IFT 6760A - Lecture 2
 SVD and Orthogonality

1 Summary

In the previous lecture we reviewed the basics of linear algebra. In this lecture we will first look into the concept of Singular Value Decomposition of a matrix, often called SVD, followed by the concepts of orthogonality and orthogonal projections.

2 Singular Value Decomposition

Theorem 1 (SVD). Any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be written as:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}
$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are both orthogonal matrices (i.e. $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{\mathbf{m}}$ and $\mathbf{V}^{T} \mathbf{V}=\mathbf{I}_{\mathbf{n}}$) and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ is a diagonal rectangular matrix such that $\boldsymbol{\Sigma}_{i, i} \neq 0$ if and only if $i \leq \operatorname{rank}(\mathbf{A})$

The form $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$ is called the Singular-Value Decomposition (SVD) of \mathbf{A}.

Property 2. Let r be the rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$. Let \mathbf{U} and \mathbf{V} be the matrices from the SVD of \mathbf{A} with columns $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m} \in \mathbb{R}^{m}$ and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{m}$ respectively. Then the following hold:

- $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ forms a basis a basis of $\mathcal{R}(\mathbf{A})$
- $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}$ forms a basis of $\mathcal{N}\left(\mathbf{A}^{T}\right)$
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ forms a basis a basis of $\mathcal{R}\left(\mathbf{A}^{T}\right)$
- $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}$ forms a basis of $\mathcal{N}(\mathbf{A})$

Definition 3 (Truncated SVD). Theorem 1 can be rewritten as:

$$
\underset{(m \times n)}{\mathbf{A}}=\underset{(m \times m)}{\mathbf{U}} \underset{(m \times n)}{\boldsymbol{\Sigma}} \underset{(n \times n)}{\mathbf{V}^{T}}=\left[\begin{array}{cc}
\widetilde{\mathbf{U}} & \underset{(m \times r)}{\widetilde{\mathbf{U}}_{\perp}} \\
(m \times m-r)
\end{array}\right]\left[\begin{array}{cc}
\underset{(r \times r)}{\boldsymbol{\Lambda}} & \underset{(r \times n-r)}{\mathbf{0}} \\
\underset{(m-r \times r)}{\mathbf{0}} & \underset{(m-r \times n-r)}{\mathbf{0}}
\end{array}\right]\left[\begin{array}{c}
\underset{(r \times n)}{\widetilde{\mathbf{V}}^{T}} \\
\underset{(n-r \times n)}{\widetilde{\mathbf{V}}_{\perp}^{T}}
\end{array}\right]=\underset{(m \times r)(r \times r)(r \times n)}{\widetilde{\mathbf{U}}} \underset{(\underset{(m \times n}{\boldsymbol{\Lambda}}}{\widetilde{\mathbf{V}}^{T}}
$$

Where:

$$
\begin{aligned}
& \mathbf{\Lambda} \in \mathbb{R}^{r \times r} \text { is diagonal with } \boldsymbol{\Lambda}_{i, i} \neq 0 \\
& \tilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}}=\widetilde{\mathbf{V}}^{T} \widetilde{\mathbf{V}}=\mathbf{I}_{\mathbf{r}}(\widetilde{\mathbf{U}} \text { and } \widetilde{\mathbf{V}} \text { are both orthogonal matrices })
\end{aligned}
$$

The form $\mathbf{A}=\widetilde{\mathbf{U}} \boldsymbol{\Lambda} \tilde{\mathbf{V}}^{T}$ is called the Truncated Singular-Value Decomposition (Truncated SVD) of \mathbf{A}.

Remark : In truncated $\underset{\sim}{\operatorname{SVD}}, \widetilde{\mathbf{U}}$ is such that $\tilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}}=\mathbf{I}_{\mathbf{r}}$. However, it is not true in general that $\widetilde{\mathbf{U}} \tilde{\mathbf{U}}^{T}=\mathbf{I}_{\mathbf{m}}$. If $r<m$, we actually know that $\widetilde{\mathbf{U}} \tilde{\mathbf{U}}^{T} \neq \mathbf{I}_{\mathbf{m}}$ because $\mathbf{I}_{\mathbf{m}}$ is of rank m, and cannot be linearly generated by $\widetilde{\mathbf{U}}$ of rank $r<m$.
\mathbf{U} is orthogonal, so we have:

The same holds for $\mathbf{V}^{T} \mathbf{V}$ with n instead of m.

