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Learning Latent Variable Models

• Unsupervised learning of latent variable models is a fundamental 
machine learning problem

• Such algorithms allow for learning a variety of latent variable models 
such as Topic models, Hidden Markov Models, having varied practical 
applications
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Outline

• What is the misspecified setting?

• Why work with Method of Moments ?

• Why existing Method of Moments algorithms fail?

• SIDIWO

• Behavior in the misspecified setting

• Hierarchical Topic Modeling application
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Misspecified Setting

• Refers to the setting where data generating model and learnt model 
differ in class

• Examples include learning a model with  few number of latent 
variables

• Another example arises from noisy moment estimates
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Model Misspecification

• Important, thus, to design algorithms with meaningful estimation in 
case l < k latent variables

• This setting is referred to as the misspecified setting 

• The setting where l = k is referred to as the realizable setting
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Expectation Maximization

• Expectation Maximization (EM) is preferred despite having theoretical 
limitations due to robustness of the maximum-likelihood principle to 
model misspecification

• Usually requires tuning a single parameter i.e. the dimension of the 
latent variables

• Yields models which are easy to interpret and are useful for data 
visualization in the misspecified setting
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Method of Moment

• Various Method of moments (MoM) algorithms for learning latent 
variable models exist

• Involve solving non-linear system of equations via tensor factorization 
algorithms

• Suffer from lack of robustness to model misspecification
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Why work with MoM algorithms then?

• Provide a stronger theoretical foundation for learning latent variable 
models

• Converges to true parameters, as the data increases in the realizable 
setting

• Require only a single pass over the training data

• Highly parallelizable

• Always terminate in polynomial time
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Single Topic Model

• We consider a single topic model with k topics over a vocabulary with 
d words. 

• Model defines a generative process for text documents

• Model defines a discrete distribution over the topics (              ) as well 
as the words (                                   ) from a given topic.
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Single Topic Model

• The moment equations for such a model are:

 where      denotes the tensor (Kronecker) product between vectors, and
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Method of Moment Algorithm

Applying MoM for learning single topic models involves:

• Computing empirical estimates                       of the moments using a 
collection of n documents

• Factoring the empirical moments using Matrix and Tensor 
decomposition algorithms 

• Solving the system of non-linear equation for model parameters
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Whitening Transformation

• For random variable X ~ N(µ, Σ), whitening transformation results in ), whitening transformation results in 
another random vector whose covariance is the identity matrix

• The components of the new random variable are uncorrelated

• For whitening the covariance matrix Σ), whitening transformation results in , we perform the linear 
transformation using matrix W:
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Example MoM algorithm

• Matrix form for       :

   

   where,  

• Whitening Matrix                       is used 

• There exists a unique orthonormal matrix O, such that
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Example MoM algorithm

•  Denoting the  row of M as       , the  slice of        across its second 
mode can then be written as :

• Substituting   

•  
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Example MoM algorithm

• Whitened slices of        are simultaneously diagonalized by its 
pseudoinverse

• Thus, the problem can be reduced to searching for the common 
diagonalizer O of the whitened slices of       
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Misspecified Setting

• In the misspecified setting,      derived from the low-rank SVD 
truncated at rank l, will be used instead

• The issue here is that the whitened slices that we get i.e.         may not 
be jointly diagonizable
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Simultaneous Diagonalization Based on 
Whitening and Optimization

• The idea is to cast the problem as on optimization problem constrained 
to produce meaningful results incase l < k and optimal results 
otherwise
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Proof of Lemma



Constraining the optimization solution
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• The constraint excludes the trivial zero matrix solution.

• Also guarantees the feasible solutions lay in the column space of M  
as:

• The columns of U are the left singular vectors of



SIDIWO

20Hierarchical Method of Moments



SIDIWO in the misspecified setting

• In the misspecified setting, the optimization solved is :

• Solve using the relation                              for the parameter pair
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Theorem for misspecified setting
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Theorem implications

• The constraint guarantees that the feasible solutions will lie in the best 
l-dimensional subspace approximating column space of M as:

• The columns of       are the left singular vectors of              ,  that fit the 
best l-dimensional subspace of the space generated by columns of M 
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Theorem implications

• From 2 and 3, non-orthogonal columns of M ensure      cannot be sub-
block of original M 

• Instead,       is non-trivial linear combination of its columns laying in 
the best l-dimensional subspace approximating column space of M

• Orthogonal columns of M results in the original space and the l 
column space coinciding for l largest      , recovering top l topics
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Hierarchical Topic Modeling 

• SIDIWO recovers parameters where the l columns of      offer a 
synthetic representation of the k original centers

• Each of the l vector (referred as pseudo-centers) is representative of a 
group of original centers

• A dataset can be iteratively split into 2 smaller subsets (l = 2) 
according to their similarity to the pseudo-centers
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Hierarchical Topic Modeling 

• Assignment is done using Maximum A Posteriori (MAP) to find the 
pseudo-center giving maximum conditional likelihood to each sample 

• The method is generalizable to any latent variable model learned with 
the tensor method of moments (e.g. Latent Dirichlet Allocation)
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Corpus Splitting Algorithm
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• Recursively iterating this process produces a binary tree with higher 
depth nodes having distribution more concentrated on fewer topics



Experiment on Synthetic Data
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• A dataset distributed as a single topic model is created with 100 vocabulary words. 
The 8 topics have an intrinsic hierarchical structure depicted in Figure 1: Left 

• In this figure, topics are on the x-axis, words on the y-axis, and green (resp. red) 
points represents high (resp low) probability.

Figure 1: Left: Visualization of the topics used to generate samples. Center: Hierarchy recovered from SIDIWO. Right: 
Mean and standard deviation over 10 runs for various methods along with run times.



Experiment on Synthetic Data

• 400 samples are generated according to this model

• Corpus splitting algorithm is iteratively run to create a hierarchical 
binary tree with 8 leaves

• Results are displayed in Figure 1: center, where each chart represents a 
node of the tree and contains the heatmap of the samples clustered in 
that node
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Experiment on Synthetic Data

• Each leaf contains samples from one of the topics and internal nodes 
group similar topics together

• The experiment is repeated 10 times with different random samples, 
with the averaged results in the table (Figure 1: Right)

• SIDIWO always recovers the original topic almost perfectly, unlike 
competing methods
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Conclusion

• A MoM based Latent variable model learning algorithm is proposed

• SIDIWO proposes a constrained optimization formulation to produce 
meaningful results even in the misspecified setting

• This allows hierarchical clustering by running the algorithm 
recursively with l = 2, resulting in a divisive binary tree

• The algorithm recovers pseudo-centers that are representative of 
groups of original centers and are assigned data points using MAP
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