Tensorizing Neural Networks

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov

NIPS, 2015

Presentation by:

Moussa Traore Mehraveh Javan

Outline

- Motivation
- Tensor Train (TT) Format
 - TT-Format for vectors
 - TT-Format for matrices
- TT-Layer
 - Back propagation
- Experimental Results
- Related Work

Motivation

Deep Neural Networks have achieved state-of-the -art-performance in many domains, however they require large amount of memory, expensive hardware (GPUs) and long processing times, preventing the increase in model size and using mobile devices.

Neural Network compression using matrix and tensor decomposition

Motivation

The huge number of parameters of FC layers is the bottleneck in a typical deep neural network

Fully connected layer is a transformation between two high dimensional vectors:

]	Layer name	#Filters	#Parameters	#Activations
-	input			150K
-	conv1_1	64	$1.7\mathrm{K}$	3.2M
neters of FC	conv1_2	64	36K	$3.2\mathrm{M}$
	max pooling			802K
a typical deep	$conv2_1$	128	73K	1.6M
	conv2_2	128	$147 \mathrm{K}$	1.6M
-	max pooling			401K
-	conv3_1	256	300K	802K
-	conv3_2	256	600K	802K
ocformation	conv3_3	256	600K	802K
	conv3_4	256	600K	802K
lvoctore	max pooling			200K
al vectors.	$conv4_1$	512	$1.1\mathrm{M}$	401K
L	conv4_2	512	2.3M	401K
	conv4_3	512	2.3M	401K
D	conv4_4	512	2.3M	401K
	max pooling			100K
\mathbf{v}	conv5_1	512	2.3M	100K
M	conv5_2	512	2.3M	100K
	conv5_3	512	$2.3\mathrm{M}$	100K
	$conv5_4$	512	$2.3\mathrm{M}$	100K
	max pooling			25K
	fc6		103M	4K
95% of parameters are in full	fc7		17M	4K
connected laver	outpu	ut	4M	1K

Tensorizing Neural Networks

March 26, 2020 4

Motivation

TensorNet applies Tensor Train (TT) format to represent weights of fully connected layer, reducing the number of parameters hugely without compromising performance:

- Compatible with the existing training algorithms for neural networks
- Match the performance of the uncompressed counterparts with compression
- Enables using more hidden units than was available before

How About Matrix Rank Decomposition? W = A B

Low-rank representation can reduce number of parameters without compromising accuracy

But can we compress more?

M imes N M imes r r imes N

Tensor Train Summary

Tensor **A** can be decomposed to TT-format as:

 $\mathbf{A}(i_1,i_2,\ldots,i_d) = \mathbf{G_1}[i_1]\mathbf{G_2}[i_2]\ldots\mathbf{G_d}[i_d]$

Tensor Train Summary

Tensor **A** can be decomposed to TT format as:

$$\mathbf{A}(i_1,i_2,\ldots,i_d) = \mathbf{G_1}[i_1]\mathbf{G_2}[i_2]\ldots\mathbf{G_d}[i_d]$$

Where:

$$\mathbf{G_k}[i_k] \in {\rm I\!R}^{r_{k-1} imes r_k} \hspace{0.1 in}, \hspace{0.1 in} r_0 = r_d = 1$$

Compression:

, d

$$O\!\left(n^d
ight)
ightarrow O\!\left(ndr^2
ight)$$

• TT-cores:
$$\mathbf{G}_{\mathbf{k}}$$

• TT-ranks: r_k
• TT max rank $r = max \ r_k$, $k = 0, \dots$

Tensor Train Summary: Examples

Source: https://www.ifi.uzh.ch/dam/jcr:846e4588-673e-4f55-b531-544a2e1f602e/TA_Tutorial_Part2.pdf

TT-representations for vectors

Consider a vector b $\dot{b} \in {\rm I\!R}^{
m N}$

Where: $N = \Pi_{k=1}^d n_k$

We can represent it using a tensor B: $B \in {\rm I\!R}^{{
m n_1}{
m xn_2}{
m x}...{
m xn_d}}$

