IFT 6760A - Lecture 2 SVD and Orthogonality

Scribe(s): Yann BOUTEILLER, Parviz HAGGI

Instructor: Guillaume Rabusseau

1 Summary

In the previous lecture we reviewed the basics of linear algebra. In this lecture we will first look into the concept of Singular Value Decomposition of a matrix, often called SVD, followed by the concepts of orthogonality and orthogonal projections.

2 Singular Value Decomposition

Theorem 1 (SVD). Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be written as:

 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are both orthogonal matrices (i.e. $\mathbf{U}^T \mathbf{U} = \mathbf{I}_{\mathbf{m}}$ and $\mathbf{V}^T \mathbf{V} = \mathbf{I}_{\mathbf{n}}$) and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ is a diagonal rectangular matrix such that $\boldsymbol{\Sigma}_{i,i} \neq 0$ if and only if $i \leq \operatorname{rank}(\mathbf{A})$

The form $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ is called the Singular-Value Decomposition (SVD) of \mathbf{A} .

Property 2. Let *r* be the rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Let \mathbf{U} and \mathbf{V} be the matrices from the SVD of \mathbf{A} with columns $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^m$ and $\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^m$ respectively. Then the following hold:

- $\mathbf{u}_1, \ldots, \mathbf{u}_r$ forms a basis a basis of $\mathcal{R}(\mathbf{A})$
- $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m$ forms a basis of $\mathcal{N}(\mathbf{A}^T)$
- $\mathbf{v}_1, \ldots, \mathbf{v}_r$ forms a basis a basis of $\mathcal{R}(\mathbf{A}^T)$
- $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ forms a basis of $\mathcal{N}(\mathbf{A})$

Definition 3 (Truncated SVD). *Theorem 1 can be rewritten as:*

$$\mathbf{A}_{(m\times n)} = \underbrace{\mathbf{U}}_{(m\times m)(m\times n)(n\times n)} \mathbf{\Sigma} \underbrace{\mathbf{V}}_{(m\times r)}^{T} = \begin{bmatrix} \widetilde{\mathbf{U}} & \widetilde{\mathbf{U}}_{\perp} \\ (m\times r) & (m\times m-r) \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda} & \mathbf{0} \\ (r\times r) & (r\times n-r) \\ \mathbf{0} & \mathbf{0} \\ (m-r\times r) & (m-r\times n-r) \end{bmatrix} \begin{bmatrix} \mathbf{V}^{T} \\ (r\times n) \\ \widetilde{\mathbf{V}}_{\perp}^{T} \\ (n-r\times n) \end{bmatrix} = \underbrace{\widetilde{\mathbf{U}}}_{(m\times r)(r\times r)(r\times r)(r\times n)} \mathbf{\Lambda} \underbrace{\widetilde{\mathbf{V}}}_{(m\times r)(r\times r)(r\times n)}^{T}$$

Where:

$$\begin{split} \mathbf{\Lambda} \in \mathbb{R}^{r \times r} \text{ is diagonal with } \mathbf{\Lambda}_{i,i} \neq 0 \\ \widetilde{\mathbf{U}}^T \widetilde{\mathbf{U}} = \widetilde{\mathbf{V}}^T \widetilde{\mathbf{V}} = \mathbf{I}_{\mathbf{r}} \ (\widetilde{\mathbf{U}} \text{ and } \widetilde{\mathbf{V}} \text{ are both orthogonal matrices}) \end{split}$$

The form $\mathbf{A} = \widetilde{\mathbf{U}} \mathbf{\Lambda} \widetilde{\mathbf{V}}^T$ is called the Truncated Singular-Value Decomposition (Truncated SVD) of \mathbf{A} .

Remark : In truncated SVD, $\widetilde{\mathbf{U}}$ is such that $\widetilde{\mathbf{U}}^T \widetilde{\mathbf{U}} = \mathbf{I}_r$. However, it is not true in general that $\widetilde{\mathbf{U}}\widetilde{\mathbf{U}}^T = \mathbf{I}_m$. If r < m, we actually know that $\widetilde{\mathbf{U}}\widetilde{\mathbf{U}}^T \neq \mathbf{I}_m$ because \mathbf{I}_m is of rank m, and cannot be linearly generated by $\widetilde{\mathbf{U}}$ of rank r < m.

