Modeles déterministes et plus court chemin:

exemples.

Fabian Bastin

DIRO, Université de Montréal

IFT-6521 — Hiver 2011

Fabian Bastin Programmation dynamique

Production-inventaire

Une compagnie doit fournir & son meilleur client trois unités du
produit P durant chacune des trois prochaines semaines. Les coiits
de production sont donnés dans la table ci-dessous.

Semaine | Production max, | Production max, | Codit unitaire,
temps régulier temps supp. temps régulier

1 2 2 300%

3 2 500%

3 1 2 400%

Le colit pour chaque unité produite en temps supplémentaire est
100% de plus que le coiit par unité produite en temps régulier. Le
codit unitaire d inventaire est de 503 par semaine

Fabian Bastin Programmation dynamique

Production-inventaire (2)

Au début de la premiére semaine, il y a 2 unités du produit dans |
inventaire. La compagnie ne veut plus rien avoir dans son inventaire
au bout des trois semaines. Combien doit-on produire d unités a
chaque semaine afin de rencontrer la demande du client, tout en
minimisant les colits?

Une étape correspond ici & une semaine, N =3, n=1,2,3, et
@ s,, I'état au début de la semaine n, est le nombre d'unités de
produit dans | inventaire;
@ x,: nombre d unités produites lors de la semaine n;

® Sp11 = Sp+ xp — 3 (puisque nous devons livrer 3 unités au client
a chaque semaine);

@ s; =2 (puisqu il y a 2 unités au début).

Fabian Bastin Programmation dynamique

Production-inventaire (3)

Soient ¢,, le colit unitaire de production au cours de la semaine n, r,
la production maximale en temps régulier pendant la semaine n, et
m, la production maximale durant la semaine n. Le coiit au cours de
la semaine n est

Pn(Sns Xn) = caxn + 100 max(0, x, — r,) + 50 max(0, s, + x, — 3).
Le colt total vaut dés lors
fn(Sny Xn) = Pn(Sn; Xn) + fn*-l—l(sn—l-l)a
et le colit optimal répond a la récurrence

fy(sn) = min{pn(sn, Xn) + {1 1(Sns1) |3 — Sn < Xp < My}

Fabian Bastin Programmation dynamique

Production-inventaire (4)

Si n = 3, nous devons poser

fy (s4) = 0.

De plus,
s3=0=s34+x3—3,

aussi
X3 = 3 - S3.

Calculons d abord les valeurs £(s3) et x3. Nous obtenons le tableau

s3 | f(s3,3—s3) | £(s3) | 4
0 1400 1400 | 3
1 900 900 | 2
2 400 400 | 1
>3 0 0 0

Fabian Bastin Programmation dynamique

Production-inventaire (5)

Voyons maintenant comment nous pouvons calculer les valeurs
f(s2) et x5, lorsque s, = 0. Nous devons avoir x, > 3 (car nous
devons livrer au moins 3 unités du produit). D'autre part,

~(0,3) = p2(0,3) + £3°(0) = 1500 + 1400 = 2900,
r(0,4) = p2(0,4) + £5°(1) = 2150 4 900 = 3050,
~(0,5) = p2(0,5) + £3°(2) = 2800 + 400 = 3200,
£ (0) = min{£(0,3), £(0,4), £(0.5)} = £(0.3).
Par conséquent, x3 = 3. Nous procédons de la méme maniére pour
s5=1,2,3.
2 [x=0]x=1|x=2|x=3|x=4|x=5|f(s) | x3
0 - - 2900 3050 3200 2900 3
1 - - 2400 2450 2600 2850 2400 2
2 - 1900 1950 2000 2250 2900 1900 1
>3 | 1400 1450 1500 1650 2300 2950 1400 0

Fabian Bastin Programmation dynamique

Production-inventaire (6)

Pour la premiére étape (n = 1), nous avons s; = 2 (il y a 2 unités au
départ dans I'inventaire). Nous devons donc avoir x; > 1. De plus,
f(2,1) = pr(2,1) + £(0) = 300 + 2900 = 3200,
f(2,2) = pr(2,2) + (1) = 650 + 2400 = 3050,
£(2,3) = p1(2,3) + £5(2) = 1100 + 1900 = 3000,
£(2,4) = p1(2,4) + £5(3) = 1550 + 1400 = 2950.

Par conséquent, f;*(2) = £1(2,4) et x;* = 4. Sous forme de tableau,
cela donne:

si|lxi=1|x1=2|x1=3|x1=4|f(s1) | x{
2 3200 3050 3000 2950 2950 4

La politique optimale est donc:
xi =4, x =0, x3=3

donnant lieu a sp = 3, s3 = 0. Le codt total est £(2) = 29509.