We can establish a bijection: $\mu: l \in \{1, \dots, N\} \mapsto (\mu_1(l), \dots, \mu_d(l))$ Where: $B((\mu_1(l), \dots, \mu_d(l)) = b_l)$

Where:

$$\mu_k(l) \in \{1,\ldots,n_k\}$$

We can represent the vector in TT-Format

Vector ⇒ TT-Format: Tensor Network Diagram

TT-representations for matrices (1) Consider a matrix A:

Where:

And:

$$M=\Pi_{k=1}^d m_k$$
 , $N=\Pi_{k=1}^d n_k$

We can establish the bijections: $u: t \in \{1, \dots, M\} \mapsto (\nu_1(t), \dots, \nu_d(t))$ And:

 $A\in{\rm I\!R}^{
m MxN}$

 $\mu: l \in \{1,\ldots,N\} \mapsto (\mu_1(l),\ldots,\mu_d(l))$

Where:

$$\mu_k(l) \in \{1,\ldots,n_k\}$$
 $u_k(t_k) \in \{1,\ldots,m_k\}$

TT-representations for matrices (2)

We can represent it using a tensor W:

$W \in {\rm I\!R}^{{ m m}_1{ m n}_1{ m x}{ m m}_2{ m n}_2{ m x}\ldots{ m x}{ m m}_{ m d}{ m n}_{ m d}}$

Where:

 $W((
u_1(t), \mu_1(l)), \dots, (
u_d(t), \mu_d(l))) = A(t, l)$

We can represent the matrix in TT-Format

Matrices ⇒ TT-Format: Tensor Network Diagram

$$A(t,l) = W((\nu_1(t),\mu_1(l)),\ldots,(\nu_d(t),\mu_d(l))) = \underbrace{G_1[\nu_1(t),\mu_1(l)]}_{1Xr_1}\underbrace{G_2[\nu_2(t),\mu_2(l)]}_{r_1Xr_2}\ldots\underbrace{G_d[\nu_d(t),\mu_d(l)]}_{r_{d-1}X1}$$

Matrices ⇒ TT-Format: Tensor

Source: https://www.slideshare.net/RuochunZeung/tensorizing-neuralnetwork-present-72811535

Tensorizing Neural Networks

March 26, 2020 15

TT-representations of Neural Never: a fully connected layer with weights stored in TT format y = w

Transforming x,y and b to ddimensional tensors, TT layer is expressed as:

$$Y(i_1, \dots, i_d) = \sum_{j_1, \dots j_d} \mathbf{G_1}[i_1, j_1] \dots \mathbf{G_d}[i_d, j_d] X(j_1, \dots, j_d) + B(i_1, \dots, i_d)$$

TT-representations of Neural Networks

Source: LTNN: An energy-efficient machine learning accelerator on 3D CMOS-RRAM for layer-wise tensorized neural network, Huang et al. 2017

Tensorizing Neural Networks

Learning For TT-Layer Back-Propagation (1) $i_{k}^{-} := (i_{1}, \dots, i_{k-1})$ $i_{k}^{+} := (i_{k+1}, \dots, i_{d})$ $i = (i_{k}^{-}, i_{k}, i_{k}^{+})$ $i = (i_{k}^{-}, i_{k}, i_{k}^{+})$ $i = (i_{k}^{-}, i_{k}, i_{k}^{+})$

Using these constructs, we can rewrite the TT-Layer as follow:

$$Y(i_1, \dots, i_d) = \sum_{j_1, \dots, j_d} \mathbf{G_1}[i_1, j_1] \dots \mathbf{G_d}[i_d, j_d] X(j_1, \dots, j_d) + B(i_1, \dots, i_d)$$

Becomes:

$$\Upsilon(\mathbf{i}) = \Upsilon(i_k^-, i_k, i_k^+) = \sum_{(j_k^-, j_k, j_k^+)} P_k^-[i_k^-, j_k^-] G_k[i_k, j_k] P_k^+[i_k^+, j_k^+] \chi(j_k^-, j_k, j_k^+) + B(\mathbf{i})$$