U is orthogonal, so we have:

$$\underbrace{\mathbf{U}^{T}}_{(m \times m)} = \begin{bmatrix} \widetilde{\mathbf{U}}^{T} \\ \overset{(R \times m)}{\widetilde{\mathbf{U}}_{\perp}^{T}} \\ \overset{(m - R \times m)}{\widetilde{\mathbf{U}}_{\perp}} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{U}} & \widetilde{\mathbf{U}}_{\perp} \\ \overset{(m \times R)}{(m \times m - R)} \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}} & \widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}}_{\perp} \\ \overset{(T \times r)}{\widetilde{\mathbf{U}}_{\perp}^{T} \widetilde{\mathbf{U}}} & \overset{(T \times m - r)}{\widetilde{\mathbf{U}}_{\perp}^{T} \widetilde{\mathbf{U}}_{\perp}} \\ \overset{(m - r \times r)}{(m - r \times m - r)} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{0} \\ \overset{(r \times r)}{(r \times m - r)} \\ \mathbf{0} & \mathbf{I}_{\mathbf{m} - \mathbf{r}} \\ \overset{(m - r \times r)}{(m - r \times m - r)} \end{bmatrix}$$

The same holds for $\mathbf{V}^T \mathbf{V}$ with *n* instead of *m*.

3 Orthogonality and Projections

Definition 4 (The dot product). *The dot product on* \mathbb{R}^n *has the following properties:*

- The dot product $\langle \mathbf{a}, \mathbf{b} \rangle := \mathbf{a}^T \mathbf{b}$ is an inner product on \mathbb{R}^n .
- Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ are orthogonal iff $\langle \mathbf{a}, \mathbf{b} \rangle = 0$.
- The inner product induces a norm on \mathbb{R}^n : $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- A basis $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{R}^n$ of a sub-space \mathcal{U} is orthonormal iff $\begin{cases} \langle u_i, u_j \rangle = 0 & \forall i \neq j \\ \sqrt{\langle u_i, u_i \rangle} = ||u_i|| = 1 & \forall i \end{cases}$

Definition 5 (Orthogonal matrix). A matrix $\mathbf{U} \in \mathbb{R}^{n \times k}$ is orthogonal if its columns form an orthonormal basis of $\mathcal{R}(\mathbf{U})$. Equivalently \mathbf{U} is orthogonal if and only if $\mathbf{U}^T \mathbf{U} = \mathbf{I}$.

Note: $\mathbf{U}\mathbf{U}^T$ is not necessarily equal to the identity matrix: $\mathbf{U}\mathbf{U}^T \neq \mathbf{I}$. However, if the matrix \mathbf{U} is square i.e. $\mathbf{U} \in \mathbb{R}^{n \times n}$, then $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ implies $\mathbf{U}\mathbf{U}^T = \mathbf{I}$

Remark: if $\mathbf{U} \in \mathbb{R}^{n \times k}$ is orthogonal, then $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$. This is easily seen that this follows from the orthogonality of the matrix \mathbf{U} : $\|\mathbf{U}\mathbf{x}\|^2 = \mathbf{x}^T\mathbf{U}^T\mathbf{U}\mathbf{x} = \mathbf{x}^T\mathbf{x} = \|\mathbf{x}\|^2$.

Property 6. If $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{R}^n$ is an orthonormal basis of a sub-space \mathcal{U} ,

 $\mathbf{U} = \begin{bmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times k} \Rightarrow \forall \mathbf{x} \in \mathcal{U}, \ \mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{x}$

Consequently $\|\mathbf{x}\| = \|\mathbf{U}^T\mathbf{x}\|.$

Note: Even though $\mathbf{U}\mathbf{U}^T$ is not the identity matrix, it acts as such on the sub-space \mathcal{U} .

