2 Matrix Frobenius Norm
Definition 4 (Frobenius Norm). The Frobenius norm is the 2-norm of the vector obtained by concatenating the rows
(or equivalently the columns) of the matrix A:

‖A‖F =

 n∑
i=1

m∑
j=1

|aij |2
1/2

From the previous definition, the Frobenius norm can also be obtained by rearranging the square of the norm in the
following way:

‖A‖2F =

n∑
i=1

m∑
j=1

|aij |2 = Tr(ATA) = Tr(AAT )

Where we used the following property of traces: Tr(ABC) = Tr(CAB) = Tr(BCA)

Property 5. Let A ∈ Rm×n, x ∈ Rn and let P ∈ Rm×m, Q ∈ Rn×n be two orthogonal matrices. Then, the
following holds:

• Matrix norms induced by vector norms: ‖Ax‖p ≤ ‖A‖p‖x‖p

• Orthogonal matrices preserve the Frobenius norm: ‖PAQ‖F = ‖A‖F

• Orthogonal matrices preserve the 2-norm: ‖PAQ‖2 = ‖A‖2

In particular, the last two points implies that any matrix has the same 2-norm and Frobenius norm as the diagonal
rectangular matrix Σ from its SVD.

Proof. 1.

‖A‖p = sup
x

‖Ax‖p
‖x‖p

≥ ‖Ay‖
‖y‖

⇒ ‖A‖p‖y‖p ≥ ‖Ay‖p∀y
1Since we restrict the optimization to unit vectors, the subset S is closed and bounded. It implies that the supremum is a maximum.
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2. ‖PAQ‖F = Tr(Q>A>P>PAQ) = Tr(Q>A>AQ) = Tr(QQ>A>A) = Tr(A>A) = ‖A‖F , where we
used the fact that QQ> = In since Q is a square orthogonal matrix.

3.

‖PAQ‖2 = sup
x,‖x‖2=1

‖PAQx‖2

= sup
x,‖x‖2=1

(x>Q>A>P>PAQx)
1
2

=‖AQ‖2 (P>P = Im)
= sup

x:‖x‖2=1

‖AQx‖2

= sup
y:‖y‖2=1

‖Ay‖2 (‖Qx‖2 = (x>Q>Qx)1/2 = (x>x)1/2 = ‖x‖2)

=‖A‖2

Property 6. For any A ∈ Rm×n, we have ‖A‖2 = σ1, where σ1 is the largest singular value of A.

Proof. Let A = UΣV> be the SVD of A with the singular values in decreasing order.

‖A‖2 = ‖Σ‖2 (by the last point of Property 5)
= max

‖x‖=1
‖Σx‖2 (definition of the 2-norm)

Since for any real unit vector x =
[
x1, · · · , xn

]>
we have,

‖Σx‖2 = ‖
[
σ1x1 · · · σrxr 0 · · · 0

]> ‖2 (with r the rank of A)

=

(
r∑

i=1

(σixi)
2

) 1
2

≤

(
r∑

i=1

(σ1xi)
2

) 1
2

(since σ1 is the largest singular value)

= σ1

(
r∑

i=1

x2i

) 1
2

≤ σ1

(
n∑

i=1

x2i

) 1
2

= σ1 (since x has norm 1)

Taking x =
[
1 0 · · · 0

]
gives exactly σ1, therefore it is the maximum.
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4 Low Rank Approximation
Low rank approximation is a minimization problem with a cost function that measures the difference between a given
matrix A ∈ Rm×n and an approximating matrix with reduced rank. This minimization problem has an analytical
solution in terms of the singular value decomposition.

Theorem 7 (Eckart-Young-Mirsky). Let A = UΣV> =
∑r

i=1 σiuiv
>
i be the SVD of A, where

• σi ∈ R,ui ∈ Rm,vi ∈ Rn

• r = rank(A) and σ1 > σ2 > ... > σr > 0 are the singular values of A

• U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices.