3 Orthogonality and Projections

Definition 4 (The dot product). The dot product on \mathbb{R}^{n} has the following properties:

- The dot product $\langle\mathbf{a}, \mathbf{b}\rangle:=\mathbf{a}^{T} \mathbf{b}$ is an inner product on \mathbb{R}^{n}.
- Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ are orthogonal iff $\langle\mathbf{a}, \mathbf{b}\rangle=0$.
- The inner product induces a norm on $\mathbb{R}^{n}:\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$.
- A basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k} \in \mathbb{R}^{n}$ of a sub-space \mathcal{U} is orthonormal iff $\begin{cases}\left\langle u_{i}, u_{j}\right\rangle=0 & \forall i \neq j \\ \sqrt{\left\langle u_{i}, u_{i}\right\rangle}=\left\|u_{i}\right\|=1 & \forall i\end{cases}$

Definition 5 (Orthogonal matrix). A matrix $\mathbf{U} \in \mathbb{R}^{n \times k}$ is orthogonal if its columns form an orthonormal basis of $\mathcal{R}(\mathbf{U})$. Equivalently \mathbf{U} is orthogonal if and only if $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$.

Note: $\mathbf{U U}^{T}$ is not necessarily equal to the identity matrix: $\mathbf{U U}^{T} \neq \mathbf{I}$. However, if the matrix \mathbf{U} is square i.e. $\mathbf{U} \in \mathbb{R}^{n \times n}$, then $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$ implies $\mathbf{U U}^{T}=\mathbf{I}$

Remark: if $\mathbf{U} \in \mathbb{R}^{n \times k}$ is orthogonal, then $\|\mathbf{U x}\|=\|\mathbf{x}\|$. This is easily seen that this follows from the orthogonality of the matrix $\mathbf{U}:\|\mathbf{U x}\|^{2}=\mathbf{x}^{T} \mathbf{U}^{T} \mathbf{U x}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}$.

Property 6. If $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k} \in \mathbb{R}^{n}$ is an orthonormal basis of a sub-space \mathcal{U},

$$
\mathbf{U}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{R}^{n \times k} \Rightarrow \forall \mathbf{x} \in \mathcal{U}, \mathbf{x}=\mathbf{U U}^{T} \mathbf{x}
$$

Consequently $\|\mathbf{x}\|=\left\|\mathbf{U}^{T} \mathbf{x}\right\|$.

Note: Even though $\mathbf{U} \mathbf{U}^{T}$ is not the identity matrix, it acts as such on the sub-space \mathcal{U}.
Proof. A vector x in the sub-space \mathcal{U} can, by definition, be written as a linear combination of its basis vectors. $\mathbf{x} \in \mathcal{U} \Rightarrow \exists \mathbf{a} \in \mathbb{R}^{k}: \mathbf{x}=\mathbf{U a}$
To prove that $\mathbf{U U}^{T}$ acts as an identity matrix, we look at what it does to \mathbf{x}. Using the fact that \mathbf{x} can be written as a linear combination of the basis vectors of the sub-space \mathcal{U}, and that \mathbf{U} is defined as an orthogonal matrix, we have: $\mathbf{U U}^{T} \mathbf{x}=\mathbf{U U}^{T} \mathbf{U a}=\mathbf{U a}=\mathbf{x}$.
A consequence of this property is that \mathbf{x} and $\mathbf{U}^{T} \mathbf{x}$ are vectors of the same size:
$\|\mathbf{x}\|^{2}=\mathbf{x}^{T} \mathbf{x}=\left(\mathbf{U U}^{T} \mathbf{x}\right)^{T} \mathbf{x}=\mathbf{x}^{T} \mathbf{U U}^{T} \mathbf{x}=\left(\mathbf{U}^{T} \mathbf{x}\right)^{T}\left(\mathbf{U}^{T} \mathbf{x}\right)=\left\|\mathbf{U}^{T} \mathbf{x}\right\|^{2}$

Figure 1: Orthogonal projection of a vector \mathbf{x} onto a sub-space \mathcal{U}

