Tensorizing Neural Networks

Alexander Novikov, Dmitry Podoprikhin, Anton

Osokin, Dmitry Vetrov
NIPS, 2015

Presentation by:

Moussa Traore
Mehraveh Javan

Outline

- Motivation
- Tensor Train (TT) Format

○ TT-Format for vectors
O TT-Format for matrices

- TT-Layer
- Back propagation
- Experimental Results
- Related Work

Motivation

Deep Neural Networks have achieved state-of-the -art-performance in many domains, however they require large amount of memory, expensive hardware (GPUs) and long processing times, preventing the increase in model size and using mobile devices.

Neural Network compression using matrix and tensor decomposition

Motivation

The huge number of parameters of FC

 layers is the bottleneck in a typical deep neural networkFully connected layer is a transformation between two high dimensional vectors:

		fc6	103 M

Motivation

TensorNet applies Tensor Train (TT) format to represent weights of fully connected layer, reducing the number of parameters hugely without compromising performance:

- Compatible with the existing training algorithms for neural networks
- Match the performance of the uncompressed counterparts with compression
- Enables using more hidden units than was available before

How About Matrix Rank

 Decomposition?Compression:

$$
O(M N) \rightarrow O(r(M+N))
$$

Low-rank representation can reduce number of parameters without compromising accuracy

But can we compress more?

Tensor Train Summary

Tensor \mathbf{A} can be decomposed to Π-format as:

$$
\mathbf{A}\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\mathbf{G}_{\mathbf{1}}\left[i_{1}\right] \mathbf{G}_{\mathbf{2}}\left[i_{2}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}\right]
$$

Tensor Train Summary

Tensor A can be decomposed to Π format as:

$$
\mathbf{A}\left(i_{1}, i_{2}, \ldots, i_{d}\right)=\mathbf{G}_{\mathbf{1}}\left[i_{1}\right] \mathbf{G}_{\mathbf{2}}\left[i_{2}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}\right]
$$

Where:

$$
\mathbf{G}_{\mathbf{k}}\left[i_{k}\right] \in \mathbb{R}^{r_{k-1} \times r_{k}} \quad, \quad r_{0}=r_{d}=1
$$

- T-cores: $\mathbf{G}_{\mathbf{k}}$
- T-ranks: r_{k}
- TT max rank $r=\max r_{k}, k=0, \ldots, d$

Tensor Train Summary: Examples

Source: https://www.ifi.uzh.ch/dam/jcr:846e4588-673e-4f55-b531-544a2e1f602e/TA_Tutorial_Part2.pdf

TT-representations for vectors

Consider a vector $\mathrm{b} \boldsymbol{b} \in \mathbb{R}^{\mathrm{N}}$
Where: $N=\Pi_{k=1}^{d} n_{k}$

We can represent it using a tensor B :
$B \in \mathbb{R}^{\mathrm{n}_{1} \mathrm{xn}_{2} \mathrm{x} \ldots \mathrm{xn}_{\mathrm{d}}}$

We can establish a bijection:

$$
\mu: l \in\{1, \ldots, N\} \mapsto\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right) \text { Where: }
$$

Where:

$$
B\left(\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)=b_{l}\right.
$$

$$
\mu_{k}(l) \in\left\{1, \ldots, n_{k}\right\}
$$

We can represent the vector in TTFormat

Vector \Rightarrow TT-Format: Tensor Network Diagram

$$
b(l)=B(\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)=\underbrace{G_{1}\left[\mu_{1}(l)\right] \underbrace{G_{2}}_{r_{1} X r_{2}}\left[\mu_{2}(l)\right]}_{1 X r_{1}} \ldots \underbrace{G_{d}\left[\mu_{d}(l)\right]}_{r_{d-1} X 1}
$$

TT-representations for matrices

(1)

Consider a matrix A :
Where:

$$
A \in \mathbb{R}^{\mathrm{MxN}}
$$

And: $\quad M=\Pi_{k=1}^{d} m_{k} \quad, \quad N=\Pi_{k=1}^{d} n_{k}$
We can establish the bijections:

$$
\nu: t \in\{1, \ldots, M\} \mapsto\left(\nu_{1}(t), \ldots, \nu_{d}(t)\right)
$$

