Chapitre 7: Modeles sur Horizon Infini

Fabian Bastin

DIRO, Université de Montréal

IFT-6521 — Hiver 2011

Fabian Bastin Programmation dynamique



Nombre illimité d'étapes, systéme stationnaire:
Uk, Xk, gk, fk, et Py sont les mémes pour tout k.

a I'étape k, on observe I'état xk, on prend une décision v, € U(xk),
puis une variable aléatoire wj est générée selon la loi P(- | xk, ).
On paye un colit d'espérance g(xx, uy), et I'état a la prochaine
étape est xx11 = f(xk, Uk, Wk).

Nous avons éliminé le paramétre wy de la fonction g.
Equivaut a remplager g(xk, uk, wi) par E[g(xk, ux, wi)|xk, uk]-
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Modeles en temps discret

Coiit espéré total sur horizon infini, avec facteur d’'actualisation
a <1, pour une politique 7 = (o, f1,- - - ):

N-1
im E [Z g (X, uk)

k) = i,
k=0

ou vy = uk(xk) et xxr1 = f(xk, ux, wg) pour tout k.
Si le taux d'intérét par étape est r, alors « = 1/(1+ r).
Le colit espéré total optimal sur horizon infini:

J(x0) = ir71rf Jx(x0)-

Plusieurs jeux de conditions peuvent garantir que J*(xg) existe et
est fini, qu'une politique stationnaire optimale existe, et qu'on peut
les calculer.

Ces modeles peuvent en fait englober tous ceux que nous avons vus
auparavant.
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Exemples de telles conditions:

Si la fonction g est bornée, disons |g(x,u,w)| < Metsi0 < a <1,
alors le colit espéré total est borné par -7 ) akM = M/(1 — ).

Si g est bornée et o = 1, mais qu'il existe au moins un état
absorbant dans lequel les colits sont nuls et que |'on atteindra a un
instant aléatoire (temps d'arrét) T; tel que E[T;] < oo pour toute
politique, ou pour au moins une politique si les colits sont non
négatifs, alors le colit espéré total est borné par ME[T;].

Souvent, T; est borné par une v.a. géométrique. C'est vrai par
exemple s'il existe des constantes ng < oo et p < 1 telles qu'a partir
de n'importe quel état, on a P[T; > ng] < p.

Les modeéles avec un nombre fini d'étapes entrent aussi dans ce
cadre: il suffit de mettre le numéro de I'étape courante dans |'état.

Certains jeux de conditions permettent des fonctions g non bornées.

Voir DPOC, vol. 2, pour plus de détails.



Coiit moyen par étape, pour une politique m = (uo, 41, - - - ):

1 N—1
J:(x0) = Ilim E g(xk, uk ] .
N—o0
k:O
Colit moyen optimal:
J(x0) = infJz(x0).
™

Le colit moyen peut &tre non nul seulement si le colit espéré total
est infini. D'habitude, J; et J* ne dépendent pas de xp.

Une politique 7 est dite stationnaire si elle est de la forme
m = (p, y pt, ... ). Dans ce cas, on parlera souvent, par abus de
langage, de la politique y, et on notera J; par J,.

Une politique stationnaire ;. est optimale si J,(x) = J*(x) pour tout
X, et e-optimale si J,(x) < J*(x) + € pour tout x.
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Modeles a étapes discréetes (ou événements discrets)

On observe le systéeme a des instants aléatoires
th =0<1t; <t <... (les instants des événements).

Soit N(t) = sup{k : tx < t} = nombre d'événements durant (0, ¢].

a l'instant ty, le systeme “saute” dans I'état xk, on |'observe et on
prend une décision ug, on paye un co(it dont I'espérance est

g(xk, ux), et la paire wy = (txr1 — tk, Xk+1) est générée selon une
loi de probabilité qui dépend de (xk, uk).
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Coliit espéré total actualisé sur horizon fini t, avec taux
d’actualisation p > 0 (i.e., facteur d’actualisation e™”* pour une
période de temps t), pour une politique ™ = (uo, pi1, ... ):

N(t)

Jrt(xo) = E Z e Pt g(xk, uk)

k=0
ol ug = uk(xk). Si pas d'actualisation: p = 0.
Dans le cas de I'horizon fini, on suppose que la valeur courante de
t, est incluse dans I'état xx, si nécessaire.

Parfois, un coiit est cumulé de fagon continue, a un taux g(x, u, w)
si on est dans I'état x, on a pris la décision u, et I'élément aléatoire
est w. Notre formulation couvre ce cas en prenant

tet1
gxk,ur) = E [/ e P g (X, ug, wi)dt| .
t

k
Colit espéré optimal:

x :
Ji(x0) = |51Tf Irt(x0)-



Coiit espéré total actualisé sur horizon infini:
J- (X = lim Jr:(x0).
(x0) Jim Jr +(x0)
Le colit espéré total optimal:
J(x0) = infJz(x0).
™

Coiit moyen par unité de temps sur horizon infini, pour une
politique ™ = (o, t1,- - - ):

_ 1 N(t)
J=(x0) = tIer;OE R ;g(xk,uk)
Le colit moyen optimal:
J(x0) = i?rfJﬂ(xo).

Le colit moyen peut étre non nul seulement si le colit espéré total
est infini. D'habitude, J, et J* ne dépendent pas de xp.



