Higher-Order Low-Rank Regression

Guillaume Rabusseau, Hachem Kadri
McGill - RLLab / LIF - Qarma

March 14, 2019

Tensors

$\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}$

$$
\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

$\mathbf{M}_{i j} \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right]$

Tensors and Machine Learning

(i) Data has a tensor structure: color image, video, multivariate time series...

(ii) Tensor as parameters of a model: weighted tree automata, factorization machines...

$$
f(\mathbf{x})=\sum_{i, j, k} \mathcal{W}_{i, j, k} \mathbf{x}_{i} \mathbf{x}_{j} \mathbf{x}_{k}
$$

(iii) Tensors as tools: tensor method of moments, system of polynomial equations, layer compression in neural networks...

Outline

(1) Introduction

- Tensors
(2) Low-Rank Regression with Tensor Responses

Tensors

$\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}$

$$
\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

$\mathbf{M}_{i j} \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right]$

Tensors: Matricizations

- $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ can be reshaped into a matrix as

$$
\begin{aligned}
& \mathbf{T}_{(1)} \in \mathbb{R}^{d_{1} \times d_{2} d_{3}} \\
& \mathbf{T}_{(2)} \in \mathbb{R}^{d_{2} \times d_{1} d_{3}} \\
& \mathbf{T}_{(3)} \in \mathbb{R}^{d_{3} \times d_{1} d_{2}}
\end{aligned}
$$

Tensors: Multiplication with Matrices

$\mathbf{A M B}^{\top} \in \mathbb{R}^{m_{1} \times m_{2}}$

Tensors: Multiplication with Matrices

$$
\mathcal{T} \times{ }_{1} \mathbf{A} \times{ }_{2} \mathbf{B} \times{ }_{3} \mathbf{C}
$$

$\in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$

- For vectors, we note $\mathcal{T} \bullet_{n} \mathbf{v}=\mathcal{T} \times{ }_{n} \mathbf{v}^{\top}$

Tucker Decomposition and Multilinear Rank

- Multilinear rank:

$$
\operatorname{rank}_{m /}(\mathcal{T})=\left(R_{1}, R_{2}, R_{3}\right) \Leftrightarrow R_{i}=\operatorname{rank}\left(\mathbf{T}_{(i)}\right) \text { for } i=1,2,3
$$

Tucker Decomposition and Multilinear Rank

- Multilinear rank:

$$
\operatorname{rank}_{m /}(\mathcal{T})=\left(R_{1}, R_{2}, R_{3}\right) \Leftrightarrow R_{i}=\operatorname{rank}\left(\mathbf{T}_{(i)}\right) \text { for } i=1,2,3
$$

- Tucker decomposition: $\boldsymbol{T}=\mathcal{G} \times{ }_{1} \mathbf{U}_{1} \times{ }_{2} \mathbf{U}_{2} \times_{3} \mathbf{U}_{3} \quad(*)$ with $\mathbf{U}_{i}^{\top} \mathbf{U}_{i}=\mathbf{I}$ for all i.

Tucker Decomposition and Multilinear Rank

- Multilinear rank:

$$
\operatorname{rank}_{m /}(\mathcal{T})=\left(R_{1}, R_{2}, R_{3}\right) \Leftrightarrow R_{i}=\operatorname{rank}\left(\mathbf{T}_{(i)}\right) \text { for } i=1,2,3
$$

- Tucker decomposition: $\boldsymbol{T}=\boldsymbol{\mathcal { G }} \times{ }_{1} \mathbf{U}_{1} \times{ }_{2} \mathbf{U}_{2} \times_{3} \mathbf{U}_{3} \quad(*)$ with $\mathbf{U}_{i}^{\top} \mathbf{U}_{i}=\mathbf{I}$ for all i.

- Multilinear rank $=$ the smallest $\left(R_{1}, R_{2}, R_{3}\right)$ such that $(*)$ holds.

Outline

(1) Introduction
(2) Low-Rank Regression with Tensor Responses

- Preliminaries
- Higher-Order Low-Rank Regression
- Function with Low Multilinear Rank
- Theoretical Guarantees
- Experiments
- Conclusion and Future Works

Introduction

- Data with tensor structure: EEG, hyperspectral images, videos, ...