Proof. A vector \mathbf{x} in the sub-space \mathcal{U} can, by definition, be written as a linear combination of its basis vectors. $\mathbf{x} \in \mathcal{U} \Rightarrow \exists \mathbf{a} \in \mathbb{R}^k : \mathbf{x} = \mathbf{U}\mathbf{a}$

To prove that $\mathbf{U}\mathbf{U}^T$ acts as an identity matrix, we look at what it does to \mathbf{x} . Using the fact that \mathbf{x} can be written as a linear combination of the basis vectors of the sub-space \mathcal{U} , and that \mathbf{U} is defined as an orthogonal matrix, we have: $\mathbf{U}\mathbf{U}^T\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{U}\mathbf{a} = \mathbf{U}\mathbf{a} = \mathbf{x}$.

A consequence of this property is that \mathbf{x} and $\mathbf{U}^T \mathbf{x}$ are vectors of the same size: $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x} = (\mathbf{U}\mathbf{U}^T \mathbf{x})^T \mathbf{x} = \mathbf{x}^T \mathbf{U}\mathbf{U}^T \mathbf{x} = (\mathbf{U}^T \mathbf{x})^T (\mathbf{U}^T \mathbf{x}) = \|\mathbf{U}^T \mathbf{x}\|^2$

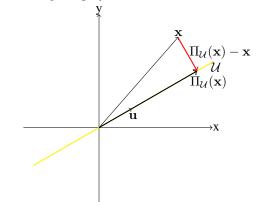
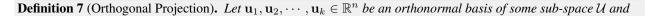


Figure 1: Orthogonal projection of a vector \mathbf{x} onto a sub-space \mathcal{U}



$$U = \begin{bmatrix} | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times k}$$

The orthogonal projection onto U is defined as:

$$\Pi_{\mathcal{U}} : \mathbb{R}^n \to \mathbb{R}^n$$
$$\mathbf{x} \to \mathbf{U}\mathbf{U}^T\mathbf{x}$$

This is well defined and unique. In other words, if there is another orthogonal matrix $\mathbf{V} \in \mathbb{R}^{n \times k}$ such that $\mathcal{R}(\mathbf{V}) = \mathcal{U}$, then we can prove that the two projections are the same: $\mathbf{U}\mathbf{U}^T = \mathbf{V}\mathbf{V}^T$.

Proof. Since the columns of U and V consist of the orthonormal basis vectors of the sub-space \mathcal{U} , they span the same sub-space i.e. they have the same range: $\mathcal{R}(\mathbf{V}) = \mathcal{R}(\mathbf{U})$.

But if this is true, then there must exist a linear map \mathbf{P} between the two matrices:

 $\exists \mathbf{P} \in \mathbb{R}^{k \times k}$ such that $\mathbf{V} = \mathbf{U}\mathbf{P}$

But since the matrices \mathbf{U} and \mathbf{V} are orthogonal, we have:

 $\mathbf{I} = \mathbf{V}^T \mathbf{V} = \mathbf{P}^T \mathbf{U}^T \mathbf{U} \mathbf{P} = \mathbf{P}^T \mathbf{P}$

So we have proven that **P** is also orthogonal. Since **P** is a square matrix, we have that: $\mathbf{P}^T \mathbf{P} = \mathbf{P}\mathbf{P}^T = \mathbf{I}$ Inserting this identity matrix below, we prove that orthogonal projection is unique. $\mathbf{V}\mathbf{V}^T = \mathbf{U}\mathbf{P}\mathbf{P}^T\mathbf{U}^T = \mathbf{U}\mathbf{U}^T$

Definition 8 (Orthogonal Complement). If \mathcal{U} is a sub-space of \mathbb{R}^n , the orthogonal complement of \mathcal{U} is defined as: $\mathcal{U}^{\perp} = \{ \mathbf{v} \in \mathbb{R}^n | \langle \mathbf{u}, \mathbf{v} \rangle = 0 \ \forall \mathbf{u} \in \mathcal{U} \}.$

Property 9. \mathcal{U}^{\perp} is a sub-space of \mathbb{R}^n and $\mathbb{R}^n = \mathcal{U} \oplus \mathcal{U}^{\perp}$.

