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Production-inventaire

Une compagnie doit fournir à son meilleur client trois unités du
produit P durant chacune des trois prochaines semaines. Les coûts
de production sont donnés dans la table ci-dessous.

Semaine Production max, Production max, Coût unitaire,
temps régulier temps supp. temps régulier

1 2 2 300$
2 3 2 500$
3 1 2 400$

Le coût pour chaque unité produite en temps supplémentaire est
100$ de plus que le coût par unité produite en temps régulier. Le
coût unitaire d inventaire est de 50$ par semaine
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Production-inventaire (2)

Au début de la première semaine, il y a 2 unités du produit dans l
inventaire. La compagnie ne veut plus rien avoir dans son inventaire
au bout des trois semaines. Combien doit-on produire d unités à
chaque semaine afin de rencontrer la demande du client, tout en
minimisant les coûts?

Une étape correspond ici à une semaine, N = 3, n = 1, 2, 3, et

sn, l’état au début de la semaine n, est le nombre d’unités de
produit dans l inventaire;
xn: nombre d unités produites lors de la semaine n;
sn+1 = sn + xn − 3 (puisque nous devons livrer 3 unités au client
à chaque semaine);
s1 = 2 (puisqu il y a 2 unités au début).
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Production-inventaire (3)

Soient cn, le coût unitaire de production au cours de la semaine n, rn
la production maximale en temps régulier pendant la semaine n, et
mn la production maximale durant la semaine n. Le coût au cours de
la semaine n est

pn(sn, xn) = cnxn + 100max(0, xn − rn) + 50max(0, sn + xn − 3).

Le coût total vaut dès lors

fn(sn, xn) = pn(sn, xn) + f ∗n+1(sn+1),

et le coût optimal répond à la récurrence

f ∗n (sn) = min{pn(sn, xn) + f ∗n+1(sn+1) | 3− sn ≤ xn ≤ mn}.
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Production-inventaire (4)

Si n = 3, nous devons poser

f ∗4 (s4) = 0.

De plus,
s4 = 0 = s3 + x3 − 3,

aussi
x3 = 3− s3.

Calculons d abord les valeurs f ∗3 (s3) et x∗3 . Nous obtenons le tableau

s3 f3(s3, 3− s3) f ∗3 (s3) x∗3
0 1400 1400 3
1 900 900 2
2 400 400 1
≥ 3 0 0 0
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Production-inventaire (5)

Voyons maintenant comment nous pouvons calculer les valeurs
f ∗2 (s2) et x∗2 , lorsque s2 = 0. Nous devons avoir x2 ≥ 3 (car nous
devons livrer au moins 3 unités du produit). D’autre part,

f2(0, 3) = p2(0, 3) + f ∗3 (0) = 1500 + 1400 = 2900,
f2(0, 4) = p2(0, 4) + f ∗3 (1) = 2150 + 900 = 3050,
f2(0, 5) = p2(0, 5) + f ∗3 (2) = 2800 + 400 = 3200,

f ∗2 (0) = min{f2(0, 3), f2(0, 4), f2(0, 5)} = f2(0, 3).

Par conséquent, x∗2 = 3. Nous procédons de la même manière pour
s2 = 1, 2, 3.

s2 x2 = 0 x2 = 1 x2 = 2 x2 = 3 x2 = 4 x2 = 5 f ∗2 (s2) x∗2
0 - - - 2900 3050 3200 2900 3
1 - - 2400 2450 2600 2850 2400 2
2 - 1900 1950 2000 2250 2900 1900 1
≥ 3 1400 1450 1500 1650 2300 2950 1400 0
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Production-inventaire (6)

Pour la première étape (n = 1), nous avons s1 = 2 (il y a 2 unités au
départ dans l’inventaire). Nous devons donc avoir x1 ≥ 1. De plus,

f1(2, 1) = p1(2, 1) + f ∗2 (0) = 300 + 2900 = 3200,
f1(2, 2) = p1(2, 2) + f ∗2 (1) = 650 + 2400 = 3050,
f1(2, 3) = p1(2, 3) + f ∗2 (2) = 1100 + 1900 = 3000,
f1(2, 4) = p1(2, 4) + f ∗2 (3) = 1550 + 1400 = 2950.

Par conséquent, f ∗1 (2) = f1(2, 4) et x1∗ = 4. Sous forme de tableau,
cela donne:

s1 x1 = 1 x1 = 2 x1 = 3 x1 = 4 f ∗1 (s1) x∗1
2 3200 3050 3000 2950 2950 4

La politique optimale est donc:

x∗1 = 4, x∗2 = 0, x∗3 = 3

donnant lieu à s2 = 3, s3 = 0. Le coût total est f ∗1 (2) = 2950$.
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Production-inventaire (7)
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Exemple: Méthode du chemin critique

PERT: Program Evaluation and Review Technique.
CPM : Critical Path Method.

