Generalized Tensor Models for RNNNs Valentin Khrulkov, Oleksii Hrinchuk, Ivan Oseledets (2019)

Tianyu Li, Bhairav Mehta and Koustuv Sinha

IFT 6760A

March 21, 2019

Overview

(1) Motivation
(2) Tensor Decomposition and Neural Networks
(3) Nonlinear Generalization
(4) Main Results
(5) Experiments
(6) Conclusion

Motivation

- RNNs have been widely applied in many fields
- Theoretical side of RNNs is lacking
- Natural relationship between tensor decomposition and linear neural networks
- Work with tensor instead for analysis

Why Depth?

- Shown recently that depth allows neural networks to express rich functions with relatively few parameters.
- Theory not well understood, due to difficulty of incorporating nonlinearities during analysis.

Basics - Data representation

- Suppose we are given a dataset of sequential structure:

$$
\mathbf{X}=\left(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(T)}\right), \mathbf{x}^{t} \in \mathbb{R}^{N}
$$

- Transform the dataset in a feature tensor $\Phi(\mathbf{X})$ which is an outer product of the feature vectors.

$$
\begin{gathered}
f_{\theta}(\mathbf{x})=\sigma(A \mathbf{x}+b) \\
\Phi(\mathbf{X})=f_{\theta}\left(\mathbf{x}^{(\mathbf{1})}\right) \otimes f_{\theta}\left(\mathbf{x}^{(2)}\right) \cdots \otimes f_{\theta}\left(\mathbf{x}^{(\mathbf{T})}\right)
\end{gathered}
$$

Basics - Generalized Score function

- To get an estimate (such as MLE), we can use a tensor \mathcal{W} of the same order as our feature tensor $\Phi(\mathbf{X})$
- The estimate or score function can be expressed as:

$$
\mathcal{L}(X)=\langle\mathcal{W}, \Phi(\mathbf{X})\rangle=(\operatorname{vec}(\mathcal{W}))^{\top} \operatorname{vec}(\Phi(\mathbf{X}))
$$

Representing the core tensor

- $\mathcal{W} \in \mathcal{R}^{m \times m \times \ldots m}$ is a trainable weight tensor.
- The inner product shown in last slide is just the total sum of the entry-wise product of $\Phi(\mathbf{X})$ and \mathcal{W}
- Storing the full tensor \mathcal{W} requires exponential amount of memory.
- We therefore use tensor decompositions to efficiently represent this weight tensor.
- Rank of the decomposition determine the complexity of the architecture.

Tensor Decomposition

- CP Decomposition:

$$
\begin{gathered}
\mathcal{W}=\sum_{r=1}^{R} \lambda_{r} \mathbf{v}_{r}^{(1)} \otimes \mathbf{v}_{r}^{(2)} \cdots \otimes \mathbf{v}_{r}^{T} \\
\mathcal{L}(X)=\sum_{r=1}^{R} \lambda_{r} \prod_{t=1}^{T}\left\langle f_{\theta}\left(\mathbf{x}^{(t)}\right), \mathbf{v}_{r}^{(t)}\right\rangle
\end{gathered}
$$

- Tensor Train Decomposition:

$$
\begin{gathered}
\mathcal{W}=\sum_{r_{1}=1}^{R_{1}} \cdots \sum_{r_{T-1}=1}^{R_{T-1}} \mathbf{g}_{r_{0} r_{1}}^{(1)} \otimes \mathbf{g}_{r_{1} r_{2}}^{(2)} \otimes \cdots \otimes \mathbf{g}_{r_{T-1} r_{T}}^{(T)} \\
\mathcal{L}(X)=\sum_{r_{1}=1}^{R_{1}} \cdots \sum_{r_{T-1}=1}^{R_{T-1}} \prod_{t=1}^{T}\left\langle f_{\theta}\left(\mathbf{x}^{(t)}\right), \mathbf{g}_{r_{T-1} r_{T}}^{(t)}\right\rangle
\end{gathered}
$$

CP Decomposition and Shallow Networks

$$
\mathcal{L}(X)=\sum_{r=1}^{R} \lambda_{r} \prod_{t=1}^{T}\left\langle f_{\theta}\left(\mathbf{x}^{(t)}, \mathbf{v}_{r}^{(t)}\right)\right\rangle
$$

Tensor Trains and RNNs

- Idea: Show that TT exhibits particular recurrent structure as RNN.

$$
\mathbf{h}_{k}^{(t)}=\sum_{i, j} \mathcal{G}_{i j k}^{(t)} f_{\theta}\left(\mathbf{x}^{(t)}\right)_{i} \mathbf{h}_{j}^{(t-1)}=\sum_{i, j} \mathcal{G}_{i j k}^{(t)}\left[f_{\theta}\left(\mathbf{x}^{(t)}\right) \otimes \mathbf{h}^{(t-1)}\right]_{i, j}
$$

