
IFT 6760A - Lecture 14
Johnson − Lindenstrauss theorem

Scribe(s): Abdulmonhem Alkhalil , Adel Nabli, Timothy Nest, Tayssir Doghri Instructor: Ioannis Mitliagkas

1 Summary
In the previous lectures we presented some dimensionality reduction algorithms such as PCA and LLE. The purpose
of these methods is, given a high dimensional dataset, find a lower dimensional space to project the data into that
manages to keep some of the important structural characteristics of the original dataset. For example, in the case of
the PCA, we aim at preserving as much variance as possible.
One important assumption that both PCA and LLE leverage to perform ”good” dimensionality reduction is that the
dataset intrinsically lives in a lower dimensional subspace than the one it is embedded in.

In this lecture we will present a method based on the Johnson-Lindenstrauss theorem that doesn’t require such an hy-
pothesis to guarantee ”good results”. In fact, we will even see that the targeted lower dimension doesn’t even depend
on the original dimension of the data but only on an error rate and on the number of points that make the dataset.
The structural aspect we will aim to preserve here is the pairwise euclidean distance between the data points: we want
to find a low dimensional subspace in which the distance between each pair of points is the same as in the original
high dimensional space. To do that, we will iterate a random projection method.

One application of such a method is performing linear regression in high dimensional datasets: when traditional
methods for solving the linear regression problem are computationally too expensive to perform in high dimension,
one can use this random projection method to speed up the computation without affecting ”too much” the end result.

Note: To give some intuition about what we are doing, we did not specified the terms between quotation marks,
but it is important to note that the measure of goodness of a given method is only defined with respect to its pursued
objective, which is precisely what distinguishes the listed methods of dimensionality reduction from one another. Thus,
it does not make much sense to directly compare those methods as they are designed to fulfill different goals.

2 An outline of the method
In this section, we will try to explain the algorithm used to find the low dimensional projection, the formal definitions
and proofs will be given in the next section. First, let’s formalize our goal.

Goal 1. For any 0 < ε < 1 and any set V of n points in Rd, we want to find a map f ∶ Rd → Rk where k << d such that
for any pair u,v of V , we have:

(1 − ε)∥u − v∥22 ≤ ∥f(u) − f(v)∥22 ≤ (1 + ε)∥u − v∥22

Note: In the original formulation of the Johnson-Lindenstrauss theorem, we set k to be equal to k = O( ln(n)
ε2

).

To give a bit of an intuition on what we are looking for, let’s consider the case of d = 2, n = 2 and k = 1:
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Figure 1: Example with two points in R2

In this example, we found a map f ∶ R2 → R such that the pairwise distance is preserved: ∥f(x1) − f(x2)∥2 =
∥x1 − x2∥2.

We want to generalize this in arbitrary dimension d with arbitrarily many points n. To do so, we will use the proba-
bilistic method, which is defined as follows in [3]:

Definition 2 (Probabilistic method). Trying to prove that a structure with certain desired properties exists, one defines
an appropriate probability space of structures and then shows that the desired properties hold in this space with
positive probability.

To rephrase it in our particular case, for a given ε and dataset V , we will fix k to be equal to a precise value, and to
prove that a map f following Goal 1 exists, we will first specify a set of maps Fk and then show that a randomly
picked one in this set will follow Goal 1 with a probability strictly superior to 0. Therefore, as the probability to find
a ”good” map is non null, there must exist one that follows the desired properties. Thus, to find one, it suffices to pick
at random sufficiently many of them in Fk.

Having understood the spirit of the method, we will now explain in more details the structure of the proof proposed in
[4] that we will present in the next section:

Outline of the proof:

• Step 1: Define a set Fk of possible projections in Rk and pick one f in this set at random.

• Step 2: Show that for any pair of points u,v of V , f preserves the squared l2-norm with a probability ≥ 1 − 2
n2

1. First, show that in average f will preserve the squared distance between two points

2. Then, using a concentration inequality, show that the probability of f being far from this average is ≤ 2
n2

• Step 3: Using a union bound, show that the probability of f preserving all of the pairwise squared distances in
V is greater than 1

n

• Step 4: Deduce that sampling O(n) different f from Fk produces a method that will eventually manage to pick
with constant probability an f that satisfies Goal 1.

Note: It is this property that implies that f can be found in ”randomized polynomial time” in the Johnson -
Lindenstrauss theorem.