Problem

Learn $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1} \times \cdots \times d_{p}}$ from $\left\{\left(\mathbf{x}^{(n)}, \mathcal{Y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathcal{Y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

Problem

Learn $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1} \times \cdots \times d_{p}}$ from $\left\{\left(\mathbf{x}^{(n)}, \mathcal{Y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathcal{Y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Spatio-Temporal Forecasting (Bahadori et al., 2014)

$$
f(\mathbf{x}) \in \mathbb{R}^{(\text {Times })} \times(\text { Locations }) \times(\text { Variables })
$$

Problem

Learn $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1} \times \cdots \times d_{p}}$ from $\left\{\left(\mathbf{x}^{(n)}, \mathcal{Y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathcal{Y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Multilinear Multitask Learning (Romera-Paredes et al., 2013)

$$
f(\mathbf{x}) \in \mathbb{R}^{(\text {Restaurant Critics }) \times(\text { Evaluation Criteria })}
$$

Rest. 1	Critic 1	Critic 2	Critic 3
host	5	3	6
food	7	8	6.5
price	5	6.5	4

Rest. 2	Critic 1	Critic 2	Critic 3
host	7	8	6
food	8.5	9	9
price	8	9.5	7

Multivariate Regression

Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ from samples $\left\{\left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathbf{y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathbf{W}^{\top} \mathbf{x}$
$\left(\mathbf{W} \in \mathbb{R}^{d \times p}\right)$

Multivariate Regression

Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ from samples $\left\{\left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathbf{y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathbf{W}^{\top} \mathbf{x}$
- Ordinary Least Squares

$$
\hat{\mathbf{W}}=\arg \min \|\mathbf{X W}-\mathbf{Y}\|_{F}^{2} \quad\left(\mathbf{X} \in \mathbb{R}^{N \times d}, \mathbf{Y} \in \mathbb{R}^{N \times p}\right)
$$

Multivariate Regression

Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ from samples $\left\{\left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathbf{y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathbf{W}^{\top} \mathbf{x}$
$\left(\mathbf{W} \in \mathbb{R}^{d \times p}\right)$
- Ordinary Least Squares

$$
\hat{\mathbf{W}}=\underset{\mathbf{W} \in \mathbb{R} d \times p}{\arg \min }\|\mathbf{X W}-\mathbf{Y}\|_{F}^{2} \quad\left(\mathbf{X} \in \mathbb{R}^{N \times d}, \mathbf{Y} \in \mathbb{R}^{N \times p}\right)
$$

\Rightarrow Equivalent to perform p independent linear regressions! How can we capture linear dependencies in the output?

Multivariate Regression

Learn $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{p}$ from samples $\left\{\left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathbf{y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathbf{W}^{\top} \mathbf{x}$
$\left(\mathbf{W} \in \mathbb{R}^{d \times p}\right)$
- Ordinary Least Squares

$$
\hat{\mathbf{W}}=\underset{\mathbf{W} \in \mathbb{R}^{d \times p}}{\arg \min }\|\mathbf{X W}-\mathbf{Y}\|_{F}^{2} \quad\left(\mathbf{X} \in \mathbb{R}^{N \times d}, \mathbf{Y} \in \mathbb{R}^{N \times p}\right)
$$

- Reduced Rank Regression (Izenman, 1975)

$$
\hat{\mathbf{W}}=\underset{\mathbf{W} \in \mathbb{R}^{d \times p}}{\arg \min }\|\mathbf{X W}-\mathbf{Y}\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}(\mathbf{W}) \leq R
$$

Tensor-valued Regression

Learn $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1} \times d_{2}}$ from $\left\{\left(\mathbf{x}^{(n)}, \mathcal{Y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathcal{Y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathcal{W} \bullet_{1} \mathbf{x}$
$\left(\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}\right)$

Tensor-valued Regression

Learn $f: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}^{d_{1} \times d_{2}}$ from $\left\{\left(\mathbf{x}^{(n)}, \mathcal{Y}^{(n)}\right)\right\}_{n=1}^{N}$ where $\mathcal{Y}^{(n)} \simeq f\left(\mathbf{x}^{(n)}\right)$.

- Linear model: $f(\mathbf{x})=\mathcal{W} \bullet_{1} \mathbf{x}$
$\left(\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}\right)$
- Low-Rank Regression for Tensor Structured Response

$$
\underset{\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m I}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

Regression Function with Low Multilinear Rank

$$
\begin{aligned}
& \text { If } f(\mathbf{x})=\mathcal{W} \bullet_{1} \mathbf{x} \quad \text { with } \operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, \cdots, R_{p}\right) \\
& \text { Then } \mathcal{W}=\mathcal{G} \times_{1} \mathbf{U}_{0} \times_{2} \cdots \times_{p+1} \mathbf{U}_{p} \\
& \text { and } f(\mathbf{x})=\mathcal{G} \times_{1} \mathbf{x}^{\top} \mathbf{U}_{0} \times_{2} \mathbf{U}_{1} \times_{3} \cdots \times_{p+1} \mathbf{U}_{p}
\end{aligned}
$$

