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IFT–1575
Examen intra

(20 points) Répondez par vrai ou faux aux affirmations suivantes. Si la réponse est
”faux”, corrigez l’assertion.
(a) La solution optimale (si elle existe) d’un problème non-linéaire se

trouve sur un point extrême du domaine admissible.
Faux. La solution optimale (si elle existe) d’un problème linéaire se
trouve sur un point extrême du domaine admissible. Dans le cas d’un
problème non-linéaire, cette solution peut se trouver n’importe où
dans le domaine admissible.

(b) Tout maximum local d’un problème linéaire est global.
Vrai.

(c) Le produit de deux fonctions concaves est concave.
Faux. La somme de deux fonctions concaves est concave, mais pas le
produit. Par exemple, en prenant f(x) = g(x) = −x2, f(x) et g(x)
sont concaves, mais f(x)g(x) = x4 est convexe.

(d) Une variable duale non-nulle est nécessairement associée à une contrainte
active.
Vrai.

(e) Dans le cas d’un problème linéaire réalisable, la valeur optimale du
problème dual est égale à la valeur optimale du problème primal.
Vrai.

(f) En programmation linéaire, l’existence d’un point admissible implique
l’existence d’une solution optimale.
Faux, car le problème peut être non borné. Par exemple, le problème
maxx est admissible, mais n’a pas de solution optimale.

(g) Tout point satisfaisant les condition KKT d’un problème de pro-
grammation non-linéaire est une solution optimale (locale) pour ce
problème.
Faux. Tout point satisfaisant les condition KKT d’un problème de
programmation non-linéaire est une solution au premier ordre pour ce
problème, mais il peut s’agit d’un minimum, d’un maximum, ou d’un
point selle.

(h) Il est toujours possible de trouver une solution optimale (locale) exacte
d’un programme non-linéaire sans contrainte avec la méthode du gra-
dient, en un temps fini.
Faux. La méthode peux prendre un nombre infini d’itérations, et donc
un temps infini. De plus, les erreurs d’arrondi dues à l’utilisation de
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l’outil informatique rendent caduque l’espoir de trouver la solution
exacte. On ne peut trouver qu’une solution approchée.

(i) Dans le cas d’un problème de programmation convexe, toute solution
optimale locale est solution optimale globale.
Vrai.

(j) Nous pouvons résoudre de manière équivalente en termes de
solutions optimales

max
x∈X

f(x)

et
max
x∈X

f(x) + c,

où c est une constante et X est un sous-ensemble de Rn.
Vrai.

(10 pts) Démontrer (mathématiquement) que f(x) = |x− 2| est convexe.
Soit 0 ≤ λ ≤ 1. Nous avons

f(λx+ (1− λ)y) = |λx+ (1− λ)y − 2|
= |λx+ (1− λ)y + 2(λ+ 1− λ)|
= |λ(x− 2) + (1− λ)(y − 2)|
≤ |λ(x− 2)|+ |(1− λ)(y − 2)|
= λ|(x− 2)|+ (1− λ)|(y − 2)|
= λf(x) + (1− λ)f(y).

Par conséquent f(x) est bien convexe.
(10 pts) Expliquez en quoi consiste la méthode à deux étapes, et dans quel contexte

elle est utile.
La solution origine, obtenue en donnant la valeur nulle à chaque variable,
n’est pas nécessairement réalisable. Dans ce cas, nous ajoutons des va-
riables artificielles aux contraintes, destinées à restaurer la faisabilité de
l’origine. Ces variables ne servent qu’à permettre la recherche d’une so-
lution initiale réalisable, et par conséquent, nous voudrions trouver une
solution réalisable, associée à des variables artificielles mises à zéro.
La méthode à deux phases consiste à résoudre le problème augmentés
au moyen des variables artificielles, mais avec comme fonction objectif la
somme des opposés des variables artificielles. De la sorte, si le programme
initial est réalisable, le nouveau programme donnera comme solution un
point réalisable pour le programme initial, et des variables artificielles
mises à zéro (de sorte que le nouvel objectf est mis à zéro).
La deuxième phase consiste à exécuter la méthode classique du simplexe en
prenant comme première solution la solution finale de la première phase.