Proof. Let $\mathbf{u}, \mathbf{v} \in \mathcal{U}^{\perp}$. For any $\mathbf{w} \in \mathcal{U}$ we have $\langle \mathbf{w}, \mathbf{u} + \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{u} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle = 0 + 0 = 0$, so $\mathbf{u} + \mathbf{v} \in \mathcal{U}^{\perp}$. Let $\mathbf{u} \in \mathcal{U}^{\perp}$ and $\alpha \in \mathbb{R}$. Then for any $\mathbf{w} \in \mathcal{U}$ we have $\langle \mathbf{w}, \alpha \mathbf{u} \rangle = \alpha \langle \mathbf{w}, \mathbf{u} \rangle = \alpha 0 = 0$, so $\alpha \mathbf{u} \in \mathcal{U}^{\perp}$. Therefore \mathcal{U}^{\perp} is a sub-space.

We also know that zero must be a part of every sub-space. In fact, zero is the only common element of these two subspaces (Assuming that there is a non-zero vector \mathbf{w} that belongs to both of the sub-spaces \mathcal{U} and \mathcal{U}^{\perp} , using the above definition of \mathcal{U}^{\perp} , it is easily seen that the inner product of \mathbf{w} with itself is 0 i.e. $\langle \mathbf{w}, \mathbf{w} \rangle = 0$ which is contradictory to the assumption that $\mathbf{w} \neq 0$.) A vector $\mathbf{x} \in \mathbb{R}^n$ can be written as $\mathbf{x} = \Pi_{\mathcal{U}}(\mathbf{x}) + \mathbf{v}$. It can be proven (see property 10 below) that the vector $\mathbf{v} = \mathbf{x} - \Pi_{\mathcal{U}}(\mathbf{x})$ must be orthogonal to $\Pi_{\mathcal{U}}(x) \in \mathcal{U}$ and that it must, therefore, belong to the orthogonal complement of \mathcal{U} . So $\mathbb{R}^n = \mathcal{U} + \mathcal{U}^{\perp}$.

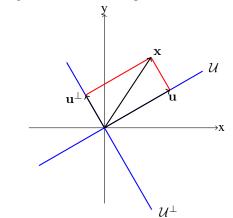


Figure 2: Splitting a vector into its components on two sub-spaces \mathcal{U} and \mathcal{U}^{\perp}

Since 0 is the only vector in common of \mathcal{U} and \mathcal{U}_{\perp} , $\mathbb{R}^n = \mathcal{U} \oplus \mathcal{U}^{\perp}$, i.e. every vector in \mathbb{R}^n can be decomposed uniquely into a sum of two vectors, one belonging to \mathcal{U} and the other to \mathcal{U}^{\perp} .

Property 10. Based on the above definitions of orthogonality and orthogonal complement, we can summarize the following properties of orthogonal projection:

- $\Pi^2_{\mathcal{U}} = \Pi_{\mathcal{U}}$
- $\forall \mathbf{x} : \langle \Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x}) \mathbf{x} \rangle = 0$
- $Im(\Pi_{\mathcal{U}}) = \mathcal{U}$
- $Ker(\Pi_{\mathcal{U}}) = \mathcal{U}^{\perp}$
- $\forall \mathbf{x} : \|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \|\mathbf{x}\|$

Proof. These properties can be proven as follows :

• $\Pi^2_{\mathcal{U}} = \Pi_{\mathcal{U}}$:

To prove this we use the definition of projection in terms of matrices: Knowing that $\mathbf{U}\mathbf{U}^T\mathbf{x}$ is a projection, we have: $\Pi^2_{\mathcal{U}}(\mathbf{x}) = \Pi_{\mathcal{U}}(\mathbf{U}\mathbf{U}^T\mathbf{x}) = \mathbf{U}\mathbf{U}^T\mathbf{U}\mathbf{U}^T\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{x} = \Pi_{\mathcal{U}}(\mathbf{x})$. Note that in this calculation we used $\mathbf{U}^T\mathbf{U} = \mathbf{I}$.

