
IFT 6760A - Lecture 9
Tensor Decompositions - Part 1

Scribe(s): Gavin McCracken, Koustuv Sinha Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we looked at Weighted Automata (WA) and their relations with Hidden Markov Models
(HMMs) and their use as recurrent models, and corresponding proofs.
This lecture began by introducing notation, definitions and operations on tensors: vectorization, matricization, inner
product, norm, n-mode product. This was followed by an introduction to tensor network notation and examples of
how to use it and subsequently, the outer, Kronecker, and Khatri-Rao products were introduced. The second half of
the lecture introduced the CanDeComp (canonical decomposition)/ParaFac decomposition (parallel factors) (CP) and
how to compute it with the Alternating Least-Squares (ALS) algorithm (which is an approximation algorithm since
computing the CP decomposition is in general an NP-Hard problem). The lecture finished with a series of facts about
tensors, and compared them to matrices.

2 Tensor Network Notation
Before we begin, let us review a very simple and intuitive notation to represent vectors, matrices and tensors. Matri-
ces, vectors and tensors can be represented in a intuitive notation known as Tensor Networks. This graphical language
makes it easy to describe and pictorially reason about operation on tensors and, in quantum physics where it is quite
popular, a system, quantum circuits, channels, protocols and more [1]. Figure 1 explains some basic building blocks
with tensor networks and the corresponding operators.

3 Definitions

3.1 Tensor and its different views and reshaping

Definition 1 (Order-p Tensor). A tensor T , is called order-p if: T ∈ Rd1×d2×⋅⋅⋅×dp , where T i1,i2,...,ip ∈ R for each
i1 ∈ [d1], i2 ∈ [d2], . . . , ip ∈ [dp].

Remark: An order-0 tensor is a scalar, an order-1 tensor is a vector, an order-2 tensor is a matrix, and an order-3
tensor, T ∈ Rd1×d2×d3 , is a cube tensor.
Few more general definitions about tensors and their various forms are given below.

Definition 2 (Slices of a tensor). A slice of an order-3 tensor T is obtained by taking a slice in one direction along
the cube. A slice is obtained by fixing one of the indices of a 3rd order tensor and letting the two others free. There
are three ways of doing this for a 3rd order tensor, leading to the following three kinds of slices:

T j,∶,∶ ∈ Rd2×d3 ,T ∶,j,∶ ∈ Rd1×d3 ,T ∶,∶,j ∈ Rd1×d2
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Figure 1: Basic Tensor Network notations

2



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 9: February 7, 2019

Definition 3 (Fibers of a tensor). Fixing all but one of the indices of a tensor gives a vector, which is called a fiber
of the tensor. Again, there are three ways of doing this for a 3rd order tensor, leading to the following three kinds of
fibers:

mode-1 fiber ∶ T ∶,i,j ∈ Rd1 ,mode-2 fiber ∶ T i,∶,j ∈ Rd2 ,mode-3 fiber ∶ T i,j,∶ ∈ Rd3

As we saw in the definition of slices, we can fix one index of a 3rd order tensor to get a matrix, however that is
only a part of the full tensor. We can represent the entire tensor as matrices by flattening it out using the process of
matricization.

Definition 4 (Matricization). Given a tensor T , the process of matricization reshapes the tensor by flattening it into
a matrix by taking all slices along one direction and stacking them together. For an order-3 tensor, we can have three
modes of matricization based on which slices we stack together. Concretely,

T (1) ∈ Rd1×d2d3 ,T (2) ∈ Rd2×d1d3 ,T (3) ∈ Rd3×d1d2

Definition 5 (Vectorization). Given a tensor T , a vectorization reshapes the tensor by flattening it into a vector. This
is done by first matricization of the tensor along the first mode, and then stacking the columns of the resulting matrix
to obtain a vector. Specifically, vec (T ) = vec (T (1), where the vectorization of a matrix is defined by:

vec
⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

. . .
a1 a2 a3 . . . an

. . .

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1

⋮
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⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3.2 Products with Tensors
Like matrices, various products can be performed over tensors. Due to the higher order of dimensionality, several new
products formulations will also be discussed.

Definition 6 (Inner Product and Norm). An inner product on a tensor is defined by taking the product between all
entries of the two tensors and summing them up. Concretely,

⟨A,B⟩ =∑
ijk

AijkBijk

= ⟨vec (A) ,vec (B)⟩

From this we can define the Frobenius norm of a tensor as:

∣∣A∣∣
2
F = ⟨A,A⟩

= ∣∣vec (A) ∣∣
2
2

= ∣∣A(1)∣∣2F = ∣∣A(2)∣∣2F = ∣∣A(3)∣∣2F
To multiply tensors with matrices and vectors, we use the mode-n product.