Definition 7 (Orthogonal Projection). Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{k} \in \mathbb{R}^{n}$ be an orthonormal basis of some sub-space \mathcal{U} and

$$
U=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{R}^{n \times k}
$$

The orthogonal projection onto \mathcal{U} is defined as:

$$
\begin{aligned}
\Pi_{\mathcal{U}}: & \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \mathbf{x} \rightarrow \mathbf{U U}^{T} \mathbf{x}
\end{aligned}
$$

This is well defined and unique. In other words, if there is another orthogonal matrix $\mathbf{V} \in \mathbb{R}^{n \times k}$ such that $\mathcal{R}(\mathbf{V})=\mathcal{U}$, then we can prove that the two projections are the same: $\mathbf{U U}^{T}=\mathbf{V} \mathbf{V}^{T}$.

Proof. Since the columns of \mathbf{U} and \mathbf{V} consist of the orthonormal basis vectors of the sub-space \mathcal{U}, they span the same sub-space i.e. they have the same range: $\mathcal{R}(\mathbf{V})=\mathcal{R}(\mathbf{U})$.
But if this is true, then there must exist a linear map \mathbf{P} between the two matrices:
$\exists \mathbf{P} \in \mathbb{R}^{k \times k}$ such that $\mathbf{V}=\mathbf{U P}$
But since the matrices \mathbf{U} and \mathbf{V} are orthogonal, we have:
$\mathbf{I}=\mathbf{V}^{T} \mathbf{V}=\mathbf{P}^{T} \mathbf{U}^{T} \mathbf{U P}=\mathbf{P}^{T} \mathbf{P}$
So we have proven that \mathbf{P} is also orthogonal. Since \mathbf{P} is a square matrix, we have that: $\mathbf{P}^{T} \mathbf{P}=\mathbf{P} \mathbf{P}^{T}=\mathbf{I}$
Inserting this identity matrix below, we prove that orthogonal projection is unique.
$\mathbf{V} \mathbf{V}^{T}=\mathbf{U P P}^{T} \mathbf{U}^{T}=\mathbf{U} \mathbf{U}^{T}$
Definition 8 (Orthogonal Complement). If \mathcal{U} is a sub-space of \mathbb{R}^{n}, the orthogonal complement of \mathcal{U} is defined as: $\mathcal{U}^{\perp}=\left\{\mathbf{v} \in \mathbb{R}^{n} \mid\langle\mathbf{u}, \mathbf{v}\rangle=0 \forall \mathbf{u} \in \mathcal{U}\right\}$.

Property 9. \mathcal{U}^{\perp} is a sub-space of \mathbb{R}^{n} and $\mathbb{R}^{n}=\mathcal{U} \oplus \mathcal{U}^{\perp}$.
Proof. Let $\mathbf{u}, \mathbf{v} \in \mathcal{U}^{\perp}$. For any $\mathbf{w} \in \mathcal{U}$ we have $\langle\mathbf{w}, \mathbf{u}+\mathbf{v}\rangle=\langle\mathbf{w}, \mathbf{u}\rangle+\langle\mathbf{w}, \mathbf{v}\rangle=0+0=0$, so $\mathbf{u}+\mathbf{v} \in \mathcal{U}^{\perp}$.
Let $\mathbf{u} \in \mathcal{U}^{\perp}$ and $\alpha \in \mathbb{R}$. Then for any $\mathbf{w} \in \mathcal{U}$ we have $\langle\mathbf{w}, \alpha \mathbf{u}\rangle=\alpha\langle\mathbf{w}, \mathbf{u}\rangle=\alpha 0=0$, so $\alpha \mathbf{u} \in \mathcal{U}^{\perp}$.
Therefore \mathcal{U}^{\perp} is a sub-space.
We also know that zero must be a part of every sub-space. In fact, zero is the only common element of these two subspaces (Assuming that there is a non-zero vector \mathbf{w} that belongs to both of the sub-spaces \mathcal{U} and \mathcal{U}^{\perp}, using the above definition of \mathcal{U}^{\perp}, it is easily seen that the inner product of \mathbf{w} with itself is 0 i.e. $\langle\mathbf{w}, \mathbf{w}\rangle=0$ which is contradictory to the assumption that $\mathbf{w} \neq 0$.) A vector $\mathbf{x} \in \mathbb{R}^{n}$ can be written as $\mathbf{x}=\Pi_{\mathcal{U}}(\mathbf{x})+\mathbf{v}$. It can be proven (see property 10 below) that the vector $\mathbf{v}=\mathbf{x}-\Pi_{\mathcal{U}}(\mathbf{x})$ must be orthogonal to $\Pi_{\mathcal{U}}(x) \in \mathcal{U}$ and that it must, therefore, belong to the orthogonal complement of \mathcal{U}. So $\mathbb{R}^{n}=\mathcal{U}+\mathcal{U}^{\perp}$.