Fabian Bastin Programmation dynamique

Exemple: Méthode du chemin critique

PERT: Program Evaluation and Review Technique.
CPM : Critical Path Method.

Un projet est divisé en taches.

Un graphe représente les relations de précédence entre les taches.
Noeud / : étape du projet.

Arc (i.j): tache de durée t;;.

Une tache (i,/) doit se terminer avant que (j, k) débute.

Les noeuds 1 et N représentent le début et la fin du projet. On
suppose de plus qu'il y a au moins un chemin du nceud 1 a n'importe
quel autre nceud.

On veut connaitre le temps requis pour terminer le projet (i.e. avoir
effectué toutes les tiches, certaines pouvant s'accomplir en
paralléle), ainsi que les activités critiques.

Fabian Bastin Programmation dynamique

Un plus long chemin dans le réseau s'apelle un chemin critique et sa
longueur correspond a la durée minimale du projet.

Pour chaque noeud i, on note

T; = longueur du plus long chemin de 1 3 1i.

Correspond au temps requis minimal pour se rendre a I'étape /.
Equations de récurrence: Ty =0, et pour i =2,..., N,

Ti= max (T;+¢t;).
" arcs (j,i)(/ J")
On peut numéroter les étapes de maniére a ce que le réseau soit
ordonné topologiquement, i.e., pas d'arc (j, i) pour j > i. Il suffit
alors de calculer 71 =0, Ty, ..., Ty.

Ensuite, on peut aussi poser Yy = Ty et calculer:
Y; = date au plus tard de I'étape i (sans retarder le projet)
= min Y — tij, puis
{jI(ij) existe}

E; = Y; — T; = écart permis pour |'étape i, pour i=N—1,... 1.

Fabian Bastin Programmation dynamique

Exemple: allocation d’une ressource

On a b unités d'une ressource a allouer & N activités. Posons:

i = nombre d'unités de ressource allouées a I'activité k;
re(ug) = revenu pour |'activité k si uy unités de ressource
lui sont allouées.

Formulation:
N
max Z ri(uk)
k=1
N
s.l.c. Z ug < b; 0 < uy < by et uy entier, pour tout k.
k=1

Le nombre de solutions possibles est dans O(b").

Fabian Bastin Programmation dynamique

On se raméne a notre cadre de PDS en posant:

Ji(x) = revenu optimal pour les activités k a N si
x unités de ressource leur sont disponibles;
Xk = nombre d'unités disponibles pour les activités k a N.

Equations fonctionnelles:

Inti(x) = 0 Vx € Xyt

Ji(x) = max {n(u)+ hpi(x—uv)}, k=N,...;1, 0<x < b.
0<u<x
Chainage arriére: fixer dans 'ordre Jy, Jy_1,...,J1, et en
mémorisant, a chaque noeud, la valeur de u qui fait atteindre la
maximum.

Chainage avant: Définir D;(x) = revenu optimal pour les activités 1
a 7 si on leur alloue x unités de ressource.

Fabian Bastin Programmation dynamique

Cas de plusieurs ressources.

Au lieu d'avoir un seul type de ressource, on en a m types.

Dans ce cas, le probléme se formule et se résoud (théoriquement)
exactement de la méme facon, sauf que I'on doit interpréter b, x, et
u, comme des vecteurs. On pose

b; = nombre d'unités de ressource de type i disponibles.
uj. = nombre d'unités de ressource de type i allouées a I'activité k;
xjx = nombre d'unités de ressource de type i disponible
pour les activités k a N;
by X1k U1k
b= . X = , U=
bm Xk Uk

ri et Ji sont définis comme pour le cas ou m = 1, et les équations
fonctionnelles sont les mémes.

Fabian Bastin Programmation dynamique

Mais ici, le nombre de noeuds dans le réseau devient (si les b; et uj
sont entiers): 14+ N x (b +1) x --+ x (by + 1).

Par exemple, pour N = 100, m = 1 et b =99, on a 1 + 10* noeuds.
Mais pour N = 100, m = 100 et b; = 99, on a 1 + 10%°? noeuds!

Second cas: impensable de résoudre par fixation itérative en

pratique. C'est la malédiction des grandes dimensions!

En pratique, on ne peut traiter que les petites valeurs de m.

Fabian Bastin Programmation dynamique

Sac alpin avec variables non bornées.

On place des objets de types 1,..., N dans un sac de volume b.
Chaque objet de type k occupe un volume aj et rapporte un profit
ck. Soit uy le nombre d'objets de type k dans le sac. Formulation:

max 221:1 Cr Uy
sle. SN acu < b;
ur > 0 et entier, pour k=1,... N.

Il s'agit d'un probléme de programmation linéaire en nombres
entiers, avec une seule contrainte.

Si les uy n'avaient pas a étre entiers, le probléme deviendrait trivial:
il suffirait de remplir le sac de b/aj unités de I'objet qui a la plus
grande valeur de ¢, /aj (profit par unité de volume occupé).