3 Proof of the Johnson-Lindenstrauss theorem
We have a set V of n points in Rd and we fix an ε such that 0 < ε < 1.
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3.1 Step 1: sampling a random projection
Let’s take k ∈ N such that

k ≥ 4 ln(n)
ε2/2 − ε3/3 (1)

and let’s consider Fk = { 1√
k
R ∈ Rk×d∣ Ri,j

i.i.d∼ N (0,1)}. We sample F from Fk and define f as f ∶ Rd → Rk
x ↦ Fx

.

Note that we can look at F as F = 1√
k

⎛
⎜
⎝

−R1−
⋮

−Rk−

⎞
⎟
⎠

with∀i ∈ [[1, k]], Ri ∼ N (0, Id×d) and then f ∶ x↦ 1√
k
(xTR1, ...,x

TRk)
T

.

3.2 Step 2: distance preservation between each pairs of points with high probability

Lemma 3. For any pair u,v of V , E [∥f(u) − f(v)∥22] = ∥u − v∥22

Proof. Let’s re-write the expectation as:

E [∥f(u) − f(v)∥22] = E [
k

∑
i=1

(f(u)i − f(v)i)
2] = E [

k

∑
i=1

1

k
(uTRi − vTRi)

2]

= E [
k

∑
i=1

1

k
(u − v)TRiR

T
i (u − v)] =

k

∑
i=1

1

k
(u − v)T E [RiR

T
i ](u − v)

But ∀i ∈ [[1, k]], Ri =
⎛
⎜
⎝

ri,1
⋮
ri,d

⎞
⎟
⎠

with the ri,j
i.i.d∼ N (0,1). Thus,

E [RiR
T
i ] = (E[ri,mri,l])

l,m∈[[1,d]]
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

E[r2i,m] = V[ri,m] = 1 if l =m

E[ri,m]E[ri,l] = 0 otherwise

Then, we have:

E [∥f(u) − f(v)∥22] =
k

∑
i=1

1

k
(u − v)T Id×d(u − v) = ∥u − v∥22

Lemma 4. For any pair u,v of V , we have:

P (∥f(u) − f(v)∥22 > (1 + ε)∥u − v∥22) ≤
1

n2
(2)

P (∥f(u) − f(v)∥22 < (1 − ε)∥u − v∥22) ≤
1

n2
(3)

Proof. In the end, what we want to prove is that the probability of ∥f(u)−f(v)∥22
∥u−v∥22

being outside of [1−ε,1+ε] is smaller

than 2
n2 .

To do that, let’s focus on (2) as showing (3) follows the same principle. First, let’s notice that if we set x = u −v ∈ Rd
and use the definition of f as introduced in Step 1, we have:

∥f(u) − f(v)∥22
∥u − v∥22

= 1

k

∥Rx∥22
∥x∥22

= 1

k∥x∥22

k

∑
i=1

(RT
i x)

2 = 1

k

k

∑
i=1

(RT
i

x

∥x∥2
)2 (4)

But, ∀i ∈ [[1, k]], zi ∶= RT
i

x
∥x∥2 = ∑dj=1 ri,j

xj
∥x∥2 with ri,j

i.i.d∼ N (0,1). Using the fact that a sum of i.i.d gaussian

random variables is still a gaussian random variable, we find that the RT
i

x
∥x∥2 ∼ N(0, 1

∥x∥22
∑dj=1 x2j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

) and then the
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zi
i.i.d∼ N (0,1). Thus, using (4), we can write that proving (2) is equivalent to prove P (∑ki=1 z2i > k(1 + ε)) ≤ 1

n2 .
Introducing a dummy variable α, we write that, for any α > 0:

P (
k

∑
i=1
z2i > k(1 + ε)) = P (eα∑i z

2
i > eαk(1+ε)) (5)

Markov inequality → ≤
E [eα∑i z2i ]
eαk(1+ε)

(6)

the zi are i.i.d→ =
E [eαz21 ]k

eαk(1+ε)
(7)

We now recognize the moment generating function of χ2
1 evaluated in α, which leads us to write [1]:

E [eαz
2
1 ]k = ( 1√

1 − 2α
)
k

(8)

As (8) holds as long as α < 1/2, setting α = ε
2(1+ε) is possible (this particular value of α is the one that minimizes the

right side of the inequality (7)). Then, for this α, we have:

P (
k

∑
i=1
z2i > k(1 + ε)) ≤ ( 1

1 − ε
2(1+ε)

)
k/2
e−

ε
2(1+ε)

k(1+ε) = (1 + ε)k/2e−εk/2 (9)

