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What is matrix completion?
M ∈ ℝd×d

2

Partially observed subset Ω = {(i, j) |Mij is observed}

Is it possible from the available entries to guess the many 
entries that are missing?

In general it is an impossible task because the unknown 
entries could be anything. However, if one knows that the 
matrix is low rank and makes a few reasonable assumptions, 
then the matrix can be reconstructed.



Recommender systems
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We want to recover the missing elements in the user ratings
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What kind of matrices can 
be recovered?
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No matter how you sample this matrix you need every entry 
to recover it.
✤ There seems a be relation between the sparsity of the 

matrix and the number of required observed samples.

This question seems difficult to answer

[
1 0 0 0
0 0 0 0
0 0 0 0]

− 2 3 4
− 4 6 8
− 6 9 12

✤ The observed entries of the matrix should be selected 
uniformly at random.



Coherence

5

• (Coherence parameter, [Recht 11]) Let  be a subspace 
of  of dimension , and  be the orthogonal projection 
onto . The coherence of  (with respect to the standard 
basis, { , ..., }, is defined to be:

U
Rd r PU

U U
̂e1 ̂ed

• (µ0-Incoherence) Given a matrix  of rank , we say that 
M is -incoherent if:

M r
μ0

max(μ(U), μ(V)) ≤ μ0

μ(U) =
d
r

max
1≤i≤n

| |PU ̂ei | |2



Previous Work
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Convex relaxation (nuclear norm minimization) 
[Recht,Fazel&Parrilo 10][Candes&Recht 08][Candes&Tao 09]
[Recht 11]


min
X

| |X | |*

s.t. Xij = Mij ∀(i, j) ∈ Ω

Optimal sample complexity O(dr log d)

Main drawback speed
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Low-rank factorization [Burer&Monteiro 03]

M Z Z⊤=d

r

Previous Work

min
X∈ℝd×r

f(X) :=
1
2 ∑

(i,j)∈Ω
(Mij − (XX⊤)ij)

2
min

X∈ℝd×r
f(X) :=

1
2 ∑

(i,j)∈Ω
((ZZ⊤)ij − (XX⊤)ij)

2



Putting it all together

f(X) =
1
2 ∑

(i,j)∈Ω
(Mij − (XX⊤)ij)

2
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Partially observed Ω = {(i, j) : Mij is observed}

Each entry is observed with probability p

M is -incoherent, μ μ = d max
i

| |Zi | |2 / | |Z | |F

f(X) =
1
2

| |PΩ(M − XX⊤) | |2
F



This paper’s contribution
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Main Theorem [Informal]: Under usual assumptions, with 
high probability over the choice of ,


All local minima of  are global minima and recover .

Ω

f(X) M

f(X) :=
1
2 ∑

(i,j)∈Ω
(Mij − (XX⊤)ij)

2

Assumptions: 

1.  is -incoherent

2.  is well-conditioned, i.e. has small condition number

3.  (suboptimal)

M μ
M
𝔼{ |Ω |} = pd2 ≳ O(dr6)



Proof technique
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Observation: geometric properties are preserved after 
random sampling

rank-1, restricted to random 2-dimensional subspace

Full observation Partial observation 



Proof technique
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Linear properties are preserved by random sampling.

Law of large numbers

⟨PΩ(A), PΩ(B)⟩ = ⟨A, PΩ(B)⟩ ≈ p⟨A, B⟩

∑
(i,j)∈Ω

Wij = ∑
(i,j)∈[d]×[d]

1(i,j)∈ΩWij ≈ p . ∑
(i,j)∈[d]×[d]