Now, let Ak =
∑k

i=1 σiuiv
T
i , where only the first k terms are kept from the sum defining A. Then

min
X s.t. rank(X)≤k

‖A−X‖F = ‖A−Ak‖F

Note that this is a convex optimization problem over a non convex set. Also, the same result holds for the 2-norm:

min
X s.t. rank(X)≤k

‖A−X‖2 = ‖A−Ak‖2

Proof. We show the result for the 2-norm. We start by showing that ‖A‖ = σk+1. Let Σk be the diagonal matrix with
diagonal entries 0, · · · , 0, σk+1, · · · , σr, 0, · · · , 0.

Σk =



0
. . .

0
σk+1

. . .
σr

0
. . .

0


We have

‖A−Ak‖2 = ‖
r∑

i=1

σiuiv
T
i −

k∑
i=1

σiuiv
T
i ‖2 (Definition of Ak)

= ‖
r∑

i=k+1

σiuiv
T
i ‖2

= ‖UΣkVT ‖2 (Definition of Σk)
= ‖Σk‖2 (By Property 4, since U and V are orthogonal)
= σk+1 (By Property 5)

We want to show that for any matrix B = XY, where r = rank(B), X ∈ Rm×r,Y ∈ Rr×n, Ak will always be
closer to A than B with respect to the matrix 2-norm.

‖A−B‖2 ≥ ‖A−Ak‖2 (Statement to prove)
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Let Vk+1 =

 | |
v1 · · · vk+1

| |

, Where v1, · · · ,vk+1 are the eigenvectors associated with the top k + 1 singular

values.
By the Rank-Nullity Theorem:

dimN (B) = n− rank(B)

hence,
dimN (B) + dimR(Vk+1) > n

Which implies that N (B) ∩R(Vk+1) 6= {0}. Then, by taking a unit vector x ∈ N (B) ∩R(Vk+1), we have:

‖A−B‖22 ≥ ‖(A−B)x‖22
= ‖Ax‖22 (Since x is in N (B), then Bx = 0)

= ‖UΣVTx‖22 (SVD of A.)

= ‖ΣVTx‖22 (By Property 4, since U is orthogonal)

=

r∑
i=1

σ2
i 〈vi,x〉2

=

r∑
i=k+1

σ2
i 〈vi,x〉2 (〈vi,x〉 = 0 for i ≤ k since x ∈ R(Vk+1))

≥ σ2
k+1

r∑
i=k+1

〈vi,x〉2 (σk+1 is the largest singular value of Σk)

= σ2
k+1‖VT

k+1x‖22 (Definition of 2-norm)

= σ2
k+1‖VTx‖22 (VT

k+1x = VTx because x ∈ R(Vk+1))

= σ2
k+1‖x‖22 (By Property 4, since V is orthogonal)

= σ2
k+1 (x is of unit length)

= ‖A−Ak‖22 (As shown in the first part of the proof)

By taking the square root on each side of the inequality, we obtain that for any matrix B = XY:

‖A−B‖2 ≥ ‖A−Ak‖2

We now show the result for Frobenius norm. The proof relies on the following inequality, known as Weyl’s inequal-
ity!(we let the proof of this inequality as an exercise):

σi+j−1(X + Y) ≤ σi(X) + σj(Y).

Let Ak =
∑k

i=1 σiuiv
>
i be the matrix obtained from the truncated SVD of the matrix A. We want to show that Ak

is the rank k matrix which is the closest to A in Frobenius norm. Let B be any rank k matrix, we want to show that

‖A−Ak‖F ≤ ‖A−B‖F .

Applying Weyl’s inequality to X = A−B and Y = B we get

σi+k(A) ≤ σi(A−B) + σk+1(B)

and since B is of rank k we have σk+1(B) = 0, hence

σi+k(A) ≤ σi(A−B).
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Using this inequality we obtain

‖A−Ak‖F =

r∑
i=k+1

σi(A)2

=

r−k∑
i=1

σi+k(A)2

≤
r−k∑
i=1

σi(A−B)2

≤
min(m,n)∑

i=1

σi(A−B)2

= ‖A−B‖F .