Pour le modeéle sur horizon infini, on définit la fonction de cofit
anticipé optimal pour un modele a horizon tronqué: Jy(x) =0 et

Ji(x) = colit espéré total optimal si on est dans |'état x

et s'il ne reste que k étapes

= mul? )EW [g(x,u) + adk_1(f(x,u,w))]  pour k > 0.
ucU(x

On s'attend a ce que Jx — J* lorsque k — oo, et que

pr(x) = arg min Ey [g(x,u) + " (f(x, u,w))]
ueU(x)

définisse une politique optimale. On va montrer que sous certaines

conditions, cela est vrai et que I'on peut borner |Ji(x) — J*(x)| et

sup,ex |Jk(x) — J*(x)|, et le taux de convergence de cette erreur

vers 0.

On va supposer (sauf lorsqu’on dira le contraire) que g est bornée
et que w prend ses valeurs dans un ensemble D_dénombrable.
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Notation. Soit 5(X) I'ensemble des fonctions bornées V/ : X — R.
La norme sup d'une fonction V' € B(X) est définie par

VI =IVlleo = sup [V(x)].
xeX

On définit les applications T : B(X) — B(X) et T, : B(X) — B(X),
pour une politique stationnaire 1, par
TU)6) = min Eulglx.u) + aJ(f(x.u.w))].
ucU(x
Tu()(x) = Ewlglx, u(x)) + ad(f(x, p(x), w))] -

Ce sont les opérateurs de la PD. Les images de T et T, sont dans
B(X) car g est bornée. On peut composer ces applications:

T = T(THI)),
Ti) =TT,

T Tajn = Tuk—l(J) = Tui(TuiH T TMk—l)(J)‘
On note J < J'si J(x) < J'(x) pour tout x € X.
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Définition. Une application 7 : B(X) — B(X) est dite
contractante en m étapes de module p si

I7"() =TI < plld = I,

pour tout J, J' € B(X), pour une constante p < 1.
Si m =1, on dit simplement que 7 est contractante.

Théoreme du point fixe pour les applic. contractantes.

Si T : B(X) — B(X) est contractante en m étapes alors il existe un
et un seul J* € B(X) tel que 7(J*) = J*, i.e., T possede un point
fixe unique dans B(X).

De plus, pour tout J € B(X), limy_ 00 [|T*(J) — J*|| = 0.
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On montre ici que les applications T et T, de la programmation
dynamique sont monotones et contractantes.

Proposition (monotonicité).

Si J<J, alors T(J) < TH(J') et T(J) < TE(J'), pour k > 1.

Preuve: Découle directement de la définition + induction sur k. O

Proposition: (contraction).
Sia<1, Jet J sont dans B(X), et u est une politique
stationnaire, alors, pour tout kK > 1, on a
IT () = TEUI < a¥)ld = S,
ITEU) — TAH) < a0 .
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Preuve: Par la proposition précédente, comme || - || = || - ||oo,

J<I+I=T
= TU)STUHJ=TN) =T +alJ-J|
= = TN +?J- 7

T2(J) < T(T(J) +allJ = JII)

= TS T(THY D) + I =) = THU) + okl = 7|
= TKJ) - THU) <aXu -

et on peut répéter le méme argument en permutant J et J'. On fait
la méme chose avec 7,. [
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Corollaire. (a) J* et J, sont les solutions uniques, dans B(X), des
équations fonctionnelles (de Bellman):

F =T et Jy=Tu(d)
(b) Pour tout J € B(X),

IT“() =7l = IT() = dull = 0.

lim lim
k—o00 k—o00
(c) Une politique station. p est optimale ssi 7,,(J*) = T(J").
Preuve: Les deux premiers items découlent directement du théoreme
du point fixe. (DPOC donne aussi une preuve directe.) Pour le
dernier item, on a T,(J*) = T(J*) = J* ssi J* = J, (par le
théoreme du point fixe), ssi p est optimale. [J

On voit qu'une politique optimale stationnaire existe ssi il existe un
1 qui fait atteindre le minimum dans |'équation de Bellman.
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Approximations successives (itération des valeurs)

ALGORITHME AS;
k < 0;
Choisir ¢ > 0 et Jy € B(X) (premiere approximation de J*);
REPETER
k< k+1, Jie T(Jk_l);
TANT QUE ||Jx — Jk—1|l > &
RETOURNER /i = argmin, T,(Jk—1) comme approx. de p*.

Par la propriété de contraction, on a
19k = J*|| < alldeer = S < - < oo = S|

L'erreur diminue donc de maniére géométrique (ou exponentielle) en
fonction de k. De plus,

e = I < aflde—1 = | < all[ I = Je=all + 1 = J711),
ce qui fournit une borne sur la distance entre Ji et J*:
e = Il < Nk = Je—llee/ (1 = ).



On peut raffiner ces bornes comme suit. Pour Jy € B(X), posons
W= Inf[THU)) — T L))

T = sup[T(Jo)(x) — T (o) (x)];

xeX
a = wa/(l—a);
& = ke/(l—a).

