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Motivation

RNNs have been widely applied in many fields

Theoretical side of RNNs is lacking

Natural relationship between tensor decomposition and linear neural
networks

Work with tensor instead for analysis
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Why Depth?

Shown recently that depth allows neural networks to express rich
functions with relatively few parameters.

Theory not well understood, due to difficulty of incorporating
nonlinearities during analysis.
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Basics - Data representation

Suppose we are given a dataset of sequential structure:

X = (x(1), x(2), · · · , x(T )), xt ∈ RN

Transform the dataset in a feature tensor Φ(X) which is an outer
product of the feature vectors.

fθ(x) = σ(Ax + b)

Φ(X) = fθ(x(1))⊗ fθ(x(2)) · · · ⊗ fθ(x(T))
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Basics - Generalized Score function

To get an estimate (such as MLE), we can use a tensor W of the
same order as our feature tensor Φ(X)

The estimate or score function can be expressed as:

L(X ) = 〈W ,Φ(X)〉 = (vec(W))>vec(Φ(X))
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Representing the core tensor

W ∈ Rm×m×...m is a trainable weight tensor.

The inner product shown in last slide is just the total sum of the
entry-wise product of Φ(X) and W
Storing the full tensor W requires exponential amount of memory.

We therefore use tensor decompositions to efficiently represent this
weight tensor.

Rank of the decomposition determine the complexity of the
architecture.
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Tensor Decomposition

CP Decomposition:

W =
R∑

r=1

λrv
(1)
r ⊗ v

(2)
r · · · ⊗ vTr

L(X ) =
R∑

r=1

λr

T∏
t=1

〈fθ(x(t)), v
(t)
r 〉

Tensor Train Decomposition:

W =

R1∑
r1=1

· · ·
RT−1∑

rT−1=1

g
(1)
r0r1 ⊗ g

(2)
r1r2 ⊗ · · · ⊗ g

(T )
rT−1rT

L(X ) =

R1∑
r1=1

· · ·
RT−1∑

rT−1=1

T∏
t=1

〈fθ(x(t)), g
(t)
rT−1rT 〉

8 / 26



CP Decomposition and Shallow Networks

L(X ) =
R∑

r=1

λr

T∏
t=1

〈fθ(x(t), v
(t)
r )〉
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Tensor Trains and RNNs

Idea: Show that TT exhibits particular recurrent structure as RNN.

h
(t)
k =

∑
i ,j

G(t)ijk fθ(x(t))ih
(t−1)
j =

∑
i ,j

G(t)ijk [fθ(x(t))⊗ h(t−1)]i ,j

Combining the core tensors and weights to a single variable, we can
rewrite the above equation in a general RNN formulation:

h(t) = g(h(t−1), x(t); Θ
(t)
G ), h(t) ∈ RRt
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Generalized Outer Product

TTs → NNs of specific structure, simpler than the ones used in
practice:

Only multiplicative nonlinearities allowed

Idea: Change the nonlinearity

⊗ → ⊗ξ

Generalized outer product, define ξ as an associative and
commutative operator:

C = A⊗ξ B

Ci1···iN j1···jM = ξ(Ai1···iN ,Bj1···jM )
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Generalized Outer Product

Replace previous RNNs’ outer product with new operator to get:

ξ(x , y) =


max(x , y , 0) ReLU

ln(ex + ey ) SoftPlus

xy Multiplicative
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Generalized Shallow Network with ξ-nonlinearity

Score function:

L(X) =
R∑

r=1

λr [〈fθ(x(1)), v
(1)
r 〉 ⊗ξ · · · ⊗ξ 〈fθ(x(T )), v

(T )
r 〉]

=
R∑

r=1

λrξ(〈fθ(x(1)), v
(1)
r 〉, · · · , 〈fθ(x(T )), v

(T )
r 〉)

Parameters of the network:

Θ = ({λr}Rr=1 ∈ R, {v(t)r }R,Tr=1,t=1 ∈ RM)

Can do same with RNNs to get a Generalized RNN
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Great, and we are done?

Switching ⊗ → ⊗ξ allows us to analyze more complex RNNs

But, makes connection between RNNs and their TTs difficult to
understand

Weight tensor no longer exists for each and every generalized tensor
network:

L(X) = 〈W,Φ(X)〉
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Grid Tensors

Cohen and Shashua (2016) introduced grid tensors:
M fixed vectors X (templates) → GT of order T and dimension M in
each mode:

ΓL(X)i1,i2,··· ,iT = L(X), X = (x(i1), x(i2), · · · , x(iT ))

Evaluate score function on every possible input combination of the
template vectors, instead of all possible input sequences.
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Grid Tensors

Define a feature matrix F ∈ RM×M

Run representation function fθ : RN → RM on each x(t) ∈ X:

F = [fθ(x(1)), fθ(x(2)), · · · , fθ(x(M))]

Each generalized tensor network has a corresponding grid tensor
(shown: generalized shallow network)

ΓL(X) =
R∑

r=1

λr (Fv
(1)
r )⊗ξ (Fv

(2)
r )⊗ξ · · · ⊗ξ (Fv

(T )
r )
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Overview of the main results

Two problems need to be considered:

Universality
Can every tensor realizes a (generalized) shallow network/RNN ?

Expressivity
To represent the same function, which model uses less parameters?
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Universality

Regular case (linear outer product): Holds automatically

L(X) = 〈W,Φ(X)〉

Generalized case (Non-linear outer product): Can no longer work with
W. Instead, work with the grid tensor:

ΓL(X)i1,i2,··· ,iT = L(X), X = (X (i1),X (i2), · · · ,X (iT ))
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Universality

Theorem 1

Given an arbitrary tensor H ∈ RM×M×···×M and a template X, let the grid
tensors for a:

Generalizeda shallow network S̃ be: ΓS(X)

Generalizeda RNN G̃ be: ΓG(X)

Then we can find S̃ and G̃ such that:

H = ΓS(X) = ΓG(X)

aAll the results are based on rectifier nonlinearity
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Expressivity

Goal: compare models’ representation ability in terms of their
parameters

Linear case: simply compare the rank of the tensor W
Generalized case: compare in terms of the grid tensor ΓL(X)
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Expressivity

Theorem 2

Given a generalized RNN of rank at most R and its grid tensor ΓG(X), its
realization of generalized shallow network can be written as:

ΓG(X) = ΓS(X) =
R̂∑

r=1

λr (Fv
(1)
r )⊗ξ (Fv

(2)
r )⊗ξ · · · ⊗ξ (Fv

(T )
r )

There exists G̃1, such that R̂ ≥ 2
MTmin(M,R)T/2;
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Expressivity

Theorem 3

Given a generalized RNN of rank R and its grid tensor ΓG(X), its
realization of generalized shallow network can be written as:

ΓG(X) = ΓS(X) =
R̂∑

r=1

λr (Fv
(1)
r )⊗ξ (Fv

(2)
r )⊗ξ · · · ⊗ξ (Fv

(T )
r )

There exists G̃2, such that R̂ = 1
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Experiment on IMDB sentiment analysis
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Experiment on Synthetic Data
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Conclusion

Draw links between RNNs and TT decomposition

Introduce nontrivial nonlinearity into tensor framework

Provide theoretical analysis on universality and expressivity under
rectifier nonlinearity

Extend this to LSTM and attention? Other nonlinearities?
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Thank You

26 / 26


	Motivation
	Tensor Decomposition and Neural Networks
	Nonlinear Generalization
	Main Results
	Experiments
	Conclusion