But, we know that ∀x ≥ 0, ln(1 + x) ≤ x − x2

2
+ x3

3
. Thus, we can use that in (9) to upper bound the (1 + ε)k/2 term:

P (
k

∑
i=1
z2i > k(1 + ε)) ≤ e

εk
2 − k2 ( ε

2

2 − ε33 )
e−εk/2 = e−

k
2
( ε2

2 − ε33 )

Finally, we can use the lower bound on k given in (1) to write:

P (
k

∑
i=1
z2i > k(1 + ε)) ≤ e−2 ln(n) =

1

n2

3.3 Step 3: preservation of all the pairwise distances in V with non-zero probability

Lemma 5. P
⎛
⎝ ⋂
u≠v∈V

{ ∥f(u)−f(v)∥22
∥u−v∥22

∈ [1 − ε,1 + ε]}
⎞
⎠
≥ 1
n

Proof. As we know that in a set of n points there is n(n−1)
2

different pairs, we can write:

P
⎛
⎝ ⋂
u≠v∈V

{∥f(u) − f(v)∥22
∥u − v∥22

∈ [1 − ε,1 + ε]}
⎞
⎠
= 1 − P

⎛
⎝ ⋃
u≠v∈V

{∥f(u) − f(v)∥22
∥u − v∥22

/∈ [1 − ε,1 + ε]}
⎞
⎠

≥ 1 − ∑
u≠v∈V

P
⎛
⎝
{∥f(u) − f(v)∥22

∥u − v∥22
/∈ [1 − ε,1 + ε]}

⎞
⎠

using Lemma 4→ ≥ 1 − n(n − 1)
2

2

n2
= 1

n
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3.4 Conclusion: the Johnson-Lindenstrauss theorem
Theorem 6 (Johnson-Lindenstrauss). For any 0 < ε < 1 and any integer n, let k be a positive integer such that

k ≥ 4 ln(n)
ε2/2 − ε3/3

Then, for any set V of n points in Rd, there is a map f ∶ Rd → Rk such that for all u,v ∈ V ,

(1 − ε)∥u − v∥22 ≤ ∥f(u) − f(v)∥22 ≤ (1 + ε)∥u − v∥22

Furthermore this map can be found in randomized polynomial time.

Note: Alon showed in Theorem 9.3 of [2] that all maps trying to satisfy Goal 1 must have a target dimension k
which is at least Ω( log(n)

ε2 log(ε)), making the lower bound of the Johnson-Lindenstrauss theorem almost optimal.

4 Application of the Johnson-Lindenstrauss theorem to regression
Once we defined Johnson-Lindenstrauss theorem, we present in this section one of its application as a dimensiality
reduction tool to regression [5]. Given a m× p matrix A where m≫ p, we try to solve this linear regression problem:

min
x

∣∣Ax − b∣∣22 (10)

This problem is well studied and there are several methods to solve it exactly. But as [5] points out, the naive matrix
multiplication solving the normal equation for least squares is of complexity O(mp2) and linear programs are of
order at least O(m3) which is prohibitive when we are dealing with lots of data (large m). To improve upon those
complexities, one idea is to relax the objective : instead of finding x∗ solution of (10), we want to find an x that will
allow ∣∣Ax − b∣∣22 to be ”not too far from its true minimum”, which we could write as:

∥Ax − b∥22 ≤ (1 + ε)∥Ax∗ − b∥22 (11)

One way of doing that while reducing the complexity of the method would be to ”project the problem” in a lower
dimension space and solve it there. Let’s write this new problem as:

min
x

∣∣S(Ax − b)∣∣22 (12)

where S is a k × m matrix and k ≪ m. Then, solving (12) becomes tractable if we relocated the problem to a
sufficiently low dimensional one. The question is then: How can we make sure that solving the lower dimensional
problem (12) brings a solution x that respects our relaxed goal (11) ? If we could find an S such that:

∀x ∈ Rp, ∣∣S(Ax − b)∣∣22 = (1 ± ε)∥Ax − b∥22 (13)

then the solution of (12) will verify the relaxed goal (11). And if such an S ∈ Rk×m can also verify k ≪m, we would
be done.