Proposition. On a
a < J = T <,

et ces bornes ne s'élargissent jamais, ni d'un coté ni de I'autre,
lorsqu’on augmente k.
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Preuve. Prenons J = Jy_1 = Tk 1(Jp) et v = k- On a

T(J)=J+~
2N > T +ay>J+y+ay
T3(N)>TU)+ay+a?y > J+y+ay+a?y

4o

= T"YN>TU)+(a+®+--+a")y.
En prenant la limite:
J = lim T > T(J) +ya/(1 - @) = TH(h) + .

L'autre borne se démontre de la méme manieére.
Pour la preuve qu'elles ne s'élargissent pas, voir DPOC. [J

Cas particulier: si Jo < J*, alors on aura toujours ¢, > 0.
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Si p est telle que T,(J) = T(J) (elle fait atteindre le minimum
partout), on peut appliquer la proposition précédente avec J,, et T,
a la place de J* et T, ce qui donne

a<Jy - Tu)) <
On obtient alors
0< )y~ J < (= Tlhen)) = (O = T(er) € & — i

Comme
c < J*— Jp <,

on a
I+a <J < I+

a la fin de I'algorithme, comme approximation finale de J*, on
pourra prendre par exemple la médiane

I+ (S — c)/2.
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Approximation des opérateurs.

Souvent, lorsqu'on applique I'opérateur T ou T, a une fonction J,
on ne peut pas calculer T(J) ou T,(J) exactement sur tout |'espace
d’états, mais seulement une approximation.

C'est le cas lorsque I'espace d'états est trés grand ou infini.

Soit J une approximation de T(J), telle que
—0 < T()-J<d.

En appliquant la proposition précédente avec J = TX~1(Jp), on
obtient y
0+ <J - J< + e

Souvent, en pratique, on connait J et J, mais pas T(J).

Il faudra donc estimer 6~ et 7. On peut le faire, par exemple, en
réévaluant T(V) sur une grille plus fine, ou encore aux endroits ou
on pense que l'erreur peut étre importante.
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On a aussi les bornes suivantes:

Proposition (L'Ecuyer, 1983): Soient J et J dans B(X) tels que

—57 < T(U)-J < &t et
T.()—-J < d.
Alors
—p(J—=J,67) <J-I< o(d—J.6t
0 <J,—J< o(J=73,0)+p(J—J,&),
ol
o(V.x)=x+ ——max(0, V + x) pour V € B(X).
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Notation matricielle pour X fini.
X = {1,...,n}
Pi(u) = Plxxs1r=J | xk =i,ux = u].
Les fonctions J € B(X) sont alors des vecteurs a n dimensions:
J(1) T(J)(1)
) T(J) =
J(n) T(J)(n)
Pour une politique stationnaire ;1 donnée, on a le vecteur de colits
g(1, p(1)
g =
g(n, u(n)
et la matrice des probabilités de transition
pu(p(1)) -+ pra(u(1))
P = : : :
pr((n)) -+ pan(pa(n))



On peut alors écrire T,(J) sous forme matricielle:
T,(J) =g, +aP,J
et I'équation T,(J,) = J,, devient un systeme d'équations linéaires:
J,=gu+aP,J,, ie., (I — aPu)dy = gu,
dont la solution est
Juo=(—aP,) g,

Les valeurs propres de P, sont toutes dans le cercle de rayon o < 1
dans le plan complexe. Cela implique que (/ — aP,) est inversible.
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Gauss-Seidel

Dans I'algorithme AS tel qu'il est formulé, on doit conserver et
utiliser Jx_1 tant qu'on n'a pas calculé Ji(x) pour tous les états x.
Si I'espace d'états est fini et de cardinalité n, il faut alors réserver de
la mémoire pour 2 vecteurs de taille n.

Que se passe-t-il si on utilise un seul vecteur J et que I'on utilise les
nouvelles valeurs de x dés qu'on les a calculées?

C’est la méthode de Gauss-Seidel.
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ALGORITHME AS-GS, pour X fini;
Choisir J € B(X) (premiere approximation de J*);
REPETER
POUR CHAQUE x € X FAIRE J(x) « T(J)(x);
TANT QUE “pas satisfait”;
RETOURNER /i = argmin, T,(J) comme approx. de j*.

L'énoncé J(x) < T(J)(x) modifie J en un seul point et cette
nouvelle valeur de J(x) sera immédiatement utilisée par la suite.

La boucle “POUR CHAQUE ..." transforme une fonction J € B(X)
en une nouvelle fonction, disons F(J). Si les états sont {1,2,...,n}
et sont traités dans |'ordre par I'algorithme, on a

ueU(i)

i—1 n
F(N() = min tg(i,u)+a | > pi(u)F(N)G)+ Y pi(u)J()
=1 j=i

On définit £, de la méme fagon.
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Proposition. L'opérateur F : B(X) — B(X) est contractant de
module «, tout comme T, ce qui assure la convergence. De plus, si
J< T(J) < J*, alors TK(J) < FK(J) < J*, donc dans ce cas
I'erreur diminue au moins aussi vite avec F qu'avec T.

Preuve. Pour J et J' dans B(X), on montre par induction sur i que

|F(N) (i) — F(JI)(i)| < alld—J|. On a
IF(J)(1) = F(J)(D)| < o max 1JG) = JG) =alld— T

Si on suppose que |F(J)(j) — F(J)U)| < a|ld = J|| pour tout j < i,

alors
FOY0) - FUYO)
< amax (max FU0) - FUIG). maxJ0) - G
< alJ-=J|.

