Name:

Lab/Affiliation:

Level (MSc/PhD - which year):
Registered? (if not, briefly explain, e.g. auditing):

Relevant courses you took (e.g. ML class, linear algebra):

Answer each of the following questions as shortly as possible. If you don't know an answer, put a question mark. The quiz will not be scored and will not count towards your class grade.
(1) How familiar are you with the following notions/techniques (write a score between 0 and 10,0 meaning you never heard of it, 10 meaning you're very familiar):

- Linear independence
- rank of a matrix
- Singular value decomposition
- Jordan canonical form
- Pseudo-inverse
- Orthogonal projection
- Algebraic/geometric multiplicity of an eigenvalue
- ridge regression
- generalization bound
- bias-variance tradeoff
- maximum likelihood estimator
- method of moments
- gradient
- probability density function
- Big O notation
- NP-hard problem
(2) Give the definitions of the expectation $\mathbb{E}[X]$ and variance $\mathbb{V}[X]$ of a discrete random variable X taking its values in $\{1, \cdots, n\}$.
(3) Write down a sufficient condition for a function f to be convex.
(4) Give a short proof of Bayes rule: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$.
(5) What is the dimension of the linear space spanned by the following sets of vectors:

$$
S_{1}=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right): a+b=c, a, b, c \in \mathbb{R}\right\} \quad S_{2}=\left\{\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right): a^{2}+b^{2}=c, a, b, c \in \mathbb{R}\right\}
$$

(6) Are the following matrices invertible?

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 1 & 2 \\
3 & -1 & 0 \\
4 & 0 & 2
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

(7) What are the eigenvalues and corresponding eigenvectors of the matrix $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$?
(8) Give a sufficient condition for a matrix to be invertible.
(9) Write down an example of a defective matrix, i.e. a matrix that is not diagonalizable.