- Combining the core tensors and weights to a single variable, we can rewrite the above equation in a general RNN formulation:

$$
\mathbf{h}^{(t)}=g\left(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)} ; \Theta_{\mathcal{G}}^{(t)}\right), \mathbf{h}^{(t)} \in \mathbb{R}^{R_{t}}
$$

Generalized Outer Product

- TTs \rightarrow NNs of specific structure, simpler than the ones used in practice:

Only multiplicative nonlinearities allowed

- Idea: Change the nonlinearity

$$
\otimes \rightarrow \otimes_{\xi}
$$

- Generalized outer product, define ξ as an associative and commutative operator:

$$
\begin{aligned}
\mathcal{C} & =\mathcal{A} \otimes_{\xi} \mathcal{B} \\
\mathcal{C}_{i_{1} \cdots i_{N j} \cdots j_{M}} & =\xi\left(\mathcal{A}_{i_{1} \cdots i_{N}}, \mathcal{B}_{j_{1} \cdots j_{M}}\right)
\end{aligned}
$$

Generalized Outer Product

- Replace previous RNNs' outer product with new operator to get:

$$
\xi(x, y)=\left\{\begin{aligned}
\max (x, y, 0) & \text { ReLU } \\
\ln \left(e^{x}+e^{y}\right) & \text { SoftPlus } \\
x y & \text { Multiplicative }
\end{aligned}\right.
$$

Generalized Shallow Network with ξ-nonlinearity

- Score function:

$$
\begin{aligned}
\mathcal{L}(\mathbf{X}) & =\sum_{r=1}^{R} \lambda_{r}\left[\left\langle f_{\theta}\left(\mathbf{x}^{(1)}\right), \mathbf{v}_{r}^{(1)}\right\rangle \otimes_{\xi} \cdots \otimes_{\xi}\left\langle f_{\theta}\left(\mathbf{x}^{(T)}\right), \mathbf{v}_{r}^{(T)}\right\rangle\right] \\
& =\sum_{r=1}^{R} \lambda_{r} \xi\left(\left\langle f_{\theta}\left(\mathbf{x}^{(1)}\right), \mathbf{v}_{r}^{(1)}\right\rangle, \cdots,\left\langle f_{\theta}\left(\mathbf{x}^{(T)}\right), \mathbf{v}_{r}^{(T)}\right\rangle\right)
\end{aligned}
$$

- Parameters of the network:

$$
\Theta=\left(\left\{\lambda_{r}\right\}_{r=1}^{R} \in \mathbb{R},\left\{\mathbf{v}_{r}^{(t)}\right\}_{r=1, t=1}^{R, T} \in \mathbb{R}^{M}\right)
$$

- Can do same with RNNs to get a Generalized RNN

Great, and we are done?

- Switching $\otimes \rightarrow \otimes_{\xi}$ allows us to analyze more complex RNNs
- But, makes connection between RNNs and their TTs difficult to understand
- Weight tensor no longer exists for each and every generalized tensor network:

$$
\mathcal{L}(\mathbf{X})=\langle\mathcal{W}, \Phi(\mathbf{X})\rangle
$$

Grid Tensors

- Cohen and Shashua (2016) introduced grid tensors: M fixed vectors \mathbb{X} (templates) $\rightarrow G T$ of order T and dimension M in each mode:

$$
\Gamma^{\mathcal{L}}(\mathbb{X})_{i_{1}, i_{2}, \cdots, i_{T}}=\mathcal{L}(\mathbf{X}), \quad \mathbf{X}=\left(\mathbf{x}^{\left(i_{1}\right)}, \mathbf{x}^{\left(i_{2}\right)}, \cdots, \mathbf{x}^{\left(i_{T}\right)}\right)
$$

- Evaluate score function on every possible input combination of the template vectors, instead of all possible input sequences.

Grid Tensors

- Define a feature matrix $\mathbf{F} \in \mathbb{R}^{M \times M}$
- Run representation function $f_{\theta}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ on each $\mathbf{x}^{(t)} \in \mathbb{X}$:

$$
\mathbf{F}=\left[f_{\theta}\left(\mathbf{x}^{(1)}\right), f_{\theta}\left(\mathbf{x}^{(2)}\right), \cdots, f_{\theta}\left(\mathbf{x}^{(M)}\right)\right]
$$

- Each generalized tensor network has a corresponding grid tensor (shown: generalized shallow network)

$$
\Gamma^{\mathcal{L}}(\mathbb{X})=\sum_{r=1}^{R} \lambda_{r}\left(\mathbf{F} \mathbf{v}_{r}^{(1)}\right) \otimes_{\xi}\left(\mathbf{F v}_{r}^{(2)}\right) \otimes_{\xi} \cdots \otimes_{\xi}\left(\mathbf{F v}_{r}^{(T)}\right)
$$

Overview of the main results

Two problems need to be considered:

- Universality

Can every tensor realizes a (generalized) shallow network/RNN ?