On a donc |F(J) — F(J)|| < a||lJ — J'||, et méme chose pour F,.

La preuve de la deuxieme partie (monotonicité) se fait facilement
par induction sur i pour chaque k, puis sur k. =[]
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Lorsqu’on utilise les bornes sur I'erreur, il n'est pas clair que les
bornes convergent plus vite avec AS-GS qu'avec AS standard. Le
principal avantage de AS-GS est qu'il demande moins de mémoire.
D’autre part, AS est plus facile a paralléliser.

Généralisation. On peut mettre a jour les valeurs de J(i) en
visitant les états / de maniére arbitraire, possiblement aléatoire. La
convergence est assurée en autant que chaque état est visité
infiniment souvent lorsque le nombre d’itérations tend vers l'infini.
Une version du théoréme du point fixe s’applique méme si les
différents états visités (i.e., la mise a jour de J(i) pour les différents
i) se fait de maniére asynchrone. Cela facilite les implantations
paralléles.

On pourrait par exemple avoir:
REPETER
CHOISIR un 7 au hasard dans X:
FAIRE J(i) < T(J)(i);
TANT QUE “pas satisfait”;



Itération des politiques (IP)

ALGORITHME IP;
Choisir ¢ > 0;
Choisir une politique stat. i (premiére approx. de u*);
REPETER
Trouver J tel que J = T,(J); (onaJ=J,)
Trouver /i tel que T,(J) = T(J) (nouvelle politique);
TANT QUE [J-TU)| > &
RETOURNER .

Note: lorsqu'on cherche un nouveau p, on se restreint aux politiques
admissibles raisonnables, compte tenu de la structure du probleme.

Souvent, 1 change trés peu d’une itération a l'autre.

Dans ce cas, seulement quelques lignes du systéme d'équations
linéaire J = T,(J) vont changer et il suffira de faire une
“mise-a-jour” de la solution.
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Proposition. a chaque itération de cet algorithme, la fonction

J = J,, ne peut augmenter en aucun point par rapport au J
précédent. Elle ne peut que diminuer. De plus, dés que J ou i ne
change pas d'une itération a la suivante, la politique 11 est
nécessairement optimale.

Dans le cas ol le nombre total de politiques stationnaires est fini
(e.g., si X et U le sont), on peut remplacer “> ¢" par “> 0" et

I'algorithme s’arréte toujours aprés un nombre fini d'itérations et
retourne une politique optimale.
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Preuve. Soit v la politique a une itération donnée et 11 la politique
a I'itération suivante. On veut montrer que J, < J,.
Par définition de u, on a

Tu(h)=T) < T(h) =

Ainsi, par la monotonicité de T,,, T!’L‘H(Jy) < T}f(J,,), et, en vertu
des équations de Bellman,
—_ k
Jy= kILmOO TM(JI,) < Jy.
Si J, = Jy, alors J, = T,(J,) = T(J,) et donc J, = J*, car C'est le
seul point fixe de T. En d’autres mots, si i n'est pas encore

optimale, on doit avoir J,(x) < J,(x) pour au moins un état x € X.

Tant que I'algorithme ne s'arréte pas, il améliore nécessairement la
politique a chaque itération. Donc le nombre d'itérations ne peut
pas dépasser le nombre total de politiques stationnaires. [
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Algorithme d’IP modifié

En pratique, lorsque X est tres grand, on ne peut résoudre
I'équation J = T,(J) qu'approximativement a chaque itération.
L'une des fagons de faire cela est d'utiliser I'algorithme des
approximations successives pour un nombre fini d'itérations, disons
my itérations lors du k-ieme tour de boucle de I'algorithme IP. On

remplace alors “Trouver J ..." par “J < T [(J)".

On peut montrer qu'en autant que les my sont tous positifs, la suite
des fonctions J visitées par cet algorithme converge vers J* dans le
sens que ||J — J*|| — 0, et que si le nombre de politiques
stationnaires est fini, alors aprés un nombre fini k* d'itérations
toutes les politiques visitées seront optimales. Par contre, J ne sera
peut-étre jamais exactement égal a J*.

On peut aussi approximer J,, d'une autre fagon, puis choisir une
prochaine politique y telle que T,(J) est “proche” de T(J).
Lorsqu'on décide de s'arréter, on peut calculer les mémes bornes sur
I'erreur que pour AS.
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DPOC (Vol. 2, Proposition 1.3.6) nous dit ce qui se passe a la
limite lorsque I'erreur d’approximation est bornée par le méme
constante a toutes les itérations.

Proposition. Si a chaque itération de IP, on trouve J tel que
| = Tu(J)|| <6, puis p tel que || Tu(J) = T(J)| < ¢, alors

€+ 206
(1-a)*

lim sup [[J, —J*|| <
k—o00

Par contre, cette proposition ne donne pas de bornes sur J, — J* a
une itération donnée.
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Programmation linéaire

Si J < J*, alors J < T(J), et vice-versa.

On voit que J* est le “plus grand” J tel que J < T(J).

En d'autres mots, si |X| = n < oo, le vecteur J* est la solution
optimale du probleme de programmation linéaire:

maximiser  J(1)+---+ J(n)

sle.  J() < g(i,u) +a(Pia(u)J(1)+ -+ Pin(u)J(n))
pouri=1....n ueU(.