• $\forall \mathbf{x} : \langle \Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x}) - \mathbf{x} \rangle = 0 :$

- Im $(\Pi_{\mathcal{U}}) = \mathcal{U}$: $\forall \mathbf{x} \in \mathbb{R}^n$ we have that $\Pi_{\mathcal{U}}(x) \in \mathcal{U}$ because since U is a basis of \mathcal{U} , $\mathbf{U}\mathbf{U}^T\mathbf{x} \in \mathcal{U}$, so $\mathrm{Im}(\Pi_{\mathcal{U}}) \subset \mathcal{U}$. If $\mathbf{y} \in \mathcal{U}$ then $\Pi_{\mathcal{U}}(\mathbf{y}) = \mathbf{U}\mathbf{U}^T\mathbf{y} = \mathbf{y}$ (see property 6), so $\mathrm{Im}(\Pi_{\mathcal{U}}) \supset \mathcal{U}$. So $\mathrm{Im}(\Pi_{\mathcal{U}}) = \mathcal{U}$
- Ker(Π_U) = U_⊥: Let x ∈ Ker(Π_U). Then Π_U(x) = 0, so UU^Tx = 0. We know from property 9 that x can be uniquely decomposed into x = x' + x'_⊥ where x' ∈ U and x'_⊥ ∈ U_⊥. So 0 = UU^Tx' + UU^Tx'_⊥ = x' + UU^Tx'_⊥. Since x'_⊥ ∈ U_⊥, UU^Tx'_⊥ = 0, so x' = 0.

Therefore $\mathbf{x} = \mathbf{x'}_{\perp} \in \mathcal{U}_{\perp}$, so $\operatorname{Ker}(\Pi_{\mathcal{U}}) \subset \mathcal{U}_{\perp}$. Let $\mathbf{x} \in \mathcal{U}_{\perp}$, then $\forall \mathbf{u} \in \mathcal{U}, \langle \mathbf{u}, \mathbf{x} \rangle = 0$, so $\mathbf{U}\mathbf{U}^T\mathbf{x} = 0$. So $\operatorname{Ker}(\Pi_{\mathcal{U}}) \supset \mathcal{U}_{\perp}$. So $\operatorname{Ker}(\Pi_{\mathcal{U}}) = \mathcal{U}_{\perp}$.

• $\forall \mathbf{x} : \|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \|\mathbf{x}\|$: We know that any vector \mathbf{x} can be uniquely decomposed into two components: one is $\Pi_{\mathcal{U}}(\mathbf{x}) \in \mathcal{U}$, and the other is in \mathcal{U}_{\perp} . For simplicity we call the other component \mathbf{v} . $\mathbf{x} = \Pi_{\mathcal{U}}(\mathbf{x}) + \mathbf{v}$ $\|\mathbf{x}\|^2 = \|\Pi_{\mathcal{U}}(\mathbf{x}) + \mathbf{v}\|^2 = \langle \Pi_{\mathcal{U}}(\mathbf{x}) + \mathbf{v}, \Pi_{\mathcal{U}}(\mathbf{x}) + \mathbf{v} \rangle = \langle \Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x}) \rangle + \langle \Pi_{\mathcal{U}}(\mathbf{x}), \mathbf{v} \rangle + \langle \mathbf{v}, \Pi_{\mathcal{U}}(\mathbf{x}) \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$ Since the vector \mathbf{v} is in the orthogonal complement of \mathcal{U} , it must be orthogonal to all the vectors on \mathcal{U} . $\|\mathbf{x}\|^2 = \|\Pi_{\mathcal{U}}(\mathbf{x})\|^2 + \|\mathbf{v}\|^2 \Rightarrow \|\Pi_{\mathcal{U}}(\mathbf{x})\|^2 \leq \|\mathbf{x}\|^2 \Rightarrow \|\Pi_{\mathcal{U}}(\mathbf{x})\| \leq \|\mathbf{x}\|$

Property 11. Let \mathcal{U} be a subspace of \mathbb{R}^n . Then, for any $\mathbf{x} \in \mathbb{R}^n$ we have $\arg \min_{\mathbf{u} \in \mathcal{U}} \|\mathbf{u} - \mathbf{x}\| = \Pi_{\mathcal{U}}(\mathbf{x})$. I.e. the closest point to \mathbf{x} which belongs to \mathcal{U} is the orthogonal projection of \mathbf{x} onto \mathcal{U} .