Learning For TT-Layer | Back-Back-Back $i_k^- := (i_1, \dots, i_{k-1})$ $i_k^+ := (i_{k+1}, \dots, i_d)$ $\mathbf{i} = (i_k^-, i_k, i_k^+)$

Partial core products:

$$P_k^-[i_k^-,j_k^-]:=G_1[i_1,j_1]\ldots G_{k-1}[i_{k-1},j_{k-1}]$$

$$P_k^+[i_k^+,j_k^+]:=G_{k+1}[i_{k+1},j_{k+1}]\dots G_d[i_d,j_d]$$

Learning For TT-Layer | Back-Propagation (3)

Learning For TT-Layer Back- $\mathbf{F}(\mathbf{i}) = \mathbf{O}(\mathbf{i}, \mathbf{k}, \mathbf{j}_k) = \mathbf{O}(\mathbf{i}, \mathbf{j}_$

The Gradient of the loss function L w.r.t the k-th core in position $[\hat{i},\hat{j}]$:

$$rac{\partial L}{\partial G_k[\hat{i_k},\hat{j_k}]} = \sum_i rac{\partial L}{\partial \Upsilon(i)} rac{\partial \Upsilon(i)}{\partial G_k[\hat{i_k},\hat{j_k}]}$$

Assuming we know:

$$rac{\partial L}{\partial \Upsilon(i)}$$

Learning For TT-Layer Back- $P(\mathbf{i} \cap \mathbf{j}_{k}, \mathbf{j}_{k}, \mathbf{j}_{k}) = \sum_{(j_{k}, j_{k}, j_{k})} P_{k}^{-}(\mathbf{i}_{k}, \mathbf{j}_{k}) G_{k}[i_{k}, j_{k}] P_{k}^{+}[i_{k}^{+}, j_{k}^{+}] \chi(j_{k}^{-}, j_{k}, j_{k}^{+}) + B(\mathbf{i})$

We need to compute:

$$rac{\partial \Upsilon(i_k^-,\!i_k,\!i_k^+)}{\partial G_k[\hat{i_k},\!\hat{j_k}]}$$

For any values of the core $k \in \{1, \ldots, d\}$

and
$$\hat{i_k} \in \{1, \dots m_k\}$$

and $\hat{j_k} \in \{1, \dots n_k\}$

Learning For TT-Layer | Back-Propagation (5)

$$rac{\partial a^T X b}{\partial X} = a b^T$$

Learning | Back-Propagation (6)

$$\begin{split} \Upsilon(\mathbf{i}) &= \Upsilon(i_{k}^{-}, i_{k}, i_{k}^{+}) = \sum_{\substack{(j_{k}^{-}, j_{k}, j_{k}^{+}) \\ (j_{k}^{-}, j_{k}, j_{k}^{+}) \\ 0 \neq i_{k} \neq \hat{i}_{k} \\ \frac{\partial \Upsilon(i_{k}^{-}, i_{k}, i_{k}^{+})}{\partial G_{k}[\hat{i}_{k}, \hat{j}_{k}]} = 0 \\ Otherwise \\ \frac{\partial \Upsilon(i)}{\partial G_{k}[\hat{i}_{k}, \hat{j}_{k}]} &= \sum_{\substack{(j_{k}^{-}, j_{k}^{+}) \\ (j_{k}^{-}, j_{k}^{+}) \\ 0 \neq j_{k} \end{pmatrix}} P_{k}^{-} [i_{k}^{-}, j_{k}^{-}]^{T} P_{k}^{+} [i_{k}^{+}, j_{k}^{+}]^{T} \chi(j_{k}^{-}, \hat{j}_{k}, j_{k}^{+}) \\ (j_{k}^{-}, j_{k}^{-}, j_{k}^{-}, j_{k}^{-}) \end{bmatrix} \end{split}$$

$$rac{\partial a^T X b}{\partial X} = a b^T$$

Results: MNIST

Handwritten images

Results: MNIST

• To investigate properties of TT-layer and different parameters setting using small network with two fully connected layers