- Expressivity

To represent the same function, which model uses less parameters?

Universality

- Regular case (linear outer product): Holds automatically

$$
\mathcal{L}(\mathbf{X})=\langle\mathcal{W}, \Phi(\mathbf{X})\rangle
$$

- Generalized case (Non-linear outer product): Can no longer work with \mathcal{W}. Instead, work with the grid tensor:

$$
\Gamma^{\mathcal{L}}(\mathbb{X})_{i_{1}, i_{2}, \cdots, i_{T}}=\mathcal{L}(\mathbf{X}), \quad \mathbf{X}=\left(X^{\left(i_{1}\right)}, X^{\left(i_{2}\right)}, \cdots, X^{\left(i_{T}\right)}\right)
$$

Universality

Theorem 1

Given an arbitrary tensor $\mathcal{H} \in \mathbb{R}^{M \times M \times \cdots \times M}$ and a template \mathbb{X}, let the grid tensors for a:

- Generalized ${ }^{a}$ shallow network $\tilde{\mathcal{S}}$ be: $\Gamma^{\mathcal{S}}(\mathbb{X})$
- Generalized ${ }^{a}$ RNN $\tilde{\mathcal{G}}$ be: $\Gamma^{\mathcal{G}}(\mathbb{X})$

Then we can find $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{G}}$ such that:

$$
\mathcal{H}=\Gamma^{\mathcal{S}}(\mathbb{X})=\Gamma^{\mathcal{G}}(\mathbb{X})
$$

${ }^{a}$ All the results are based on rectifier nonlinearity

Expressivity

- Goal: compare models' representation ability in terms of their parameters
- Linear case: simply compare the rank of the tensor \mathcal{W}
- Generalized case: compare in terms of the grid tensor $\Gamma^{\mathcal{L}}(\mathbb{X})$

Expressivity

Theorem 2

Given a generalized RNN of rank at most R and its grid tensor $\Gamma^{\mathcal{G}}(\mathbb{X})$, its realization of generalized shallow network can be written as:

$$
\Gamma^{\mathcal{G}}(\mathbb{X})=\Gamma^{\mathcal{S}}(\mathbb{X})=\sum_{r=1}^{\hat{R}} \lambda_{r}\left(\mathbf{F} \mathbf{v}_{r}^{(1)}\right) \otimes_{\xi}\left(\mathbf{F} \mathbf{v}_{r}^{(2)}\right) \otimes_{\xi} \cdots \otimes_{\xi}\left(\mathbf{F} \mathbf{v}_{r}^{(T)}\right)
$$

There exists $\tilde{\mathcal{G}_{1}}$, such that $\hat{R} \geq \frac{2}{M T} \min (M, R)^{T / 2}$;

Expressivity

Theorem 3

Given a generalized RNN of rank R and its grid tensor $\Gamma^{\mathcal{G}}(\mathbb{X})$, its realization of generalized shallow network can be written as:

$$
\Gamma^{\mathcal{G}}(\mathbb{X})=\Gamma^{\mathcal{S}}(\mathbb{X})=\sum_{r=1}^{\hat{R}} \lambda_{r}\left(\mathbf{F} \mathbf{v}_{r}^{(1)}\right) \otimes_{\xi}\left(\mathbf{F} \mathbf{v}_{r}^{(2)}\right) \otimes_{\xi} \cdots \otimes_{\xi}\left(\mathbf{F} \mathbf{v}_{r}^{(T)}\right)
$$

There exists $\tilde{\mathcal{G}}_{2}$, such that $\hat{R}=1$

Experiment on IMDB sentiment analysis

Figure 2: Test accuracy on IMDB dataset for generalized RNNs and generalized shallow networks with respect to the total number of parameters ($M=50, T=100, \xi(x, y)=\max (x, y, 0)$).

Experiment on Synthetic Data

Figure 3: Distribution of lower bounds on the rank of generalized shallow networks equivalent to randomly generated generalized RNNs of ranks $1,2,4,8(M=10, T=6)$.

Conclusion

- Draw links between RNNs and TT decomposition
- Introduce nontrivial nonlinearity into tensor framework
- Provide theoretical analysis on universality and expressivity under rectifier nonlinearity
- Extend this to LSTM and attention? Other nonlinearities?

Thank You