Regression Function with Low Multilinear Rank

$$
\begin{aligned}
& \text { If } f(\mathbf{x})=\mathcal{W} \bullet_{1} \mathbf{x} \quad \text { with } \operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, \cdots, R_{p}\right) \\
& \text { Then } \mathcal{W}=\mathcal{G} \times_{1} \mathbf{U}_{0} \times_{2} \cdots \times_{p+1} \mathbf{U}_{p} \\
& \text { and } f(\mathbf{x})=\mathcal{G} \times_{1} \mathbf{x}^{\top} \mathbf{U}_{0} \times_{2} \mathbf{U}_{1} \times_{3} \cdots \times_{p+1} \mathbf{U}_{p}
\end{aligned}
$$

- $\operatorname{rank}_{m /}(f(\mathbf{x})) \leq\left(R_{1}, \cdots, R_{p}\right)$.

Regression Function with Low Multilinear Rank

If $f(\mathbf{x})=\mathcal{W} \bullet_{1} \mathbf{x} \quad$ with $\operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, \cdots, R_{p}\right)$
Then $\mathcal{W}=\mathcal{G} \times_{1} \mathbf{U}_{0} \times_{2} \cdots \times_{p+1} \mathbf{U}_{p}$
and $f(\mathbf{x})=\mathcal{G} \times_{1} \mathbf{x}^{\top} \mathbf{U}_{0} \times_{2} \mathbf{U}_{1} \times_{3} \cdots \times_{p+1} \mathbf{U}_{p}$

- $\operatorname{rank}_{m /}(f(\mathbf{x})) \leq\left(R_{1}, \cdots, R_{p}\right)$.
- Low-dimensional mapping:
(i) project \mathbf{x} in $\mathbb{R}^{R_{0}}$ as $\overline{\mathbf{x}}=\mathbf{U}_{0}^{\top} \mathbf{x}$,
(ii) perform a low-dimensional mapping $\overline{\mathcal{Y}}=\mathcal{G} \bullet_{1} \overline{\mathbf{x}} \in \mathbb{R}^{R_{1} \times \cdots \times R_{p}}$,
(iii) project back into the output space to get $\mathcal{Y}=\overline{\mathcal{Y}} \times{ }_{1} \mathbf{U}_{1} \times_{2} \cdots \times_{p} \mathbf{U}_{p}$.

Image Reconstruction from Noisy Measurements

- $\mathcal{W} \in \mathbb{R}^{3 \times 50 \times 50}$ is an RGB image.
- Data is generated by $\mathbf{Y}=\mathcal{W} \bullet_{1} \mathbf{x}+\boldsymbol{\xi}$ where $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$ and $\xi_{i j} \sim \mathcal{N}(0,1)$.
- Training set of size 200.
target

$\operatorname{HOLRR}(3,1,1) \operatorname{HOLRR}(3,4,4$

LRR 1

LRR 2

LRR 3

LRR 4

Image Reconstruction from Noisy Measurements

- $\mathcal{W} \in \mathbb{R}^{3 \times 44 \times 70}$ is an RGB image.
target

LRR 1

LRR 2

LRR 3

LRR 4

Image Reconstruction from Noisy Measurements

- $\mathcal{W} \in \mathbb{R}^{3 \times 70 \times 70}$ is an RGB image.
target

RLS

$\operatorname{HOLRR}(3,1,1) \operatorname{HOLRR}(3,4,4) \operatorname{HOLRR}(3,8,8) \operatorname{HOLRR}(3,16,16)$

LRR 1

LRR 2

LRR 3

LRR 4

Solving the Minimization Problem

Problem

$$
\underset{\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

Solving the Minimization Problem

Problem

$$
\underset{\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m l}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

Multilinear rank constraint is equivalent to:

$$
\mathcal{W}=\mathcal{G} \times{ }_{1} \mathbf{U}_{0} \times_{2} \mathbf{U}_{1} \times_{3} \mathbf{U}_{2}
$$

for $\mathcal{G} \in \mathbb{R}^{R_{0} \times R_{1} \times R_{2}}, \mathbf{U}_{i} \in \mathbb{R}^{d_{i} \times R_{i}}, \mathbf{U}_{i}^{\top} \mathbf{U}_{i}=\mathbf{I}$ for $0 \leq i \leq 2$

Solving the Minimization Problem

Problem

$$
\underset{\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

is equivalent to:

