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Motivation for the paper
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Graph Laplacian and their basic properties
Spectral Clustering Algorithm

Connection to Perturbation theory



Motivation and background (2007)

Aim: a self-contained introduction to spectral clustering.
e (Graph Laplacian and Spectral Clustering algorithm

e Spectral Clustering and its connections to various areas

K-Means Circles Spectral Circles
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Comparison between results of k-means clustering and spectral clustering
(Colour indicates cluster assignment) [2]



Clustering Setting

Goal: 1). High within-group similarity,
2). Low between-group similarity

e Given a set of data points, L1, Z2, - - -, Zn and a similarity measure”
o S:ix € Rd, Y € R? — RT (SZ-’ j = 0) between all pairs of data points

e Construct a similarity graph: G = (V, E)

*domain dependent choice




Types of similarity graphs
A Data points B epsilon-graph, epsilon=0.3 Legend

A) Data points

B) e&-neighborhood graph:
edge (V; ,Vj) exists if
distance(V; ,V5) <€

C) kNN graph:
edge (V;, Uj) exists if
U5 is among U ‘s knearest
nodes

D) Mutual kNN graph:
edge (V;, Uj) exists if
Uj 1s among U;’s knearest
nodes and vice versa.




Similarity Graphs and the Graph Laplacian

From the similarity graph G = (V,E), we can define the following:
e G’s weighted adjacency matrix W

e The degree ofanodei, d;=) w;; ,and G’s diagonal degree matrix D.=d
j=1

Graph Laplacian (L) of G: [, = ) — W

e D is the degree matrix
e W is the weighted adjacency matrix



Similarity Graphs and the Graph Laplacian

From the similarity graph G = (V,E), ?

e Degree matrix D, Adjacency matrix W, Graph Laplacian L
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Properties of Graph Laplacian

L satisfies the following properties:
e vector f € R

o f'Lf :% > wi(fi = f5)

ij=1

e L is symmetric and positive semi-definite

e Leigenvalues 0 =X\ <\ <... <\



0 eigenvalues and the connected components

Proposition (number of connected components): Let G be an undirected graph with
non-negative weight matrix W. Then,
e The multiplicity £ of the eigenvalue 0 of L equals the number of connected
components (7, ..., C} in the graph.
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2 connected components 1 connected component

e The eigenspace of eigenvalue 0 is spanned by k indicator vectors which map the »
nodes to the k& clusters.



Proof

Base Case: k=1 (connected graph)
Assuming fis an eigenvector with eigenvalue 0.
By definition of eigenvalue and eigenvector:

Lf=Af=0-f=0

We know from the properties of the Laplacian that:

FILF = wii(fi—f;)* =0

i,j=1
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Proof

Base Case: k=1 (connected graph)
Assuming f'is an eigenvector with eigenvalue 0. We know from property of Laplacian that:

flLf = Z wij(fi — fj)2 =0

1,7=1

e Ifvertices U; and U are connected ( w; ; > 0), the f; = f;
e Because all nodes are connected by a path, we must have fl — f2 =...= fn

e Therefore f 1s a constant normalized one vector ] for a connected component
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Proof continued

Case: k connected components
e Assume the vertices are ordered according to the connected components they belong to.
e Weighted adjacency W and Laplacian L have a block diagonal form.

(W, 0 - 0 ] L; 0 -« 0
w-|? L= "
0 0 Wk._ | 0 - 0 Lg

e Fach [, isthe Laplacian of i-th connected component



Proof continued

Case: k connected components
e both adjacency W and Laplacian L have a block diagonal form.

-

’L1 D == [
A
_0 s 1) Lk_

e The spectrum of block diagonal matrix L is the union of the spectrums of L;

e From base case, every L; has eigenvalue 0 with multiplicity 1, and the corresponding
eigenvector 1s an indicator vector for the i-th connected component.



Spectral Clustering algorithm
Input: Similarity matrix § ¢ R"™*™ , number of clusters k
1. Compute the Laplacian matrix L
2. Compute the first k smallest non-zero eigenvectors Vi, ..., Vg

3. Let V € R™¥ be the matrix formed by the eigenvectors, each row vector Y; € R”
and these form data points to cluster C',...,Cy

4. Cluster Y; with k-means algorithm into clusters

Output: Clusters (Ay, Ao, ..., A) where A, = {j\yj ~ Cz‘}
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Spectral Clustering algorithm

Core idea of Spectral Clustering:
Project dataset into a nice low dimensional embedding space, then cluster
Questions you might have:

1. Why use the £ smallest eigenvectors of the Laplacian matrix?
a. See upcoming slides
2. Why use k-means for clustering?

a. Actually any other clustering algorithm can be used
b. But the Euclidean distance assumption of k-means is actually motivated here
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Spectral Clustering Algorithm in Action

Histogram of the sample
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Toy example: 200 random points drawn from a mixture of 4 Gaussians
2
| —

52 ) (non-Euclidean)

Similarity function: Gaussian similarity s(z;, z;) = exp(—
Construct K-nearest neighbor graph

spectral clustering using k-means detected the correct clusterings
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Spectral Clustering Algorithm in Action:
Eigenvalue and eigenvectors of Laplacian
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Eigenvalues
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Perturbation theory point of view

ideally: k disconnected components
reality: a connected graph with small between-cluster connectivity

k smallest eigenvectors still similar to ideal case

~

Consider a perturbed symmetric matrix A4 = A + H
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Davis-Kahan Theorem

e Distance between two Eigenspaces 1/, ‘71 : d(Vl, ‘71)

e Spectral Gap is § = min{|\ — s|; A is eigenvalue of A, A& Sy,s € S}
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> 12345678910 ||H||
e Davis-Kahan theorem tells us that: d(Vl : Vl) < T

o  The norm is the Frobenius norm or the Two-norm
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Comments on perturbation theory
For spectral clustering to work properly

® There should be an ideal case where A is block diagonal
e A should be a symmetric matrix

e The entries of eigenvectors away from 0.
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(US)

More covered in the paper

Connection to Graph Cut problems

k -
t(A;, A;
RatioCut(Aq, ..., Ap) = Z cut(A;, A;)

Symmetric and Random-Walk Normalized Graph Laplacians (normalize by degree)
Connection to Random Walk Matrices
Many practical tips for spectral clustering
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Thank you for listening :)
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