Maximiser la somme revient a rendre chaque contrainte active.

Ce probleme posséde n variables et U(1) + - - - + U(n) contraintes.
On le résoudra habituellement par une méthode duale, car il a 'y
beaucoup moins de variables que de contraintes. Mais la résolution
devient tres difficile (ou impossible) si n est trop grand.
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Chaque politique 1 correspond a une base réalisable du PL dual, et
vice-versa. La matrice de base correspondante est | — aP, et on a
w(i) = u ssi la variable duale correspondante est strictement
positive.

Les contraintes qui sont satisfaites a égalité par la solution optimale
correspondent aux paires (i, u) telles que la décision u est optimale
dans I'état i.

Si dans la méthode IP, on ne change la politique a chaque itération
que pour I'état i pour lequel |J(i) — T(J)(i)] est le plus grand, alors
cette méthode est équivalente, pivot pour pivot, a appliquer
I"algorithme dual du simplexe au PL.
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Exemple: remplacement d’'un équipement

Une machine (ou un équipement) est dans I'un des états {1,...,n}.
Plus I'état est élevé, plus la détérioration est avancée.Si I'état est /
au début d'une période, le colit d'opération (espéré) pour cette
période est g(/) et I'état sera j au début de la prochaine période
avec probabilité p;;. Au début de chaque période, on peut laisser la
machine pour une autre période (v = 0), ou encore la remplacer par
une neuve (v = 1) au coiit R, auquel cas la machine sera dans I'état
1 (neuve) et y restera au moins jusqu'a la prochaine période. Les
colits sont actualisés par un facteur o par période.

Soit J*(/) le colit espéré total optimal actualisé, sur horizon infini, a
partir de maintenant, si on est dans |'état /. L'équation de la PD:

J*(i) =min | R+ g(1) + aJ*(1), g(i) +aZp,-jJ*(j) ,1<i<n.

La politique optimale: remplacer ssi J*(i) = R + g(1) + aJ*(1).
On peut calculer (approx.) J* par I'un des algorithmes: AS, IP, etc.
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Hypothese D: g(i) est croissant en i et pour chaque j fixé,
Plxxy1 > Jj | xk = i,u=0] = pjj + -+ pin

est croissant en /. [

Cette hypothese dit qu’'une machine plus dégradée ne colite pas
moins cher, et a au moins autant de chances d'atteindre un seuil de
dégradation donné a la prochaine étape, qu'une machine moins
dégradée.

Proposition. Sous I'hypothese D, si Jo = 0 et J, = TX(Jp), alors
Ji(i) est croissante en i, et J*(i) = limy_,oo Jk(i) est aussi
croissante en /. La politique optimale est donc déterminée par un
seuil /*: on remplace ssi

i> 0" Yinfli: (i) = R+ g(1) + aJ*(1)}.

Si cet ensemble est vide, on pose i* = oo.
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Preuve. On montre par induction sur k que Ji est croissante.
Vrai pour k = 0. Supposons que c'est vrai pour k —1. On a

Jk(i):min R+g( )—i—a./k 1(1 +aZpUJk 1U

On peut réécrire la somme, en posant Jx_1(0) = 0, comme:

n

> pidk-1() =D (P + -+ Pin) (Ik=1() = Je—1(j — 1))
j=1

j=1

L’hypotheése D nous assure que cette somme et g(i) sont croissants
en i, car Jx—1(j) — Jk—1(j — 1) > 0 par I'hypothese d'induction. [J
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Coiit total, « = 1 (plus court chemin stochastique)

Si o =1, il faut faire des hypothéses garantissant que les cofits ne
s'accumulent pas a I'infini.

On va supposer ici que X = {1,...,n, t} et que chaque U(/) est fini.
L'état ¢ est un état terminal (absorbant) dans lequel le coiit est nul.
On a alors un probléme de plus court chemin stochastique.

Définition. Une politique p est propre s'il existe ng < oo tel que

Pu def maxP[xp, # t | xo =i, u] < 1.
ieX

Autrement, elle est impropre.

Hypothese PP. Il existe au moins une politique stationnaire propre,
et pour toute politique impropre, J,(i) = oo pour au moins un i.
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Sous I'hypothése PP, T et T, ne sont pas nécessairement des
applications contractantes par rapport a la norme sup, mais on peut
quand méme montrer:

Proposition. (a) Si y est propre, alors J = J,, est |'unique solution
de I'équation J = T,(J), et pour tout J on a
— i k
Ju = kh—>r20 TM(J).
(b) Si T,(J) < J pour au moins un J, alors p est propre.
(c) J = J* est I'unique solution de I'équation de Bellman J = T(J),

et pour tout J on a
J5 = lim TK().

k—o0

(d) Une politique stationnaire 1 est optimale ssi T,(J*) = T(J*).
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Preuve. Pour (a), si p est propre, on a, avec la notation vectorielle,

k—1
TE) =gu+PuTi ()= =PI+ > Play
/=0

Mais lorsque k — oo, PXJ < p,gk/"OJ ||J]| — 0 et donc
o0
TH(J) = > Plgu=Ju
=0
On a aussi T/fJFl(J) =gu+ Py T:(J), qui devient, lorsque k — oo,

Ju=gu+ Pudy = Tu(dp).