(5 pts) Trouver la valeur et la solution optimale du problème

min f(x1, x2, x3) = (x1 − 3)2 + (5− x2)2 + x3,

s.c. x2 ≥ −1, x3 ≥ 0.
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Astuce : la réponse peut se formuler en moins de trois lignes.
Nous allons détailler. La fonction est séparable en termes de x1, x2 et x3 :

f(x1, x2, x3) = f1(x1) + f2(x2) + f3(x3),

avec f1(x1) = (x1 − 3)2, f2(x2) = (5− x2)2 et f3(x3) = x3. f1(x1), f2(x2)
et f3(x3) sont toujours positifs sur leur domaine de faisabilité respectif
(R, [−1,∞) et R+), et atteignent zéro en 3, 5 et 0, respectivement, aussi
x∗1 = 3, x∗2 = 5 et x∗3 = 0. En d’autres termes, la solution optimale est

x∗ = (3, 5, 0),

pour une valeur optimale nulle.

(5 pts) Trouvez tous les optimums locaux du problème

max f(x1, x2) = −x2
1 + 2x1x2 + x3

2.

Considérons tout d’abord le gradient de f(x) :

∇f(x) =
(
−2x1 + 2x2

2x1 + 3x2
2

)
.

Annuler le gradient revient à résoudre le système

−2x1 + 2x2 = 0

2x1 + 3x2
2 = 0

. De la première équation, nous avons

x1 = x2,

tandis que la seconde donne

x2(2 + 3x2) = 0,

qui admet comme solution x2 = 0 et x2 = −2/3. Par conséquent, nous
avons deux points à considérer : (0, 0) et (−2/3,−2/3).
La matrice de dérivées secondes est(

−2 2
2 6x2

)
.

Le produit croisé vaut −12x2 − 4. En (0, 0), ce produit est strictement la
fonction n’est ni convexe, ni concave ; ce n’est pas un maximum local. En
(−2/3,−2/3), il vaut 4, aussi la fonction est concave ; c’est un maximum
local.
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(20 pts) Considérons le programme mathématique

max z = −
(
x1 −

3
2

)2

−
(
x2 −

1
2

)4

,

− 1 + x1 + x2 ≤ 0,
− 1 + x1 − x2 ≤ 0,
− 1− x1 + x2 ≤ 0,
− 1− x1 − x2 ≤ 0.

(a) S’agit-il d’un programme convexe ?
Oui, car nous avons un problème de maximisation avec une fonc-
tion objectif concave, et des contraintes linéaires, donc convexes (par
conséquent, l’ensemble admissible est convexe).

(b) Résolvez les conditions KKT associées. Remarquez qu’il n’y a pas de
contraintes de non-négativité.
Nous avons 4 contraintes, donc 4 multiplicateurs de Lagrange, que
nous dénoterons u1, u2, u3 et u4. Les conditions KKT s’écrivent

−2
(
x1 −

3
2

)
− u1 − u2 + u3 + u4 = 0, (1)

−4
(
x2 −

1
2

)3

− u1 + u2 − u3 + u4 = 0, (2)

−1 + x1 + x2 ≤ 0, (3)
−1 + x1 − x2 ≤ 0, (4)
−1− x1 + x2 ≤ 0, (5)
−1− x1 − x2 ≤ 0, (6)

u1(−1 + x1 + x2) = 0, (7)
u2(−1 + x1 − x2) = 0, (8)
u3(−1− x1 + x2) = 0, (9)
u4(−1− x1 − x2) = 0, (10)

u1, u2, u3, u4 ≥ 0. (11)