Un projet est divisé en tâches.
Un graphe représente les relations de précédence entre les tâches.
Noeud i : étape du projet.
Arc (i , j): tâche de durée tij .
Une tâche (i , j) doit se terminer avant que (j , k) débute.
Les nœuds 1 et N représentent le début et la fin du projet. On
suppose de plus qu’il y a au moins un chemin du nœud 1 à n’importe
quel autre nœud.

On veut connaître le temps requis pour terminer le projet (i.e. avoir
effectué toutes les tâches, certaines pouvant s’accomplir en
parallèle), ainsi que les activités critiques.
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Un plus long chemin dans le réseau s’apelle un chemin critique et sa
longueur correspond à la durée minimale du projet.

Pour chaque noeud i , on note
Ti = longueur du plus long chemin de 1 à i.
Correspond au temps requis minimal pour se rendre à l’étape i .
Équations de récurrence: T1 = 0, et pour i = 2, . . . ,N,

Ti = max
arcs (j ,i)

(Tj + tj ,i ) .

On peut numéroter les étapes de manière à ce que le réseau soit
ordonné topologiquement, i.e., pas d’arc (j , i) pour j > i . Il suffit
alors de calculer T1 = 0,T2, . . . ,TN .

Ensuite, on peut aussi poser YN = TN et calculer:
Yi = date au plus tard de l’étape i (sans retarder le projet)

= min
{j |(i ,j) existe}

Yj − ti ,j , puis

Ei = Yi − Ti = écart permis pour l’étape i , pour i = N − 1, . . . , 1.
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Exemple: allocation d’une ressource

On a b unités d’une ressource à allouer à N activités. Posons:

uk = nombre d’unités de ressource allouées à l’activité k ;
rk(uk) = revenu pour l’activité k si uk unités de ressource

lui sont allouées.

Formulation:

max
N∑

k=1

rk(uk)

s.l.c.
N∑

k=1

uk ≤ b; 0 ≤ uk ≤ bk et uk entier, pour tout k .

Le nombre de solutions possibles est dans O(bN).
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On se ramène à notre cadre de PDS en posant:

Jk(x) = revenu optimal pour les activités k à N si
x unités de ressource leur sont disponibles;

xk = nombre d’unités disponibles pour les activités k à N.

Équations fonctionnelles:

JN+1(x) = 0 ∀x ∈ XN+1
Jk(x) = max

0≤u≤x
{rk(u) + Jk+1(x − u)} , k = N, . . . , 1, 0 ≤ x ≤ b.

Chaînage arrière: fixer dans l’ordre JN , JN−1, . . . , J1, et en
mémorisant, à chaque noeud, la valeur de u qui fait atteindre la
maximum.

Chaînage avant: Définir Di (x) = revenu optimal pour les activités 1
à i si on leur alloue x unités de ressource.
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Cas de plusieurs ressources.

Au lieu d’avoir un seul type de ressource, on en a m types.
Dans ce cas, le problème se formule et se résoud (théoriquement)
exactement de la même façon, sauf que l’on doit interpréter b, xk , et
uk comme des vecteurs. On pose

bi = nombre d’unités de ressource de type i disponibles.
uik = nombre d’unités de ressource de type i allouées à l’activité k ;
xik = nombre d’unités de ressource de type i disponible

pour les activités k à N;

b =

 b1
...

bm

 , xk =

 x1k
...

xmk

 , uk =

 u1k
...

umk

 .

rk et Jk sont définis comme pour le cas où m = 1, et les équations
fonctionnelles sont les mêmes.
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Mais ici, le nombre de noeuds dans le réseau devient (si les bi et uik
sont entiers): 1 + N × (b1 + 1)× · · · × (bm + 1).

Par exemple, pour N = 100, m = 1 et b = 99, on a 1 + 104 noeuds.
Mais pour N = 100, m = 100 et bi = 99, on a 1 + 10202 noeuds!

Second cas: impensable de résoudre par fixation itérative en
pratique. C’est la malédiction des grandes dimensions!

En pratique, on ne peut traiter que les petites valeurs de m.
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Sac alpin avec variables non bornées.

On place des objets de types 1, . . . ,N dans un sac de volume b.
Chaque objet de type k occupe un volume ak et rapporte un profit
ck . Soit uk le nombre d’objets de type k dans le sac. Formulation:

max
∑N

k=1 ckuk

s.l.c.
∑N

k=1 akuk ≤ b;
uk ≥ 0 et entier, pour k = 1, . . . ,N.

Il s’agit d’un problème de programmation linéaire en nombres
entiers, avec une seule contrainte.