D’autre part, si J = T,(J), alors J = limy_, T[L‘(J) = J,, ce qui
démontre |'unicité.
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(b) Si T,(J) < J, puisque T, est monotone,

PU+Z g =TS(J)< J.

Ceci implique que p est propre, car autrement au moins une des
composantes du vecteur défini par la somme a gauche devrait
diverger vers 400 selon notre hypothése PP.

(c) et (d): voir DPOC. O

Cette proposition tient méme si les U(i) ne sont pas finis, par ex. si
les U(i) sont compacts et si les Pjj(u) et g(i, u) sont continus en wu.
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La proposition implique que I'algorithme AS converge vers J*.
Il en est de méme pour AS-GS.

S'il existe une politique optimale p* sans cycle (i.e., on ne revient
jamais a un état déja visité, ce qui implique en particulier que
Pii[1*(i)] = O pour tout i), et si on démarre avec Jy = oo, alors
I'algorithme AS atteint J* (et ne bouge plus par la suite) apres un
nombre fini d'itérations.

L'algorithme IP exact converge si on se limite a explorer des
politiques propres.

Pour I'algorithme IP modifié, on peut aussi adapter la preuve de
convergence si on suppose que Jy satisfait T(Jy) < Jo.
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Exemple. On a 2 états: 0 et 1. L'état O est terminal.
Dans I'état 1, on choisit une décision u € (0, 1]. Puis, avec
probabilité 1 — u? on fait un gain de u et on reste dans I'état 1, et
avec probabilité u? on fait un gain de 0 et on passe a I'état terminal.
Une politique stationnaire y correspond a choisir une valeur de
u = p(1), et une telle politique est toujours propre.
On cherche une politique qui maximise le gain espéré total.
Interprétation: on peut voir u comme la “prime de protection”
demandée a une victime a chaque mois par une organisation
criminelle. On passe a I'état terminal lorsque la victime refuse de
céder. On a ici

Ju(1) = (1= ) + Ju(1))

dont la solution est J,(1) = (1 — v?)/u.
Ainsi, J*(1) = supg,<1 Ju(1) = 0o, mais aucune valeur de u ne
permet d'atteindre cette valeur: aucune politique n'est optimale.
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Si on remplacait U = (0, 1] par un nombre fini de valeurs de u
positives, la proposition précédente s'appliquerait et la politique
optimale serait de choisir la plus petite valeur de u.

Si on prend plutét U = [0, 1], I'hypotheése PP est violée car u =10
définit une politique £ impropre pour laquelle J,(0) = J,(1) = 0.

a noter qu'il existe ici une politique non stationnaire pour laquelle le

gain espéré total est infini: prenons uy = k(1) = 1/[4(k + 1)].
(Faire détails.)
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Fonction g non bornée.
Supposons que le nombre d’'états est infini, que g n'est pas
nécessairement bornée et/ou que a peut valoir 1.

Dans ce cas, les choses se compliquent car il pourrait s'accumuler,
par exemple, un coiit infini ou un revenu infini, ou méme les deux en
méme temps ce qui pourrait faire un coiit net indéterminé.

L'algorithme de la PD fonctionne quand méme et plusieurs
propriétés fonctionnent toujours sous |I'une des conditions suivantes:
Hypothese P: g(x, u) > 0 pour tout x et u € U(x).

Hypothese N: g(x, u) < 0 pour tout x et u € U(x).
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Proposition. (a) Sous P ou N, J* = T(J*) et J, = T,(J,). Ces
équations peuvent avoir d'autres solutions que J* et J,,.

Mais sous P, aucune solution n'est plus petite, et sous N, aucune
solution n’est plus grande.

(b) Sous P, u est optimale ssi T(J*) = T,(J*).

(c) Sous P, si Jx o limk 00 TX(0) satisfait Joo = T(Jso) €t si
JeB(X)eta<1, ousi0<J<J* alors limyg_so TH(J) = J7.
(d) Sous P, s'il existe k tel que pour k > k, xe Xet)eR,

{u e U(x) | g(x, u) + aB[T*(Jo)(F(x, u, w))] < )\}

est un ensemble compact, alors J,, = J* et il existe une politique
stationnaire optimale.

(e) Sous N, p est optimale ssi T(J,) = T,(Jy,).

(f) Sous N, si J€ B(X) et a <1, ousi J*<J<O, alors

lim TK(J) = J*.

k—o0
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Coilit moyen par étape

Considérons un modele actualisé avec X ={1,...,n} et v < 1.
Notons J, ,, et J les valeurs de J,, et J* pour un o donné. On va
faire tendre o vers 1.

Colit moyen par étape, pour une politique stationnaire u:

N—
||m E Z (XK (%K) ]

k:
B[R oag(Xk, u(x))]
N Ninooozl[rl]* Z __

 E[ZiZa g(xk,u(xk»}
- allﬁr‘?* Nlinoo va_ol Oék

= lim (1= a)dau(x0)

a—1—

si on suppose que I'on peut échanger les deux limites.
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On choisit un état, disons t, comme état de référence, et on pose:

h(,},,/l(i) = Ja,,u(i)_-ja,,u(t)a
Aoy = (1= a)dapu(t),

hu(i) = ainffha’“(i) et
A= lim Ay
a—1-

si ces deux limites existent. Les valeurs h, (i) et h,(i) représentent
un coiit différentiel de I'état i par rapport a I'état de référence,
tandis que )\, représente le colit moyen par étape sur horizon infini,
sous la politique i, pour xp = t. En fait, sous I'hypothese que tous
les états communiquent, )\, ne dépend pas de xo.