Se résoud comme le probléme d'allocation de ressources précédent: a
I'étape k, on fixe uy. Si b et les a, sont entiers, on a un probléme de
plus long chemin dans un réseau de 1 + N x (b + 1) noeuds. Mais
dans ce cas-ci, on peut faire beaucoup mieux.

Fabian Bastin Programmation dynamique

Posons D(x) = valeur optimale d'un sac de volume x.
On a D(0) = 0 et on va calculer D(1), D(2),..., D(b) par:

D(x) = g (D(x —aj) +¢). (1)

On construit un réseau de b + 1 noeuds, dans lequel le noeud x
correspond a un sac rempli au niveau x. Un arc (x,x + a;j), de
“longueur” ¢;, correspond a I'ajout d'un objet de type j au sac.
D(x) est la longueur d'un plus long chemin de 0 a x.

On peut faire ceci car il n'y pas de bornes supérieures sur les u;.

Fabian Bastin Programmation dynamique

On peut aussi supposer que les objets sont placés dans le sac par
ordre décroissant de valeur de a, (on les trie dans cet ordre), et
qu’en cas d'égalité dans (1), on choisit I'objet ayant le plus petit
indice j. On cherchera ainsi le plus long chemin de 0 & b, mais
seulement parmi les chemins dont les “types” des arcs sont en ordre
décroissant. Soit

v(x) = le plus petit type d'objet qu'il est optimal de placer
dans un sac de volume x
= le type du dernier arc sur le chemin optimal de 0 a x
— min {j | D(x) = g + D(x — 3))}.

Pour les noeuds > x, il suffit de considérer les objets de types
< v(x).

) {j:aj<x et jgv(xfaj)}((J) j)

On calcule (D(x), v(x)), pour x =1,..., b, par la méthode
d'accession.

Fabian Bastin Programmation dynamique

PROCEDURE Accession pour sac alpin;
POUR x < 0 A b FAIRE D(x) « 0; v(x) « N;
POUR x «— 0 A b — 1 FAIRE
POUR j « 1 A v(x) FAIRE
Sl ¢j+ D(x) > D(x + a;) ET x+ a; < b ALORS
D(x + aj) < ¢j + D(x); v(x+ aj) < J;
Sl ¢i+ D(x) = D(x+a;) ET x+a; < bET j < v(x+ a))
ALORS v(x + aj) « J;

Fabian Bastin Programmation dynamique

Un probléeme de découpe de tissu

On a une piéce de tissu (en rouleau) de longueur L.
Elle contient des défauts aux points di, do, ..., dy.

L | [| | | J
do s dd3 dy e dv dni1
On veut couper la piéce de tissu pour en vendre les morceaux.
Chaque coupure se fait vis-a-vis d'un défaut et élimine ce dernier.
Soit V/(n, /) le prix de vente d'un morceau de tissu de longueur /
contenant n défauts. On veut couper la piéce de facon a maximiser
le revenu total.

Pour chaque défaut, on a une variable de décision binaire.

Il'y a donc 2N solutions possibles.

Si N est grand, il sera beaucoup trop long de les examiner toutes.

Fabian Bastin Programmation dynamique

L'approche suivante (programmation dynamique) est plus efficace.
Posons dy 1 = L;
Ji = la valeur optimale du morceau [0, di];
u, = numéro du dernier défaut ol couper avant dy,
si on dispose du morceau [0, di] (i.e. si on coupe a dy).
Récurrence:

o = 0;

J = nggﬁ_l{JquV(k—u—l, di — du)},

pour k=1,2,...,N+1.

Facile a résoudre par chainage avant. La valeur optimale de uy est
celle qui fait atteindre le maximum. Si u, = 0, on ne coupera pas le
morceau [0, d].

Fabian Bastin Programmation dynamique

Exemple: défense d'une frontiére

Le segment [a, b) doit étre défendu par /V soldats. Chaque soldat va
défendre un sous-segment [p, g), en se plagant a un point r tel que
p < r < q. Ces sous-segments sont disjoints.

| |
[I |

1
; Pl g \
Un ennemi qui tente de pénétrer a un point y dans le sous-segment
[p, q), défendu par 1 soldat au point r, réussira avec une probabilité
P(p,q,r,y).

L'ennemi peut savoir ou se trouvent nos soldats et choisira une
valeur de y de facon a maximiser sa probabilité de pénétration. Nous
voulons placer nos soldats de facon a minimiser la probabilité de
pénétration de |'ennemi.