Definition 7 (mode-n product). Let T ∈ Rd1×d2×d3 , and U ∈ Rm1×d1 . The mode-1 product of T with U, denoted by
T ×1 U ∈ Rm1×d2×d3 , is defined by:

(T ×1 U)i1,i2,i3 =
d1

∑
k=1

T k,i2,i3Ui,k,

for all i1 ∈ [m1], i2 ∈ [d2], i3 ∈ [d3].
To denote the multiplication of a tensor with a vector, we use the notation T ●1 v = T ×1 v

⊺ ∈ Rd2×d3 .
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Observe that we can express the mode-1 product in term of the first matricization of the tensor T :

(T ×1 U)
(1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m1×d2d3

= U
®

m1×d1

X (1)
±

d1×d2d3

Similarly, we can define the mode-n product for any n by the relation:

(X ×2n V)
(n) =VX (n)

Remark 8. If A is a matrix:

A ×1 U =UA

A ×2 V =AV⊺

Proposition 9. The mode-n product is associative:

(T ×1 A) ×1 B = T ×1 BA

3.3 More products with Tensors
Definition 10 (Outer-Product). The outer product (or tensor product), is defined as follows. Suppose we have three
vectors (order-1 tensors) a ∈ Rd1 ,b ∈ Rd2 , and c ∈ Rd3 . Their outer product is given by:

T = a ○ b ○ c ∈ Rd1×d2×d3 , where T i,j,k = aibjck

Note: While performing outer product, we typically expand the order of the resulting tensor. For example, in the
above example, the final tensor has three modes, each one resulting from one of the order-1 tensors. This generalizes
to all kinds of outer products.

Remark: a ○ b = abT

Definition 11 (Kronecker Product). The Kronecker product operation can be seen as an outer product for matrices.
For two matrices Am×n and Bp×q , the Kronecker product A⊗B ∈ Rmp×nq is defined by

A⊗B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a11B ⋯ a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Remark: a
®

Rm×1

⊗ b
®

Rn×1

= vec (baT )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rmn×1

= vec (b ○ a)

Properties of Kronecker Product:

1. Assuming compatible dimensions of the matrices, we have

(A⊗B)(C⊗D) =AC⊗BD

2. Note that matrix inversion of a Kronecker product can be sped up by using the following fact:

(A⊗B)
−1

=A−1
⊗B−1

(Assuming A and B are invertible.)

3. Identity:
vec (AXB) − (B⊺

⊗A)vec (X)

This identity is very useful to solve equations such as:

AX +XB =C

which can be rewritten as
(I⊗A)vec (X) + (B⊺

⊗ I)vec (X) = vec (C)
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4. The Kronecker product allows us to conveniently express a series of n-mode products in the follwing way: if
X = T ×1 A ×2 B ×3 C, then

X (1) =AT (1)(C⊗B)
⊺

X (2) = BT (2)(C⊗A)
⊺

X (3) =CT (3)(B⊗A)
⊺

Definition 12 (Khatri-Rao Product). The Khatri-Rao product is defined as the “matching columnwise” Kronecker
Product. If A ∈ Rm×R, B ∈ Rn×R, then Khatri Rao product denoted by A⊙B is given by:

A⊙B =
⎛
⎜
⎝

. . .
a1 ⊗ b1 a2 ⊗ b2 . . . aR ⊗ bR

. . .

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rmn×R

Where:

A =
⎛
⎜
⎝

. . .
a1 . . . aR

. . .

⎞
⎟
⎠
m×R

and:

B =
⎛
⎜
⎝

. . .
b1 . . . bR

. . .

⎞
⎟
⎠
n×R

Note that ai ⊗ bi yields an mn-dimensional vector.

4 The CP Decomposition (CANDECOMP / PARAFAC)
The CP decomposition, or CANDECOMP (canonical decomposition) / PARAFAC (parallel factors) factorizes a tensor
into a sum of outer products of vectors (aka a sum of rank one tensors).

Definition 13 (CP Decomposition). Let T ∈ Rd1×d2×d3 , then a CP decomposition factorizes T as a sum of rank one
tensors:

T =
R

∑
r=1

ar ○ br ○ cr

for some a1, . . . ,aR ∈ Rd1

b1, . . . ,bR ∈ Rd2

c1, . . . ,cR ∈ Rd3

Elementwise, we have T i,j,k = ∑
R
r=1(ai)r(bj)r(ck)r

Note: We will use the following shorthand notation for the CP decomposition:

T =
R

∑
r=1

ar ○ br ○ cr = JA,B,CK

where the three factor matrices A,B and C such that:

A =
⎛
⎜
⎝

. . .
a1 . . . aR

. . .

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rd1×R

, B =
⎛
⎜
⎝

. . .
b1 . . . bR

. . .

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rd2×R

and C =
⎛
⎜
⎝

. . .
c1 . . . cR

. . .