L'équation J, , = g, + aP,J, , se réecrit:
hay + Jou(t) = gu+ aPu(hay + Jou(t))
Aap+hay = 8ut+aPuhay,

qui devient, lorsque o — 17,
def
Ap+ hy = gu+ Puhy = T (hy).- (1)
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De la méme maniere, pour les valeurs optimales, on pose

(1) = Ja(i) = Ja(2),

/\u, = (1—04)_/;(1'),
W) = fim K@) et
a—1—
o= lim A

a—1—

si ces deux limites existent. Les fonctions h}, et h* représentent le
colit différentiel a I'optimum, et \* le colit moyen optimal par
étape, sur horizon infini. Dans la plupart des cas, ce colit moyen ne
dépend pas de I'état initial xg.

L'équation de Bellman J} = min,{g, + aP,J;} se réécrit
Ao +hH, = mﬂin{gu + aPyhl}
et devient a la limite

X'+ h* = min(g, + Puh") LT ). (2)
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Le raisonnement que nous venons de faire est heuristique, a cause
des hypothéses que nous avons faites sur les limites.

S'il tient, (1) et (2) donnent des conditions nécessaires d'optimalité.
Sont-elles aussi suffisantes? Et si les états ne communiquent pas
tous sous certaines politiques?

Les propositions qui suivent répondent a ces questions.

Proposition.
I existe une constante A et une fonction h € B(X) telles que

A+h=T(h)

si et seulement si A = J*(i) = ming J(/) (le colit moyen optimal)
pour tout i € X.

Et si T,(h) = T(h) pour ce h, alors /i est optimale.

De méme, il existe )\, et h, € B(X) tels que

Ap+ hy = Tu(hu)

si et seulement si A\, = J,(i) pour tout i € X.



Preuve partielle. Supposons que A+ h = T(h).
Si m = (po, pi1, - . - ) est une politique admissible et NV > 0, alors

TMN—1(h) > T(h) =A+h,
TMN—z(TMN—1(h)) > T,uN_2(>\ + h) =+ TMN—Q(h) > 2\ + h,
T#o"'THN 1(h) > NA+h

et on a I'égalité partout si chaque py fait atteindre le minimum. On
a donc, sous la politique 7 et pour xg = i,

1 N1 1
E h(xw) + ) gl pnlx)) | = & o Tuna (M)
k=0

Lorsque N — oo, cela donne J(i) > ), avec I'égalité si chaque pux
fait atteindre le minimum.

Cette preuve fonctlonne méme si X et Y sont |nf|n|s La preuve
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Etant donné une chaine de Markov a états finis, avec une matrice
de transition de probabilité P, une classe récurrente est un ensemble
d’'états qui commiquent dans le sens que de chaque état de
I'ensemble, il existe une probabilité de 1 de visiter finalement tous
les autres états de I'ensemble, et une probabilité nulle d'aller a un
moment donné vers un état hors de I'ensemble.

Une politique & est dite unichaine si elle donne lieu a une seule
classe d'états récurrents (et éventuellement certains états
transitoires).

Proposition. Si i est une politique unichaine, alors le systeme
d’'équations

A+ h=T,(h), h(n) =0,
possede I'unique solution (X, h) = (A, hy), ot A\, = J,(i) pour
tout .
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Proposition.
Supposons que I'une des trois conditions suivantes est vérifiée.
(C1) Toute politique optimale parmi les politiques stationnaires est
unichafne.
(C2) Tous les états sont accessibles les uns des autres, i.e., pour
tous /,j dans X, il existe une politique stationnaire i et k > 0 tels
que Plxx =j | xo =i, u] > 0.
(C3) Il existe un état iy et des constantes L > 0 et & € (0,1) tels
que
sup  |Ja(i) — Julio)] < L.
ieX,a<a<l

Alors J*(i) ne dépend pas de i et on a

J() =N = lim (1—a)J()

«
a—1—

pour tout i, et A* + h* = T(h*), ol h* est défini tel que
précédemment, peu importe le choix de I'état t.
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Exemple: remplacement d’un équipement (suite).
Méme exemple, avec I'hypothese D, mais on veut maintenant
minimiser le colit moyen par période, sur horizon infini.

Ici, les politiques ne sont pas toutes unichaines. Par exemple, si
pin = 0, la politique stupide qui consiste a toujours remplacer sauf
si on est dans I'état n donne lieu a deux classes d'états qui ne
communiquent pas entre elles: {1,...,n— 1} et {n}.

C2 n'est vérifiée que sous des hypothéses supplémentaires.

Mais on peut vérifier la condition C3: Pour o < 1, on a

Jo(i) = min |R+g(1) + aJy(1) +azpuJ*(J ;
j=1
dolt 0 < JH(i)—Ji1) < R+g(l)+aJi(l) - Ji(1)

IN

max [ 0, R—a ) py(Ji0) — Ji(1)| < R
j=1
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Il s’ensuit que I'équation d'optimalité
A+ h(i) = min | R+ g(1) + h(1) +Zpu

posséde une solution (A, h) et la politique optimale consiste a
prendre la décision qui minimise cette expression, pour chaque /.