And:

$$
\mu: l \in\{1, \ldots, N\} \mapsto\left(\mu_{1}(l), \ldots, \mu_{d}(l)\right)
$$

Where:

$$
\mu_{k}(l) \in\left\{1, \ldots, n_{k}\right\} \quad \nu_{k}\left(t_{t}\right) \mid \in\left\{1, \ldots, m_{k}\right\}
$$

TT-representations for matrices (2)

We can represent it using a tensor W:

$$
W \in \mathbb{R}^{\mathrm{m}_{1} \mathrm{n}_{1} \mathrm{xm}_{2} \mathrm{n}_{2} \mathrm{x} \ldots \mathrm{xm}_{\mathrm{d}} \mathrm{n}_{\mathrm{d}}}
$$

Where:

$$
W\left(\left(\nu_{1}(t), \mu_{1}(l)\right), \ldots,\left(\nu_{d}(t), \mu_{d}(l)\right)\right)=A(t, l)
$$

We can represent the matrix in TT-Format

Matrices \Rightarrow TT-Format: Tensor Network Diagram

$$
A(t, l)=W\left(\left(\nu_{1}(t), \mu_{1}(l)\right), \ldots,\left(\nu_{d}(t), \mu_{d}(l)\right)\right)=\underbrace{G_{1}\left[\nu_{1}(t), \mu_{1}(l)\right]}_{1 X_{r_{1}}} \underbrace{G_{2}\left[\nu_{2}(t), \mu_{2}(l)\right]}_{r_{1} X r_{2}} \ldots \underbrace{G_{d}\left[\nu_{d}(t), \mu_{d}(l)\right]}_{r_{d-1} X 1}
$$

Matrices \Rightarrow TT-Format: Tensor Netw--l- n:-----

Source: https://www.slideshare.net/RuochunZeung/tensorizing-neuralnetwork-present-72811535

TT-representations of Neural

 weights stored in Π format

$$
\underbrace{\mathbf{y}}_{M}=\underbrace{\mathbf{W}}_{M \times N} \underbrace{\mathbf{x}}_{N}+\underbrace{\mathbf{b}}_{M}
$$

Transforming \mathbf{x}, \mathbf{y} and \mathbf{b} to d dimensional tensors, Π layer is
 expressed as:

$$
Y\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots j_{d}} \mathbf{G}_{\mathbf{1}}\left[i_{1}, j_{1}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}, j_{d}\right] X\left(j_{1}, \ldots, j_{d}\right)+B\left(i_{1}, \ldots, i_{d}\right)
$$

TT-representations of Neural Networks

Source: LTNN: An energy-efficient machine learning accelerator on 3D CMOS-RRAM for layer-wise tensorized neural network, Huang et al. 2017

Learning For TT-Layer | BackPropagation (1)
 $$
\begin{aligned} P_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right] & :=G_{1}\left[i_{1}, j_{1}\right] \ldots G_{k-1}\left[i_{k-1}, j_{k-1}\right] \\ P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right] & :=G_{k+1}\left[i_{k+1}, j_{k+1}\right] \ldots G_{d}\left[i_{d}, j_{d}\right] \end{aligned}
$$

Using these constructs, we can rewrite the TT-Layer as follow:

$$
Y\left(i_{1}, \ldots, i_{d}\right)=\sum_{j_{1}, \ldots j_{d}} \mathbf{G}_{\mathbf{1}}\left[i_{1}, j_{1}\right] \ldots \mathbf{G}_{\mathbf{d}}\left[i_{d}, j_{d}\right] X\left(j_{1}, \ldots, j_{d}\right)+B\left(i_{1}, \ldots, i_{d}\right)
$$