On ne peut avoir u1 = u2 = u3 = u4 = 0, en effet, dans ce cas, (1)
implique x1 = 3/2, et (2) donne x2 = 1/2, ce qui viole la contrainte
(3). Prenons u1 6= 0. Alors, en vertu de (7)

−1 + x1 + x2 = 0. (12)

Supposons également u2 6= 0. De (8)

−1 + x1 − x2 = 0. (13)

L’addition de (12) et (13) donne

x1 = 1, x2 = 0.
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Toutes les contraintes (3)–(6) sont satisfaites. (9) conduit à u3 = 0,
tandis que (9) donne u4 = 0. (1)–(2) se réduisent à

1− u1 − u2 = 0, (14)
1
2
− u1 + u2 = 0. (15)

(16)

En additionnant (14) et (15), nous obtenons u1 = 3/4, et de là u2 =
1/4, ce qui permet de satisfaire les autres conditions. Nous avons donc
la solution

(x1, x2) = (1, 0),

associées aux multiplicateurs

(u1, u2, u3, u4) = (3/4, 1/4, 0, 0).

(c) La/les solution(s) des conditions KKT sont-elles des optimums du
programme mathématique ?
Oui, vu que nous somme en présence d’un problème de programmation
convexe.

(5 pts) Considérons les deux problèmes suivants

max f(x), s.c. x ∈ A, (17)

et
max f(x), s.c. x ∈ B, (18)

où A est un sous-ensemble de B. Soit x∗A et x∗B les solutions optimales
globales respectives de 17 et 18. A-t-on
– f(x∗A) = f(x∗B),
– f(x∗A) ≤ f(x∗B),
– f(x∗A) ≥ f(x∗B) ?
Justifiez la réponse.
Par définition,

f(x∗B) ≥ f(x), ∀x ∈ B.

Comme A est un sous-ensemble de B, nous avons en particulier

f(x∗B) ≥ f(x), ∀x ∈ A,

et donc
f(x∗B) ≥ f(x∗A).

(25 pts) Une entreprise familiale vend des horloges de fabrication artisanale. Da-
vid, Hugo et Fred travaillent à la fabrication et à la vente de deux types
d’horloges : des horloges grand-père et des horloges murales. David s’oc-
cupe de l’assemblage du mécanisme de chaque horloge, Hugo fabrique les
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caissons de bois, alors que Fred est en charge de la prise de commandes
et de la livraison des horloges. David et Hugo sont disponibles jusqu’à 36
heures par semaine, alors que Fred peut travailler jusqu’à 18 heures par
semaine dans l’entreprise familiale. Les temps requis pour chaque tâche
en fonction du type d’horloge, de même que les profits pour chaque type
d’horloge, sont donnés dans le tableau suivant :

Tâche Horloge grand-père Horloge murale
(heures/unité) (heures/unité)

Assemblage du mécanisme 9 3
Fabrication des caissons 8 3
Prise de commandes ; livraison 3 3
Profit/unité ($) 330 200

Le problème consiste à déterminer combien d’horloges grand-père et d’hor-
loges murales doivent être fabriquées à chaque semaine de façon à maxi-
miser le profit total.

(a) Formulez ce problème à l’aide d’un modèle de programmation linéaire.
Désignons par x1 le nombre d’horloges grand-père et x2 le nombre
d’horloges murales. L’objectif donne le profit, et les contraintes le
temps disponibles. Ceci donne le programme

max z = 330x1 + 200x2

s.c. 9x1 + 3x2 ≤ 36,
8x1 + 3x2 ≤ 36,
3x1 + 3x2 ≤ 18,
x1, x2 ≥ 0.

(b) Résolvez-le à l’aide de la méthode du simplexe.
Nous commençons en ajouter des variables d’écarts x3, x4 et x5 posi-
tives aux contraintes :

9x1 + 3x2 + x3 = 36
8x1 + 3x2 + x4 = 36,
3x1 + 3x2 + x5 = 18.