Probabilité que I'ennemi réussisse s'il tente de pénétrer par le
segment [p, q) et que ce dernier est gardé de fagon optimale:

6(p.0) = min (max P(p.a.r0))
relp,q] \y€lp,q]

Fabian Bastin Programmation dynamique

Pour k =1,..., N et chaque p € [a, b), soit J,(p) = probabilité que
I'ennemi pénétre par le segment [p, b), s'il est gardé de fagon
optimale par k soldats. Equations fonctionnelles:

Jh(p) = G(p,b) pourtout p < b; Jo(b)=0,
Ji(p) = min (max(G(p,u), Jea(v))),

)

pour tout p, et k =2,..., N.

Interprétation: on a k soldats pour protéger [p, b). Le premier soldat
défendra le segment [p, u). Les k — 1 autres défendront [u, b) (de
fagon optimale). Nous choisissons u de fagon & minimiser. L'ennemi
choisira son segment de facon a maximiser sa probabilité.

Pour résoudre, on calcule la fonction Jy, puis J, etc.
On fait I'hypothése que I'on dispose d'une procédure pour calculer
G(p, q) au besoin.

Fabian Bastin Programmation dynamique

Autre difficulté: on a ici un espace d'états continu: il y a une infinité
de valeurs de p.

Solution: discrétiser: on ne considére qu'un nombre fini de valeurs
possibles pour p et u.

Exemple: les longueurs des segments doivent tous étre des multiples
de 10 métres.

Ou encore: on approxime les fonctions G, P et Ji par des
polynémes, ou des splines, ou par éléments finis,

Applications similaires:
— Décider on placer les arréts d'autobus.
— Quand changer les pneus dans une course automobile.

Fabian Bastin Programmation dynamique

Algorithme de Viterbi.

Chaine de Markov cachée (partiellement observée).

Pij
r(z;i,J)

(x0,X1,...,Xxy) = suite des états visités (cachée);
(z1,...,2n) = suite des observations

(e.g., état observé avec du bruit);

P[xo = i] = probabilités de I'état initial;

Plxk+1 =J | xx = i] = probabilité de transition de i a j;
Plzks1 =z | xk = i, xk1 = J]

probabilité d'observer z lorsqu’on passe de i a j;

On observe Zp et on cherche a estimer Xy.
On choisit ici I'estimateur de vraisemblance maximale, i.e., X}y sera
le Xy qui maximise P[Xy | Zy]. On va le calculer par PD.

Fabian Bastin Programmation dynamique

Exemples d’applications:

A. Reconnaissance de la parole ou de I'écriture.
Xy est la suite des phonémes réellement prononcées par un
interlocuteur, Zy est la suite des phonémes comprises par le systéme.

Les probabilités 7;, pj et r(z;i,) du modéle doivent avoir été
estimées auparavant: c'est |'entrainement du modéle.

On peut entrainer le modeéle pour un interlocuteur particulier (e.g.,
systémes de dictée) ou encore pour un vocabulaire particulier (e.g.,
un répondeur téléphonique reconnaissant la parole ou un interface
vocal pour un site internet spécialisé).

Si le systéme n'est pas suffisamment certain que Xy = Xy, il pourra
demander a l'interlocuteur de confirmer.

B. Transmission de données sur un canal bruité.

Fabian Bastin Programmation dynamique

On cherche le Xy qui maximise P[Xy | Zn] = P[Xn, Zn]/PlZn].
Mais puisque P[Zy] ne dépend pas de Xy, il suffit de maximiser

P[Xn,Zn] = Plxo, X1,y XN, Z15 - - - ZN]
= TxoPxox1 r(zl; X0, Xl)px1x2 I’(Z2; X1, X2)

...... P vxn T (2N XN—1, XN)

N—-1
= Tx H pXka+1 r(Zk+1; Xk Xk+1)'
k=0
Cela équivaut a minimiser, p.r. 3 xp, ..., Xpn,
N—1
—InPXn, Zn] = —In(me) = > In[Pusers F(Zkgti Xis Xig1)].
k=0

Fabian Bastin Programmation dynamique

Posons

Do(xo) = —In(my);
k
def .
Diy1(xk+1) = Xom'nxk <_ In(7x) — Z In[pxnxn+1 r(Zn+1; Xn, Xn+1)]>
=0

= min (Dr(xk) = In[Pxgox 2 M (Zh15 Xk Xk 1)])
pour k=0,...,N —1.
Correspond a trouver un plus court chemin dans le réseau:

s Xo X; Xp XN-1 XN t
))

Fabian Bastin Programmation dynamique

On calcule les Dy (xx) par une méthode de correction d'étiquettes.
Avantage p.r. au chainage arriére: on peut débuter I'algorithme dés
qu’on a la premiére observation, et calculer les Dy (xx) dés que I'on
dispose de z,, pour chaque k, en temps réel.

En pratique on va souvent calculer les n plus courts chemins d’un
seul coup.

Fabian Bastin Programmation dynamique