Becomes:

$$
\Upsilon(\mathbf{i})=\Upsilon\left(i_{k}^{-}, i_{k}, i_{k}^{+}\right)=\sum_{\left(j_{k}^{-}, j_{k}, j_{k}^{*}\right)} P_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right] G_{k}\left[i_{k}, j_{k}\right] P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right] \chi\left(j_{k}^{-}, j_{k}, j_{k}^{+}\right)+B(\mathbf{i})
$$

Learning For TT-Layer | Backpostroppargestioncs: (2)
 $$
\begin{aligned} & i_{k}^{-}:=\left(i_{1}, \ldots, i_{k-1}\right) \\ & i_{k}^{+}:=\left(i_{k+1}, \ldots, i_{d}\right) \\ & \mathbf{i}=\left(i_{k}^{-}, i_{k}, i_{k}^{+}\right) \end{aligned}
$$

Partial core products:

$$
\begin{aligned}
P_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right] & :=G_{1}\left[i_{1}, j_{1}\right] \ldots G_{k-1}\left[i_{k-1}, j_{k-1}\right] \\
P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right] & =G_{k+1}\left[i_{k+1}, j_{k+1}\right] \ldots G_{d}\left[i_{d}, j_{d}\right]
\end{aligned}
$$

Learning For TT-Layer | BackPropagation (3)

Learning For TT-Layer | Back-

The Gradient of the loss function L w.r.t the k-th core in position [î,j]]:

$$
\frac{\partial L}{\partial G_{k}\left[\hat{\hat{i}_{k}}, \hat{j_{k}}\right]}=\sum_{i} \frac{\partial L}{\partial \Upsilon(i)} \frac{\partial \Upsilon(i)}{\partial G_{k}\left[\hat{i_{k}}, \hat{\boldsymbol{y}_{k}}\right]}
$$

Assuming we know:

$$
\frac{\partial L}{\partial \Upsilon(i)}
$$

Learning For TT-Layer | Back$\mathcal{P}(\mathbf{i}) \doteq \underbrace{}_{\left(i_{k},,_{k}, i_{k}\right) \in \sum_{\left(j_{k}, j_{k}, j_{k}\right.} \boldsymbol{P}_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right]}] G_{k}\left[i_{k}, j_{k}\right] P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right] \chi\left(j_{k}^{-}, j_{k}, j_{k}^{+}\right)+B(\mathbf{i})$

We need to compute:

$$
\frac{\partial \Upsilon\left(i_{k}^{-}, i_{k}, i_{k}^{+}\right)}{\partial G_{k}\left[\hat{i_{k}}, \hat{j_{k}}\right]}
$$

For any values of the core $k \in\{1, \ldots, d\}$
and $\quad \hat{i_{k}} \in\left\{1, \ldots m_{k}\right\}$
and $\hat{j_{k}} \in\left\{1, \ldots n_{k}\right\}$

Learning For TT-Layer | BackPropagation (5)

$$
\frac{\partial a^{T} X b}{\partial X}=a b^{T}
$$

Learning | Back-Propagation (6)

$$
\Upsilon(\mathbf{i})=\Upsilon\left(i_{k}^{-}, i_{k}, i_{k}^{+}\right)=\sum_{\left(j_{k}^{-}, j_{k}, j_{k}^{*}\right)} P_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right] G_{k}\left[i_{k}, j_{k}\right] P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right] \chi\left(j_{k}^{-}, j_{k}, j_{k}^{+}\right)+B(\mathbf{i})
$$

For any $\quad i_{k} \neq \hat{i_{k}} \quad$ ob $\dot{D_{k}} \neq \hat{j_{k}}$

$$
\frac{\partial \Upsilon\left(i_{k}^{-}, i_{k}, i_{k}^{+}\right)}{\partial G_{k}\left[\hat{i_{k}}, \hat{j_{k}}\right]}=0
$$