Different plot points are obtained by varying TT-rank or matrix rank

Results: Imag

- 1000 classes
- 1.2 M training images

×				
	mite	container ship	motor scooter	leopard
	mite	container ship	motor scooter	leopard
	black widow	lifeboat	go-kart	jaguar
	cockroach	amphibian	moped	cheetah
П	tick	fireboat	bumper car	snow leopard
П	starfish	drilling platform	golfcart	Egyptian cat
and the s	grille	mushroom	cherry	Madagascar cat
	convertible	agaric	dalmatian	squirrel monkey
	grille	mushroom	grape	spider monkey
	pickup	jelly fungus	elderberry	titi
	beach wagon	gill fungus	ffordshire bullterrier	indri
	fire engine	dead-man's-fingers	currant	howler monkey

Tensorizing Neural Networks

Results: ImageNet

Architecture	TT-layers compr.	vgg-16 compr.	vgg-19 compr.	vgg-16 top 1	vgg-16 top 5	vgg-19 top 1	vgg-19 top 5
FC FC FC	1	1	1	30.9	11.2	29.0	10.1
TT4 FC FC	50972	3.9	3.5	31.2	11.2	29.8	10.4
TT2 FC FC	194622	3.9	3.5	31.5	11.5	30.4	10.9
TT1 FC FC	713614	3.9	3.5	33.3	12.8	31.9	11.8
TT4 TT4 FC	37732	7.4	6	32.2	12.3	31.6	11.7
MR1 FC FC	3521	3.9	3.5	99.5	97.6	99.8	99
MR5 FC FC	704	3.9	3.5	81.7	53.9	79.1	52.4
MR50 FC FC	70	3.7	3.4	36.7	14.9	34.5	15.8

FC: fully connected layer

TT[x]: TT layer with all ranks equal to x

MR[x]: fully connected layer with rank constrained to

Tensorizing Neural Networks

Related Work: Ultimate

Ultimate tensorization: compressing convolutional and FC layers alike

Timur Garipov¹ Dmitry Podoprikhin^{1,2} Alexander Novikov^{3,4} Dmitry Vetrov^{2,3} ¹Moscow State University, Moscow, Russia ²Yandex, Moscow, Russia ³National Research University Higher School of Economics, Moscow, Russia ⁴Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia timgaripov@gmail.com podoprikhin.dmitry@gmail.com novikov@bayesgroup.ru vetrovd@yandex.ru

Related Work: Ultimate Tensorization (2016)

Extension of TT compression to convolutional layers allows for further compression of Network with small performance decrease

Model	top-1 acc.	compr.
conv-fc (baseline)	90.5	1
conv-TT-fc	90.3	10.72
conv-TT-fc	89.8	19.38
conv-TT-fc	89.8	21.01
TT-conv-TT-fc	90.1	9.69
TT-conv-TT-fc	89.7	41.65
TT-conv-TT-fc	89.4	82.87

Conclusion

- TT-decomposition of weight matrix of a fully-connected layer and using the cores of the decomposition as the parameters of the layer
- Train the fully-connected layers compressed by up to 200 000× compared with the explicit parametrization without significant error increase

Operation	Time	Memory
FC forward pass	O(MN)	O(MN)
TT forward pass	$O(dr^2m\max\{M,N\})$	$O(r \max\{M, N\})$
FC backward pass	O(MN)	O(MN)
TT backward pass	$O(d^2 \operatorname{r}^4 m \max\{M, N\})$	$O(\mathbf{r}^3 \max\{M, N\})$

Table 1: Comparison of the asymptotic complexity and memory usage of an $M \times N$ TT-layer and an $M \times N$ fully-connected layer (FC). The input and output tensor shapes are $m_1 \times \ldots \times m_d$ and $n_1 \times \ldots \times n_d$ respectively ($m = \max_{k=1...d} m_k$) and r is the maximal TT-rank.

Thank You!