Problem

$$
\begin{aligned}
& \underset{\mathbf{U}_{0}, \mathbf{U}_{1}, \mathbf{U}_{2}}{\arg \min }\left\|\mathcal{Y} \times_{1} \Pi_{0} \times_{2} \Pi_{1} \times_{3} \Pi_{2}-\mathcal{Y}\right\|_{F}^{2} \quad \text { w.r.t. } \mathbf{U}_{i} \in \mathbb{R}^{d_{i} \times R_{i}} \\
& \quad \text { s.t. } \mathbf{U}_{i}^{\top} \mathbf{U}_{i}=\mathbf{I} \text { for } 0 \leq i \leq 2,
\end{aligned}
$$

$$
\boldsymbol{\Pi}_{0}=\mathbf{X U}_{0}\left(\mathbf{U}_{0}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{U}_{0}\right)^{-1} \mathbf{U}_{0}^{\top} \mathbf{X}^{\top}, \quad \boldsymbol{\Pi}_{i}=\mathbf{U}_{i} \mathbf{U}_{i}^{\top} \text { for } 1 \leq i \leq 2
$$

Solving the Minimization Problem

Problem

$$
\underset{\mathcal{W} \in \mathbb{R}^{d_{0} \times d_{1} \times d_{2}}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m l}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

is equivalent to:

Problem

$$
\underset{\arg \min }{\| \mathcal{Y}} \times_{1} \Pi_{0} \times_{2} \Pi_{1} \times_{3} \Pi_{2}-\mathcal{Y} \|_{F}^{2} \quad \text { w.r.t. } \mathbf{U}_{i} \in \mathbb{R}^{d_{i} \times R_{i}}
$$

$$
\mathbf{U}_{0}, \mathbf{U}_{1}, \mathbf{U}_{2}
$$

$$
\text { s.t. } \mathbf{U}_{i}^{\top} \mathbf{U}_{i}=\mathbf{I} \text { for } 0 \leq i \leq 2,
$$

$$
\boldsymbol{\Pi}_{0}=\mathbf{X} \mathbf{U}_{0}\left(\mathbf{U}_{0}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{U}_{0}\right)^{-1} \mathbf{U}_{0}^{\top} \mathbf{X}^{\top}, \quad \boldsymbol{\Pi}_{i}=\mathbf{U}_{i} \mathbf{U}_{i}^{\top} \text { for } 1 \leq i \leq 2
$$

- Find 3 low-dimensional subspaces U_{0}, U_{1}, U_{2} such that projecting \mathcal{Y} onto the spaces $\mathbf{X} U_{0}, U_{1}, U_{2}$ along the corresponding modes is close to \mathcal{Y}.
- NP-hard... Solve arg $\min _{U_{i}}\left\|\mathcal{Y} \times_{i+1} \Pi_{i}-\mathcal{Y}\right\|_{F}^{2}$ instead.

Higher-Order Low-Rank Regression

Algorithm (HOLRR)

Input: $\mathbf{X} \in \mathbb{R}^{N \times d_{0}}, \mathcal{Y} \in \mathbb{R}^{N \times d_{1} \times \cdots \times d_{p}}, \operatorname{rank}\left(R_{0}, R_{1}, \cdots, R_{p}\right)$.
1: $\mathbf{U}_{0} \leftarrow$ top R_{0} eigenvectors of $\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{Y}_{(1)} \mathbf{Y}_{(1)}^{\top} \mathbf{X}$
2: for $i=1$ to p do
3: $\quad \mathbf{U}_{i} \leftarrow$ top R_{i} eigenvectors of $\mathbf{Y}_{(i+1)} \mathbf{Y}_{(i+1)}^{\top}$
4: end for
5: $\mathbf{M}=\left(\mathbf{U}_{0}^{\top} \mathbf{X}^{\top} \mathbf{X U}_{0}\right)^{-1} \mathbf{U}_{0}^{\top} \mathbf{X}^{\top}$
6: $\mathcal{G} \leftarrow \mathcal{Y} \times_{1} \mathbf{M} \times_{2} \mathbf{U}_{1}^{\top} \times_{3} \cdots \times_{p+1} \mathbf{U}_{p}^{\top}$
7: return $\mathcal{W}=\mathcal{G} \times{ }_{1} \mathbf{U}_{0} \times_{2} \cdots \times_{p+1} \mathbf{U}_{p}$

Approximation Guarantees

Problem

$$
(*) \underset{\mathcal{W} \in \mathbb{T} d \times x_{1} \times d_{2}}{\arg \min }\left\|\mathcal{W} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \quad \text { s.t. } \operatorname{rank}_{m /}(\mathcal{W}) \leq\left(R_{0}, R_{1}, R_{2}\right)
$$