Si les uk n’avaient pas à être entiers, le problème deviendrait trivial:
il suffirait de remplir le sac de b/ak unités de l’objet qui a la plus
grande valeur de ck/ak (profit par unité de volume occupé).

Se résoud comme le problème d’allocation de ressources précédent: à
l’étape k , on fixe uk . Si b et les ak sont entiers, on a un problème de
plus long chemin dans un réseau de 1 + N × (b + 1) noeuds. Mais
dans ce cas-ci, on peut faire beaucoup mieux.
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Posons D(x) = valeur optimale d’un sac de volume x .
On a D(0) = 0 et on va calculer D(1),D(2), . . . ,D(b) par:

D(x) = max
{j |aj≤x}

(D(x − aj) + cj) . (1)

On construit un réseau de b + 1 noeuds, dans lequel le noeud x
correspond à un sac rempli au niveau x . Un arc (x , x + aj), de
“longueur” cj , correspond à l’ajout d’un objet de type j au sac.
D(x) est la longueur d’un plus long chemin de 0 à x .

On peut faire ceci car il n’y pas de bornes supérieures sur les ui .
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On peut aussi supposer que les objets sont placés dans le sac par
ordre décroissant de valeur de ak (on les trie dans cet ordre), et
qu’en cas d’égalité dans (1), on choisit l’objet ayant le plus petit
indice j . On cherchera ainsi le plus long chemin de 0 à b, mais
seulement parmi les chemins dont les “types” des arcs sont en ordre
décroissant. Soit

v(x) = le plus petit type d’objet qu’il est optimal de placer
dans un sac de volume x

= le type du dernier arc sur le chemin optimal de 0 à x
= min {j | D(x) = cj + D(x − aj)}.

Pour les noeuds > x , il suffit de considérer les objets de types
≤ v(x).

D(x) = max
{j :aj≤x et j≤v(x−aj )}

(D(x − aj) + cj) .

On calcule (D(x), v(x)), pour x = 1, . . . , b, par la méthode
d’accession.
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PROCÉDURE Accession pour sac alpin;
POUR x ← 0 À b FAIRE D(x)← 0; v(x)← N;
POUR x ← 0 À b − 1 FAIRE

POUR j ← 1 À v(x) FAIRE
SI cj + D(x) > D(x + aj) ET x + aj ≤ b ALORS

D(x + aj)← cj + D(x); v(x + aj)← j ;
SI cj + D(x) = D(x + aj) ET x + aj ≤ b ET j < v(x + aj)

ALORS v(x + aj)← j ;
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Un problème de découpe de tissu

On a une pièce de tissu (en rouleau) de longueur L.
Elle contient des défauts aux points d1, d2, . . . , dN .

d0 d1 d2d3 d4 · · · dN dN+1

On veut couper la pièce de tissu pour en vendre les morceaux.
Chaque coupure se fait vis-à-vis d’un défaut et élimine ce dernier.
Soit V (n, l) le prix de vente d’un morceau de tissu de longueur l
contenant n défauts. On veut couper la pièce de façon à maximiser
le revenu total.
Pour chaque défaut, on a une variable de décision binaire.
Il y a donc 2N solutions possibles.
Si N est grand, il sera beaucoup trop long de les examiner toutes.
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L’approche suivante (programmation dynamique) est plus efficace.
Posons dN+1 = L;

Jk = la valeur optimale du morceau [0, dk ];
uk = numéro du dernier défaut où couper avant dk ,

si on dispose du morceau [0, dk ] (i.e. si on coupe à dk).
Récurrence:

J0 = 0;
Jk = max

0≤u≤k−1
{Ju + V (k − u − 1, dk − du)} ,

pour k = 1, 2, . . . ,N + 1.

Facile à résoudre par chaînage avant. La valeur optimale de uk est
celle qui fait atteindre le maximum. Si uk = 0, on ne coupera pas le
morceau [0, dk ].
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Exemple: défense d’une frontière

Le segment [a, b) doit être défendu par N soldats. Chaque soldat va
défendre un sous-segment [p, q), en se plaçant à un point r tel que
p ≤ r < q. Ces sous-segments sont disjoints.

a p qr
↑ · · · b

Un ennemi qui tente de pénétrer à un point y dans le sous-segment
[p, q), défendu par 1 soldat au point r , réussira avec une probabilité
P(p, q, r , y).
L’ennemi peut savoir où se trouvent nos soldats et choisira une
valeur de y de façon à maximiser sa probabilité de pénétration. Nous
voulons placer nos soldats de façon à minimiser la probabilité de
pénétration de l’ennemi.