Les variables de base sont x3, x4 et x5, tandis que les variables hors-
base sont x1 et x5, ce qui donne le dictionnaire

x3 = 36− 9x1 − 3x2,

x4 = 36− 8x1 − 3x2,

x5 = 18− 3x1 − 3x2.

Le coefficient de x1 étant supérieur à celui de x2, nous faisons rentrer
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x1 dans la base. Les contraintes de positivité impliquent

x1 ≤ 4

x1 ≤
9
2

x1 ≤ 6.

La première contrainte est la plus forte, aussi choisissons-nous x3

comme variable sortant de la base. Ceci conduit au nouveau diction-
naire

x1 = 4− 1
3
x2 −

1
9
x3,

x4 = 36− 8
(

4− 1
3
x2 −

1
9
x3

)
− 3x2,

x5 = 18− 3
(

4− 1
3
x2 −

1
9
x3

)
− 3x2,

ou

x1 = 4− 1
3
x2 −

1
9
x3,

x4 = 4− 1
3
x2 +

8
9
x3,

x5 = 6− 2x2 +
1
3
x3.

La fonction objectif devient

z = 330
(

4− 1
3
x2 −

1
9
x3

)
+ 200x2

= 1320 + 90x2 −
110
3
x3.

Comme le coefficient de x2 est positif, mais pas celui de x3, nous faisons
rentrer x2 dans la base. Les contraintes de positivité impliquent

x2 ≤ 12,
x2 ≤ 12,
x2 ≤ 3.

La contrainte limitante étant la troisième, nous faisons sortir x5 de la
base. Le nouveau dictionnaire est dès lors

x1 = 4− 1
3

(
3 +

1
6
x3 −

1
2
x5

)
− 1

9
x3,

x4 = 4− 1
3

(
3 +

1
6
x3 −

1
2
x5

)
+

8
9
x3,

x2 = 3 +
1
6
x3 −

1
2
x5,
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et après simplification

x1 = 3− 1
6
x3 +

1
6
x5,

x4 = 3 +
5
6
x3 +

1
6
x5,

x2 = 3 +
1
6
x3 −

1
2
x5.

La fonction objectif devient

z = 1320 + 90
(

3 +
1
6
x3 −

1
2
x5

)
− 110

3
x3,

= 1590− 65
3
x3 − 45x5.

Il n’y a plus de variables hors-base avec un coefficient positif dans
l’objectif. La solution de base courante (3, 3, 0, 3, 0) est par conséquent
optimale, pour une valeur optimale de 1590.
Le profit optimal est dont de 1590, avec une production de 3 horloges
grand-père et 3 horloges murales.

(c) Formulez le dual de ce problème.
Le dual est

minw = 36y1 + 36y2 + 18y3
s.c. 9y1 + 8y2 + 3y3 ≥ 330,

3y1 + 3y2 + 3y3 ≥ 200,
y1, y2 ≥ 0.

(10 pts) Traduisez le code GAMS suivant en programme mathématique. Donnez
une interprétation en français de ce programme.
$title Paquet postal

POSITIVE VARIABLES x,y,z;
FREE VARIABLE obj;

EQUATIONS
VOL fonction objectif
DIM contrainte sur la dimension et le poids;

VOL.. obj =e= x*y*z;
DIM.. z+2*x+2*y =l= 108;

MODEL package /ALL/;

x.l=1; y.l=1; z.l=1;

SOLVE package USING nlp MAXIMIZING obj;
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Ceci donne le programme mathématique

max z = x ∗ y ∗ z
s.c. 2 ∗ x+ 2 ∗ y + z ≤ 108,

x, y, z ≥ 0.

Ce programme sert à déterminer le volume d’un paquet postal, en sui-
vant le critère selon lequel le périmètre additionné à la hauteur doit être
inférieur à 108 pouces. Il s’agit du critère de dimensions maximales utilisé
par la poste américaine.
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