Theorem
Let \mathcal{W}^{*} be a solution of $(*)$ and let $\hat{\mathcal{W}}$ be the regression tensor returned by HOLRR. Then,

$$
\left\|\hat{\mathcal{W}} \times_{1} \mathbf{X}-\mathcal{Y}\right\|_{F}^{2} \leq 3\left\|\mathcal{W}^{*} \times_{1} \mathbf{x}-\mathcal{Y}\right\|_{F}^{2} .
$$

Statistical Guarantees

- HOLRR is statistically consistent

Statistical Guarantees

- HOLRR is statistically consistent
- Generalization bound for the class of functions

$$
\mathcal{F}_{m l}=\left\{\mathbf{x} \mapsto \mathcal{W} \bullet_{1} \mathbf{x}: \operatorname{rank}_{m l}(\mathcal{W})=\left(R_{0}, R_{1}, R_{2}\right)\right\}
$$

Theorem

Let $\mathcal{L}: \mathbb{R}^{d_{1} \times d_{2}} \rightarrow \mathbb{R}$ be a loss function bounded by M.
For all $h \in \mathcal{F}_{m l}$, for any $\delta>0$, with probability at least $1-\delta$:

$$
R(h) \leq \hat{R}(h)+M \sqrt{\left.\frac{2 D \log \left(\frac{4 e(p+2) d_{0} d_{1} d_{2}}{\max _{i} \geq 0} d_{i}\right.}{N}\right) \log N}+M \sqrt{\frac{\log \left(\frac{1}{\delta}\right)}{2 N}}
$$

where $D=R_{0} R_{1} R_{2}+\sum_{i=0}^{2} R_{i} d_{j}$.

Statistical Guarantees

- HOLRR is statistically consistent
- Generalization bound for the class of functions

$$
\mathcal{F}_{m l}=\left\{\mathbf{x} \mapsto \mathcal{W} \bullet_{1} \mathbf{x}: \operatorname{rank}_{m /}(\mathcal{W})=\left(R_{0}, R_{1}, R_{2}\right)\right\}
$$

Theorem

Let $\mathcal{L}: \mathbb{R}^{d_{1} \times d_{2}} \rightarrow \mathbb{R}$ be a loss function bounded by M.
For all $h \in \mathcal{F}_{m l}$, for any $\delta>0$, with probability at least $1-\delta$:

$$
R(h) \leq \hat{R}(h)+M \sqrt{\left.\frac{2 D \log \left(\frac{4 e(p+2) d_{0} d_{1} d_{2}}{\max _{i} \geq 0} d_{i}\right.}{N}\right) \log N}+M \sqrt{\frac{\log \left(\frac{1}{\delta}\right)}{2 N}}
$$

where $D=R_{0} R_{1} R_{2}+\sum_{i=0}^{2} R_{i} d_{j}$.

- Without low-rank constraint: $\mathcal{O}\left(\sqrt{d_{0} d_{1} d_{2}}\right)$

Experiments on Synthetic Data

RMSE w.r.t. training data set size.

Data is generated with $\mathcal{Y}=\mathcal{W} \bullet_{1} \mathbf{x}+\boldsymbol{\xi}$ where $\mathcal{W} \in \mathbb{R}^{10 \times 10 \times 10 \times 10}$, $\operatorname{rank}_{m /}(\mathcal{W})=(6,4,4,8), \mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ and $\boldsymbol{\xi}_{i_{1}, i_{2}, i_{3}} \sim \mathcal{N}(0,0.1)$.

Experiments on Real Data

Figure: Task: predict meteorological variables in different locations from their values in the preceding 3 time steps (average over 10 runs). Output is of size 17×125 for CCDS and $5 \times 16 \times 5$ for METEO-UK.

Conclusion and Future Works

- Multilinear extension of low/reduced-rank regression
- Kernel extension \rightarrow nonlinear setting
- Fast (could be even faster), efficient, theoretical guarantees...

Conclusion and Future Works

- Multilinear extension of low/reduced-rank regression
- Kernel extension \rightarrow nonlinear setting
- Fast (could be even faster), efficient, theoretical guarantees...
- Theoretical comparative analysis of HOLRR vs. RLS/LRR (sample complexity analysis, minimax lower bound)
- Study the regularization properties of various notions of tensor rank
- HOLRR is limited to the squared error loss and does not take the tensor structure of the input into account.

Bahadori, M. T., Yu, Q. R., and Liu, Y. (2014). Fast multivariate spatio-temporal analysis via low rank tensor learning. In NIPS.
Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5(2):248-264.

Romera-Paredes, B., Aung, M. H., Bianchi-Berthouze, N., and Pontil, M. (2013). Multilinear multitask learning. In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1444-1452.