5 Variational Characterization of Eigenvalues of Symmetric Matrices

Definition 8 (Rayleigh Quotient). Let A ∈ Rn×n be symmetric, then the Rayleigh Quotient is the ratio

xTAx

xTx

The quotient is independent of the scale of x since the denominator is the squared norm of x.

Theorem 9 (Rayleigh-Ritz). Let A ∈ Rn×n be symmetric. The solution to maximizing (resp. minimizing) the
Rayleigh-Ritz Quotient for x 6= 0 is given by the largest (resp. smallest) eigenvalue of A:

max
x6=0

xTAx

xTx
= max
‖x‖2=1

xTAx = λmax(A) (1)

min
x 6=0

xTAx

xTx
= min
‖x‖2=1

xTAx = λmin(A) (2)

Moreover, if v1, · · · , vk are the eigenvectors corresponding to the top k eigenvalues λ1, · · · , λk of A, then

max
‖x‖2=1

x∈span(v1,··· ,vk)
⊥

xTAx = λk+1(A) (3)

where the maximum is obtained by letting x = vk+1. The constraint x ∈ span(v1, · · · ,vk)⊥ means that x must be
orthogonal to the first k eigenvectors of A. Since A is assumed to be symmetric, all its eigenvectors are orthogonal.

Proof. (1) Let A = VDVT be the eigendecomposition of A, where v1, · · · ,vn are the eigenvectors of A and V is
an orthogonal matrix constructed as:

V =

 | |
v1 · · · vn

| |

 ∈ Rn×n

Let x ∈ Rn be of unit norm (‖x‖2 = 1) and let y be a linear combination of the eigenbasis of A, such that y =
VTx ∈ Rn. By Property 5, since V is orthogonal, ‖y‖2 = ‖x‖2 = 1. Then we can derive the following inequality:
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xTAx = xTVDVTx (Eigendecomposition of A)

= yTDy (Definition of y)

=

n∑
i=1

λiy
2
i (Where λi are the diagonal elements of D)

≤ λmax(A)

n∑
i=1

y2
i ( λmax(A) ≥ λi ∀i)

= λmax(A)‖y‖22
= λmax(A)

Proof. (2) We are using the same matrices A and V, vector x and y as in (1). Then, we can derive the following
inequality:

xTAx = xTVDVTx (Eigendecomposition of A)

= yTDy (Definition of y)

=

n∑
i=1

λiy
2
i (Where λi are the diagonal elements of D)

≥ λmin(A)

n∑
i=1

y2
i ( λmin(A) ≤ λi ∀i)

= λmin(A)‖y‖22
= λmin(A)

Proof. (3) We will split the matrix V in two partitions such that V =
[
V1 V2

]
, where V1 ∈ Rn×k represents the

top k eigenvectors of A and V2 ∈ Rn×n−k represents the last n − k eigenvectors of A. If x ∈ span(v1, · · · ,vk)⊥,
then x is orthogonal to all vectors in V1 and, most importantly, x is in the range of V2 (x ∈ R(V2)). Then, we can
write

xTAx = xTV2V
T
2 AV2V

T
2 x (Replace each x by its projection ontoR(V2), which

does not change x since it is initially assumed that x ∈ R(V2) )

= xTV2V
T
2 VDVTV2V

T
2 x (Eigendecomposition of A)

(4)

Now, using the fact that
VT

2 V = VT
2

[
V1 V2

]
=
[
VT

2 V1 VT
2 V2

]
=
[
0 I

]
it follows that

xTAx = xT V



0
. . .

0
λk+1

. . .
λn


VT

︸ ︷︷ ︸
Ã

x
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Hence,

max
‖x‖2=1

x∈span(v1,··· ,vk)
⊥

xTAx = max
‖x‖2=1

xT Ãx (The constraint x ∈ span(v1, · · · ,vk)⊥ is now incorporated into the Ã.

We now have the same maximization problem as in (1),

except that Ã replaces A)

= λk+1(A) (By (1), since the largest eigenvalue of Ã is λk+1)
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