To see how we could find a good S, let’s rewrite our goal (13) in a simpler way and see if it rings a bell. First,
let’s rename u(x) = Ax for any x ∈ Rp. We have that u,b ∈ Rm. Then, we can rewrite (13) and say that we want to
find an S such that:

∀x ∈ Rp, (1 − ε)∥u(x) − b∥22 ≤ ∣∣Su(x) − Sb∣∣22 ≤ (1 + ε)∥u(x) − b∥22 (14)

which looks suspiciously close to the goal reached by the Johnson-Lindenstrauss theorem (here we would have that
the d from Theorem 6 be equal to m). The only thing that prevents us from directly set the S we are looking for to be
equal to the linear map f found by the Johnson-Lindenstrauss theorem is that this theorem can only be applied when
the set of vectors V is finite, whereas here u(x) can take infinitely many values. Let’s remedy this problem.
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First, if we set y ∶= Ax − b, let’s notice that if the requirement (13) is met for any unit vector y then it is satis-
fied for all vector y simply by scaling and because S is a linear map. Thus let’s define S the set we will work on:

S = {y ∈ Rm ∣ y =Ax − b, x ∈ Rp, ∥y∥2 = 1} ⊂ Sm−1 (unit sphere) (15)

Then, to be able to use the Johnson-Lindenstrauss theorem, we will find a finite set (so that we can apply the JL
theorem on it) V ⊂ S not too big (remember that the JL theorem requires setting a k that depends on the size n of the
set V and that we want here k being low), but big enough so that every vector y of S is close to at least one v ∈ V in
a way such that ∥y − v∥2 ≤ 1/2 (a V verifying this property is called a 1

2
-net). We will show that:

1. Lemma 7: Having V a 1
2

-net is sufficient to extend the result of the Johnson-Lindenstrauss theorem for the map
S found for V to all of S.

2. Lemma 8: The V we had to pick is not too big.

Lemma 7. If ∀y ∈ S , ∃v ∈ V s.t ∥y − v∥2 ≤ 1
2

, then ∀y ∈ S, ∥Sy∥22 = (1 ± ε) with S the mapping found by the
Johnson-Lindenstrauss procedure on V

Proof. Here we suppose that ∀y ∈ S , ∃v ∈ V s.t ∥y − v∥2 ≤ 1
2

. Then, let’s take an arbitrary y ∈ S and show that the
Johnson-Leidenstrauss property still holds. We have:

∀y ∈ S, ∃y0 ∈ V s.t y = y0 + (y0 − y) with ∥y − y0∥2 ≤
1

2

But then, y−y0

∥y−y0∥2 ∈ S and we have ∃z ∈ V s.t y − y0 = z + ((y0 − y) − z) with:

∥ y − y0

∥y − y0∥2
− z∥2 ≤

1

2
⇔ ∥y − y0 − z∥y − y0∥2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=y1

∥2 ≤
∥y − y0∥2

2
≤ 1

4

Then, by induction, we have that:
∀y ∈ S, y = y0 + y1 + y2 + ...

with ∀i, ∥yi∥2 ≤ 1
2i

and yi a scalar multiple of an element of V . As we can re-write the JL property on V as a property
on the scalar product:

∀u,v ∈ V, ⟨Su,Sv⟩ = ⟨u,v⟩ ± ε (16)

we can then write:

∀y ∈ S, ∥Sy∥22 = ∥S(y0 + y1 + y2 + ...)∥22
= ( ∑

0≤i<j<∞
∥Syi∥22 + 2⟨yi,yj⟩) ± ε ∑

0≤i<j<∞
∥yi∥2∥yj∥2

= 1 ±O(ε)

Which is what we want to have (if we rescale ε properly).

Lemma 8. We can find a 1
2

-net V ⊂ S of finite size ∣V ∣ ≤ 9p+1 s.t ∀y ∈ S, ∃v ∈ V s.t ∥y − v∥2 ≤ 1
2

Proof. A proof of this lemma can be found in [5] in the proof of its Lemma 5.

What is interesting with this result is that n = ∣V ∣ doesn’t depend on m but only on p. Then, as Theorem 6 requires a

dimension k ≥ 4 ln(∣V ∣)
ε2/2 − ε3/3 , here we could pick k = (p + 1)4 ln(9)

ε2/2 − ε3/3 and solve (12) with complexity O(k3) using a lin-

ear program, at the expense of having to compute the matrix multiplication SA. But in [5] it is said this multiplication
could be done in O(nnz(A)) with nnz(A) the number of non-zero entries of A.

Thus, we can say that we found a way to solve approximately (10) in a way that doesn’t depend on the number
of points m we are considering but only on the dimension p <<m which is exactly what we were looking for.
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