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rd3×R
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Figure 2: CP decomposition in Tensor Networks

4.1 Properties of CP decomposition:
1. Using the above definition of factor matrices, we can rewrite the matricizations of a CP decomposition in terms

of the factor matrices. Recall, ⊙ is the Khatri Rao product (Definition 12) discussed above.

If T = JA,B,CK then,
T (1) =A(C⊙B)

⊺

T (2) = B(C⊙A)
⊺

T (3) =C(B⊙A)
⊺

2. The rank of a tensor T is defined as the smallest number of rank-one tensors that generate T as their sum.
RankCP (T ) is the smallest R such that T = ∑

R
n=1 an ○ bn ○ cn for some a1, ..., ak

Proposition 14. For a general third-order tensor T , the following upper bound on its maximum rank holds:

rankCP(T ) ≤min{d1d2, d2d3, d1d3}

Proof.

T =
d1

∑
i=1

d2

∑
j=1

d3

∑
k=1

T ijkei ○ ej ○ ek

=
d1

∑
i=1

d2

∑
j=1

ei ○ ej ○ (
d3

∑
k=1

T ijkek)

T (3) =
d1

∑
i=1

d2

∑
j=1

vec (ei ○ ej)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rd1d2×1

○ (
d3

∑
k=1

T ijkek)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Rd3
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Thus, the rank is at most d1d2; repeating this for the other two matricizations yields the other results, and the total
rank of the tensor is at most the smallest of the three. This bound can be very loose .

The same thing can be done with an m × n matrix M , to show that the largest its rank can be is the minimum of its
number of rows, or number of columns. Mathematically this is: Rank(M) ≤min{m,n}.

4.2 Computing the CP decomposition:
Given T ∈ Rd1×d2×d3 , and some target rank, R, finding the best R-rank approximation of T is an NP-Hard problem:

argminX ∶RankCP (x)≤R
∣∣T −X ∣∣F

For additional reading, we suggest Hillar and Lim [2], who show that most tensor problems are NP-Hard. Since for

A ∈ Rd1×R, B ∈ Rd2×R, C ∈ Rd3×R

solving
argminA∈Rd1×R,B∈Rd2×R,C∈Rd3×R ∣∣T −X ∣∣F

is a very difficult problem (it is not jointly convex in A,B,C). To tackle this NP-Hard problem, we can instead use a
heuristic approach such as the Alternating Least Square (ALS) algorithm. The ALS approach fixes B and C to solve
for A, and then fixes A and C to solve for B, and then fixes B and C to solve for A. It repeats this process until some
convergence criterion is satisfied (Algorithm 4.2). When we fix all but one matrix, the problem reduces to a linear
least square problem:

argmin
Â

∣∣T (1) − Â(C⊙B)
⊺
∣∣F

The optimal solution of which is given by:

Â = T (1)((C⊙B)
⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d2d3×R

)
†

Proof. This follows directly from the fact that

argmin ∣∣Ax − b∣∣ =A†b

Algorithm 1 Alternating Least Squares (ALS)
Input: Tensor T and target rank R
Output: A, B, C each with R columns such that T ≈ JA,B,CK
Output:

Initialize A, B, C randomly
repeat
Â← argminÂ ∣∣T (1) − Â(C⊙B)T ∣∣F ,
B̂← argminB̂ ∣∣T (1) − B̂(C⊙A)T ∣∣F ,
Ĉ← argminĈ ∣∣T (1) − Ĉ(A⊙B)T ∣∣F ,

until < convergence >

4.3 Some Facts and Notes
• the rank of a tensor T ∈ Rd×d×d can be larger than d. Of course, this is not the case with matrices.

• RankCP (T ) can be different over R and C. This is once again not the case with matrices.

• No Eckart-Young Theorem.

• The best rank R approximation may not even exist: there exists a sequence of tensors, X 1,X 2,X 3 . . . of rank
2 converging to a tensor of rank 3.

• The CP decomposition is often, but not always, unique.

7



IFT 6760A - Matrix and tensor factorization for machine learning Lecture 9: February 7, 2019

References
[1] J. Biamonte and V. Bergholm. Tensor networks in a nutshell. arXiv preprint arXiv:1708.00006, 2017.

[2] C. J. Hillar and L. Lim. Most tensor problems are NP hard. CoRR, abs/0911.1393, 2009. URL http://arxiv.
org/abs/0911.1393.

8

http://arxiv.org/abs/0911.1393
http://arxiv.org/abs/0911.1393

	Summary
	Tensor Network Notation
	Definitions
	Tensor and its different views and reshaping
	Products with Tensors
	More products with Tensors

	The CP Decomposition (CANDECOMP / PARAFAC)
	Properties of CP decomposition:
	Computing the CP decomposition:
	Some Facts and Notes