Probabilité que l’ennemi réussisse s’il tente de pénétrer par le
segment [p, q) et que ce dernier est gardé de façon optimale:

G (p, q) = min
r∈[p,q]

(
max

y∈[p,q]
P(p, q, r , y)

)
.
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Pour k = 1, . . . ,N et chaque p ∈ [a, b), soit Jk(p) = probabilité que
l’ennemi pénètre par le segment [p, b), s’il est gardé de façon
optimale par k soldats. Équations fonctionnelles:

J1(p) = G (p, b) pour tout p < b; J0(b) = 0,
Jk(p) = min

u∈[p,b]
(max (G (p, u), Jk−1(u))) ,

pour tout p, et k = 2, . . . ,N.

Interprétation: on a k soldats pour protéger [p, b). Le premier soldat
défendra le segment [p, u). Les k − 1 autres défendront [u, b) (de
façon optimale). Nous choisissons u de façon à minimiser. L’ennemi
choisira son segment de façon à maximiser sa probabilité.

Pour résoudre, on calcule la fonction J1, puis J2, etc.
On fait l’hypothèse que l’on dispose d’une procédure pour calculer
G (p, q) au besoin.
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Autre difficulté: on a ici un espace d’états continu: il y a une infinité
de valeurs de p.
Solution: discrétiser: on ne considére qu’un nombre fini de valeurs
possibles pour p et u.

Exemple: les longueurs des segments doivent tous être des multiples
de 10 mètres.
Ou encore: on approxime les fonctions G , P et Jk par des
polynômes, ou des splines, ou par éléments finis, . . . .

Applications similaires:
— Décider où placer les arrêts d’autobus.
— Quand changer les pneus dans une course automobile.
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Algorithme de Viterbi.

Chaîne de Markov cachée (partiellement observée).

XN = (x0, x1, . . . , xN) = suite des états visités (cachée);
ZN = (z1, . . . , zN) = suite des observations

(e.g., état observé avec du bruit);
πi = P[x0 = i ] = probabilités de l’état initial;
pij = P[xk+1 = j | xk = i ] = probabilité de transition de i à j ;

r(z ; i , j) = P[zk+1 = z | xk = i , xk+1 = j ]
= probabilité d’observer z lorsqu’on passe de i à j ;

On observe ZN et on cherche à estimer XN .
On choisit ici l’estimateur de vraisemblance maximale, i.e., X̂N sera
le XN qui maximise P[XN | ZN ]. On va le calculer par PD.
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Exemples d’applications:

A. Reconnaissance de la parole ou de l’écriture.
XN est la suite des phonèmes réellement prononcées par un
interlocuteur, ZN est la suite des phonèmes comprises par le système.

Les probabilités πi , pij et r(z ; i , j) du modèle doivent avoir été
estimées auparavant: c’est l’entraînement du modèle.

On peut entrainer le modèle pour un interlocuteur particulier (e.g.,
systèmes de dictée) ou encore pour un vocabulaire particulier (e.g.,
un répondeur téléphonique reconnaissant la parole ou un interface
vocal pour un site internet spécialisé).

Si le système n’est pas suffisamment certain que X̂N = XN , il pourra
demander à l’interlocuteur de confirmer.

B. Transmission de données sur un canal bruité.
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On cherche le XN qui maximise P[XN | ZN ] = P[XN ,ZN ]/P[ZN ].
Mais puisque P[ZN ] ne dépend pas de XN , il suffit de maximiser

P[XN ,ZN ] = P[x0, x1, . . . , xN , z1, . . . , zN ]

= πx0px0x1r(z1; x0, x1)px1x2r(z2; x1, x2)

· · · · · · pxN−1xN r(zN ; xN−1, xN)

= πx0

N−1∏
k=0

pxkxk+1r(zk+1; xk , xk+1).

Cela équivaut à minimiser, p.r. à x0, . . . , xN ,

− lnP[XN ,ZN ] = − ln(πx0)−
N−1∑
k=0

ln[pxkxk+1r(zk+1; xk , xk+1)].
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Posons

D0(x0) = − ln(πx0);

Dk+1(xk+1)
def
= min

x0,...,xk

(
− ln(πx0)−

k∑
n=0

ln[pxnxn+1r(zn+1; xn, xn+1)]

)
= min

xk

(
Dk(xk)− ln[pxkxk+1r(zk+1; xk , xk+1)]

)
pour k = 0, . . . ,N − 1.

Correspond à trouver un plus court chemin dans le réseau:

. . .

. . .

. . .

s x0 x1 x2 xN - 1 xN t
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On calcule les Dk(xk) par une méthode de correction d’étiquettes.
Avantage p.r. au chainage arrière: on peut débuter l’algorithme dès
qu’on a la première observation, et calculer les Dk(xk) dès que l’on
dispose de zk , pour chaque k , en temps réel.

En pratique on va souvent calculer les n plus courts chemins d’un
seul coup.
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