Otherwise

$\frac{\partial \Upsilon(i)}{\partial G_{k}\left[\hat{i_{k}}, \hat{j_{k}}\right]}=\sum_{\left(j_{k}^{-}, j_{k}^{+}\right)} P_{k}^{-}\left[i_{k}^{-}, j_{k}^{-}\right]^{T} P_{k}^{+}\left[i_{k}^{+}, j_{k}^{+}\right]^{T} \chi\left(j_{k}^{-}, \hat{j_{k}}, j_{k}^{+}\right)$

$$
\frac{\partial a^{T} X b}{\partial X}=a b^{T}
$$

Results: MNIST

Handwritten images

Results: MNIST

- To investigate properties of TT-layer and different parameters setting using small network with two fully connected layers

Different plot points are obtained by varying TT-rank or matrix rank

\# parameters in the first layer's matrix

Results: Imạ

- 1000 classes
- 1.2 M training images

Results: ImageNet

Replacing three fully connected layers in VGG-16 and VGG-19

Results: ImageNet

Architecture	TT-layers compr.	vgg-16 compr.	vgg-19 compr.	vgg-16 top 1	vgg-16 top 5	vgg-19 top 1	vgg-19 top 5
FC FC FC	1	1	1	30.9	11.2	29.0	10.1
TT4 FC FC	50972	3.9	3.5	31.2	11.2	29.8	10.4
TT2 FC FC	194622	3.9	3.5	31.5	11.5	30.4	10.9
TT1 FC FC	713614	3.9	3.5	33.3	12.8	31.9	11.8
TT4 TT4 FC	37732	7.4	6	32.2	12.3	31.6	11.7
MR1 FC FC	3521	3.9	3.5	99.5	97.6	99.8	99
MR5 FC FC	704	3.9	3.5	81.7	53.9	79.1	52.4
MR50 FC FC	70	3.7	3.4	36.7	14.9	34.5	15.8

[^0]
Ultimate tensorization: compressing convolutional and FC layers alike

Timur Garipov ${ }^{1} \quad$ Dmitry Podoprikhin ${ }^{1,2} \quad$ Alexander Novikov ${ }^{3,4} \quad$ Dmitry Vetrov ${ }^{2,3}$
${ }^{1}$ Moscow State University, Moscow, Russia
${ }^{2}$ Yandex, Moscow, Russia
${ }^{3}$ National Research University Higher School of Economics, Moscow, Russia
${ }^{4}$ Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russia
timgaripov@gmail.com podoprikhin.dmitry@gmail.com
novikov@bayesgroup.ru vetrovd@yandex.ru

Related Work: Ultimate Tensorization (2016)

Extension of TT compression to convolutional layers allows for further compression of Network with small performance decrease

Model	top-1 acc.	compr.
conv-fc (baseline)	90.5	1
conv-TT-fc	90.3	10.72
conv-TT-fc	89.8	19.38
conv-TT-fc	89.8	21.01
TT-conv-TT-fc	90.1	9.69
TT-conv-TT-fc	89.7	41.65
TT-conv-TT-fc	89.4	82.87

Conclusion

- TT-decomposition of weight matrix of a fully-connected layer and using the cores of the decomposition as the parameters of the layer
- Train the fully-connected layers compressed by up to $200000 \times$ compared with the explicit parametrization without significant error increase

Operation	Time	Memory
FC forward pass	$O(M N)$	$O(M N)$
TT forward pass	$O\left(d r^{2} m \max \{M, N\}\right)$	$O(r \max \{M, N\})$
FC backward pass	$O(M N)$	$O(M N)$
TT backward pass	$O\left(d^{2} \mathrm{r}^{4} m \max \{M, N\}\right)$	$O\left(\mathrm{r}^{3} \max \{M, N\}\right)$

Table 1: Comparison of the asymptotic complexity and memory usage of an $M \times N$ TT-layer and an $M \times N$ fully-connected layer (FC). The input and output tensor shapes are $m_{1} \times \ldots \times m_{d}$ and $n_{1} \times \ldots \times n_{d}$ respectively $\left(m=\max _{k=1 \ldots d} m_{k}\right)$ and r is the maximal TT-rank.

Thank You!

[^0]: FC: fully connected layer
 TT[x]: TT layer with all ranks equal to x
 MR[x]: fully connected layer with rank constrained to