Figure 2: Splitting a vector into its components on two sub-spaces \mathcal{U} and \mathcal{U}^{\perp}

Since 0 is the only vector in common of \mathcal{U} and $\mathcal{U}_{\perp}, \mathbb{R}^{n}=\mathcal{U} \oplus \mathcal{U}^{\perp}$, i.e. every vector in \mathbb{R}^{n} can be decomposed uniquely into a sum of two vectors, one belonging to \mathcal{U} and the other to \mathcal{U}^{\perp}.

Property 10. Based on the above definitions of orthogonality and orthogonal complement, we can summarize the following properties of orthogonal projection:

- $\Pi_{\mathcal{U}}^{2}=\Pi_{\mathcal{U}}$
- $\forall \mathbf{x}:\left\langle\Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x})-\mathbf{x}\right\rangle=0$
- $\operatorname{Im}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}$
- $\operatorname{Ker}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}^{\perp}$
- $\forall \mathbf{x}:\left\|\Pi_{\mathcal{U}}(\mathbf{x})\right\| \leq\|\mathbf{x}\|$

Proof. These properties can be proven as follows :

- $\Pi_{\mathcal{U}}^{2}=\Pi_{\mathcal{U}}$:

To prove this we use the definition of projection in terms of matrices: Knowing that $\mathbf{U U}^{T} \mathbf{x}$ is a projection, we have: $\Pi_{\mathcal{U}}^{2}(\mathbf{x})=\Pi_{\mathcal{U}}\left(\mathbf{U U}^{T} \mathbf{x}\right)=\mathbf{U} \mathbf{U}^{T} \mathbf{U} \mathbf{U}^{T} \mathbf{x}=\mathbf{U U}^{T} \mathbf{x}=\Pi_{\mathcal{U}}(\mathbf{x})$.
Note that in this calculation we used $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}$.

- $\forall \mathbf{x}:\left\langle\Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x})-\mathbf{x}\right\rangle=0$:

$$
\begin{aligned}
\left\langle\Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x})-\mathbf{x}\right\rangle & =\left\langle\mathbf{U} \mathbf{U}^{T} \mathbf{x}, \mathbf{U} \mathbf{U}^{T} \mathbf{x}-\mathbf{x}\right\rangle \\
& =\mathbf{x}^{T} \mathbf{U U}^{T} \mathbf{U} \mathbf{U}^{T} \mathbf{x}-\mathbf{x}^{T} \mathbf{U} \mathbf{U}^{T} \mathbf{x} \\
& =0
\end{aligned}
$$

- $\operatorname{Im}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}$:
$\forall \mathbf{x} \in \mathbb{R}^{n}$ we have that $\Pi_{\mathcal{U}}(x) \in \mathcal{U}$ because since \mathbf{U} is a basis of $\mathcal{U}, \mathbf{U}^{T} \mathbf{x} \in \mathcal{U}$, so $\operatorname{Im}\left(\Pi_{\mathcal{U}}\right) \subset \mathcal{U}$.
If $\mathbf{y} \in \mathcal{U}$ then $\Pi_{\mathcal{U}}(\mathbf{y})=\mathbf{U} \mathbf{U}^{T} \mathbf{y}=\mathbf{y}$ (see property 6 , so $\operatorname{Im}\left(\Pi_{\mathcal{U}}\right) \supset \mathcal{U}$.
So $\operatorname{Im}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}$
- $\operatorname{Ker}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}_{\perp}:$