Wij

| |PΩ(A) | |2
F ≈ p . | |A | |2

F

 Objective , its gradient and hessian are linear in ⇒ f 1Ω



Proof idea 
rank-1 case

Full observation Partial observation

g(x) =
1
2

| |zz⊤ − xx⊤ | |2
F

∇g(x) = 0 ⇒ ⟨x, z⟩2 = | |x | |4

∇g(x) = (zz⊤ − xx⊤)x = 0
⇒ ⟨x, ∇g(x)⟩ = 0
⇒ ⟨x, (zz⊤ − xx⊤)x⟩ = 0
⇒ ⟨x, z⟩2 = | |x | |4

f(x) =
1
2

| |PΩ(zz⊤) − PΩ(xx⊤) | |2
F

∇f(x) = 0 ⇒ ⟨x, z⟩2 ≈ | |x | |4

∇f(x) = (PΩ(zz⊤) − PΩ(xx⊤)) x = 0
⇒ ⟨x, ∇f(x)⟩ = 0
⇒ ⟨x, (PΩ(zz⊤) − PΩ(xx⊤)) x⟩ = 0
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⇒ ⟨x, z⟩2 ≈ | |x | |4



Proof idea 
rank-1 case

Full observation Partial observation

g(x) =
1
2

| |zz⊤ − xx⊤ | |2
F

∇2g(x) ⪰ 0 ⇒ | |x | |2 ≥ 1/3
Proof:
∇2g(x) ⪰ 0
⇒ ⟨z, ∇2g(x)z⟩ ≥ 0
⇒ . . .  (elementary calculation)

⇒ | |x | |2 ≥ 1/3 | |z | |2 = 1/3

f(x) =
1
2

| |PΩ(zz⊤) − PΩ(xx⊤) | |2
F

∇2f(x) ⪰ 0 ⇒ | |x | |2 ≥ 1/4
Proof:   
∇2f(x) ⪰ 0
⇒ ⟨z, ∇2f(x)z⟩ ≥ 0
⇒ . . .  (elementary calculation)
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⇒ | |x | |2 ≳ 1/3 | |z | |2 = 1/4



Proof idea 
rank-1 case

Full observation Partial observation

g(x) =
1
2

| |zz⊤ − xx⊤ | |2
F

∇2g(x) ⪰ 0 ⇒ | |x | |2 ≥ 1/3

f(x) =
1
2

| |PΩ(zz⊤) − PΩ(xx⊤) | |2
F

∇2f(x) ⪰ 0 ⇒ | |x | |2 ≥ 1/4

14

∇g(x) = 0 ⇒ ⟨x, z⟩2 = | |x | |4 ∇f(x) = 0 ⇒ ⟨x, z⟩2 ≈ | |x | |4

⟨z, ∇g(x)⟩ = ⟨z, (zz⊤ − xx⊤)x⟩ = 0
⇒ ⟨x, z⟩(1 − | |x | |2 ) = 0
⇒ | |x | |2 = 1 ⇒ x = ± z

⟨x, z⟩2 ≥ 1/9 ⟨x, z⟩2 ≥ 1/16
⟨z, ∇f(x)⟩ = ⟨z, PΩ(zz⊤ − xx⊤)x⟩ = 0
⇒ . . .
⇒ | |x | |2 ≈ 1 ⇒ x ≈ ± z



Proof idea 
rank-1 case
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Concentration inequalities ( ) only hold for incoherent . ≈ x

f(X) :=
1
2 ∑

(i,j)∈Ω
(Mij − (XX⊤)ij)

2
+R(X)

R(X) =
d

∑
i=1

relu4( | |Xi | | − α)

R(Z) = 0



Proof sketch 
(general case)
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∇f(X) = 0 ⇒ max
i

| |Xi | | ≤ 4α

∇2f(X) ⪰ 0 ⇒ σmin(X) ≥
1
4

σmin(Z)

| |XX⊤ − ZZ⊤ | |2
F ≤ O(ϵ)

Lemma [Sun&Luo16]:

There exists  such that

 , and


U
UU⊤ = ZZ⊤

⟨ − ∇f(X), U − X⟩ ≥
p
4

| |M − XX⊤ | |2
F



Results
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SGD finds global minimum from arbitrary initialization

Can be extended to asymmetric and noisy cases

The simple proof technique is applicable in other problems 
with partial observations
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