Let $\mathbf{x} \in \operatorname{Ker}\left(\Pi_{\mathcal{U}}\right)$. Then $\Pi_{\mathcal{U}}(\mathbf{x})=0$, so $\mathbf{U U}^{T} \mathbf{x}=0$.
We know from property 9 that \mathbf{x} can be uniquely decomposed into $\mathbf{x}=\mathrm{x}^{\prime}+\mathrm{x}^{\prime}{ }_{\perp}$ where $\mathrm{x}^{\prime} \in \mathcal{U}$ and $\mathbf{x}^{\prime}{ }_{\perp} \in \mathcal{U}_{\perp}$.
So $0=\mathbf{U U}^{T} \mathbf{x}^{\prime}+\mathbf{U} \mathbf{U}^{T} \mathbf{x}^{\prime}{ }_{\perp}=\mathbf{x}^{\prime}+\mathbf{U} \mathbf{U}^{T} \mathbf{x}^{\prime}{ }_{\perp}$.
Since $\mathbf{x}^{\prime}{ }_{\perp} \in \mathcal{U}_{\perp}, \mathbf{U U}^{T} \mathbf{x}^{\prime} \perp=0$, so $\mathbf{x}^{\prime}=0$.

Therefore $\mathbf{x}=\mathbf{x}^{\prime}{ }_{\perp} \in \mathcal{U}_{\perp}$, so $\operatorname{Ker}\left(\Pi_{\mathcal{U}}\right) \subset \mathcal{U}_{\perp}$.
Let $\mathbf{x} \in \mathcal{U}_{\perp}$, then $\forall \mathbf{u} \in \mathcal{U},\langle\mathbf{u}, \mathbf{x}\rangle=0$, so $\mathbf{U U}^{T} \mathbf{x}=0$. So $\operatorname{Ker}\left(\Pi_{\mathcal{U}}\right) \supset \mathcal{U}_{\perp}$.
So $\operatorname{Ker}\left(\Pi_{\mathcal{U}}\right)=\mathcal{U}_{\perp}$.

- $\forall \mathbf{x}:\left\|\Pi_{\mathcal{U}}(\mathbf{x})\right\| \leq\|\mathbf{x}\|$:

We know that any vector \mathbf{x} can be uniquely decomposed into two components: one is $\Pi_{\mathcal{U}}(\mathbf{x}) \in \mathcal{U}$, and the other is in \mathcal{U}_{\perp}. For simplicity we call the other component \mathbf{v}.
$\mathbf{x}=\Pi_{\mathcal{U}}(\mathbf{x})+\mathbf{v}$
$\|\mathbf{x}\|^{2}=\left\|\Pi_{\mathcal{U}}(\mathbf{x})+\mathbf{v}\right\|^{2}=\left\langle\Pi_{\mathcal{U}}(\mathbf{x})+\mathbf{v}, \Pi_{\mathcal{U}}(\mathbf{x})+\mathbf{v}\right\rangle=\left\langle\Pi_{\mathcal{U}}(\mathbf{x}), \Pi_{\mathcal{U}}(\mathbf{x})\right\rangle+\left\langle\Pi_{\mathcal{U}}(\mathbf{x}), \mathbf{v}\right\rangle+\left\langle\mathbf{v}, \Pi_{\mathcal{U}}(\mathbf{x})\right\rangle+\langle\mathbf{v}, \mathbf{v}\rangle$
Since the vector \mathbf{v} is in the orthogonal complement of \mathcal{U}, it must be orthogonal to all the vectors on \mathcal{U}.
$\|\mathbf{x}\|^{2}=\left\|\Pi_{\mathcal{U}}(\mathbf{x})\right\|^{2}+\|\mathbf{v}\|^{2} \Rightarrow\left\|\Pi_{\mathcal{U}}(\mathbf{x})\right\|^{2} \leq\|\mathbf{x}\|^{2} \Rightarrow\left\|\Pi_{\mathcal{U}}(\mathbf{x})\right\| \leq\|\mathbf{x}\|$

Property 11. Let \mathcal{U} be a subspace of \mathbb{R}^{n}. Then, for any $\mathbf{x} \in \mathbb{R}^{n}$ we have $\arg \min _{\mathbf{u} \in \mathcal{U}}\|\mathbf{u}-\mathbf{x}\|=\Pi_{\mathcal{U}}(\mathbf{x})$. I.e. the closest point to \mathbf{x} which belongs to \mathcal{U} is the orthogonal projection of \mathbf{x} onto \mathcal{U}.