On a aussi que h(i) = limy_,1— (S (i) — J%(1)) est croissant en i (en
raison de I'hypothese D), ce qui implique que la politique optimale
consiste a remplacer ssi

i Linf{i - A+ h(i) = R+ g(1) + h(1)}.

\/

Si cet ensemble est vide, on pose i* = cc.
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Algorithmes de calcul

Les algorithmes pour le cas actualisé se transposent au cas du colit
moyen. On suppose ici que X et U sont finis.

La méthode des approximations successives pour le vecteur des
valeurs relatives h, i.e., appliquée aux équations

A+ h = T(h); h(t) =0,

devient:

ALGORITHME ASR,;
k < 0; Choisir e > 0 et t € X;
Choisir hg € B(X) tel que ho(t) =0 (premiere approx. de h*);
REPETER
k< k+1, A T(hkfl)(t); hy < T(hk,l) — Ak
TANT QUE |[[hx — h—1|| > €
RETOURNER /i = arg min, T,(hx_1) comme approx. de *.
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Cet algorithme ne converge pas toujours. Il peut cycler, en
particulier si la suite des états visités est périodique.

La proposition suivante donne des conditions suffisantes assurant la
convergence. Si ces conditions ne sont pas vérifiées, ou si on n'en
est pas certain, on peut utiliser une version modifiée de I'algorithme
qui consiste a remplacer la matrice P, par

P,=1P,+(1-1)l

pour chaque politique stationnaire u, ou 0 < 7 < 1.
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Proposition. Supposons qu'il existe m > 0 tel que pour toute
politique m = (po, p1, - .. ), il existe € > 0 et un état s € X tels que
tous les éléments de la colonne s des matrices P, --- P, et

Pl Py sont > €. Alors:

(a) La suite des hy dans I'algorithme ASR converge vers une
solution h de I'équation de Bellman A+ h = T(h), et A\ converge
donc vers A*, le colit moyen optimal.

(b) Si on définit
ce = min[T(he)(x) = he(x)];
G = madT(h)(x) = b))
alors
ca <A <G,

et ces bornes ne s'élargissent jamais, ni d'un coté ni de I'autre,
lorsqu’on augmente k.

La version Gauss-Seidel de cet algorithme ne converge pas toujours.
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Si on remplace P, par IBN =71P,+ (1 —7)I pour chaque ,
ou 0 <7 <1, I'opérateur T devient T, défini par

() = min |80, )+ (L= )A() + 7 py(u)h()
j=1

= (1—7)h(i) + min.) g(i,u) + 7 pi(u)h(j)| .
j=1

ueU(i

ie., T-(h) = (1—7)h+min(g,+7P,h], et on obtient:
m

ALGORITHME ASR-T;
k < 0; Choisir e >0, t € X et 7 > 0;
Choisir hg € B(X) tel que ho(t) =0 (premiere approx. de h*);
REPETER
k+— k+1, Aj Tf(hk_l)(t); hy + T.,-(hk_l) — Ak}
TANT QUE ||hx — hi_s| > €
RETOURNER /i = argmin, T,(hk—1) comme approx. de i*.
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Proposition. Supposons que chaque politique p est unichaine et
que 0 < 7 < 1. On considére la suite des constantes )\, et des
vecteurs hy produits par I'algorithme ASR-7.

Alors la suite des vecteurs (A, 7hi) converge vers un vecteur (A, h)
qui est solution de I'équation de Bellman A + h = T(h). On a donc
A = X%, le colit moyen optimal.
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Itération des politiques (IP)

Proposition. Si on se restreint a ne considérer que les politiques u
pour lesquelles la chaine de Markov est irréductible (i.e. est
unichaine et n'a pas d'état transitoire), ou encore si on s'assure de
ne jamais modifier la politique p pour un état i tel que la décision
wu(i) pour la politique précédente fait encore atteindre le minimum,
alors I'algorithme IP converge en temps fini et retourne une
politique optimale.

ALGORITHME IP;
Choisir t € X et € > 0;
Choisir une politique stationnaire p (premiére approx. de p*);

REPETER
Trouver (A, h) tels que A+ h = T,(h) et h(t) =0;
(ona h=h,)

Trouver i tel que T,(h) = T(h) (nouvelle politique);
TANT QUE [[A+h— T(h)| <
RETOURNER .
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Modeéele Semi-Markovien

Processus de renouvellement Markovien commandé (PRMC).
Le temps écoulé entre deux transitions successive est maintenant
aléatoire. Soient 0 = tg < t; < tp < --- les instants des transitions
(ou étapes, ou événements).

N(t) = sup{k : tx < t} = nombre d'événements durant (0, t].

a l'instant ty, le systeme “saute” dans I'état xk, on |'observe et on
prend une décision vy, et on paye un coiit d'espérance g(x., uy).
Puis le couple (txk+1 — tk, Xk+1) est généré selon la loi de probabilité
conjointe Q(- | xx, ug).
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Coiit total actualisé. Les colits sont actualisés au taux p > 0.

Le coiit g(xk, ux) peut représenter en fait I'espérance du cofit total
cumulé sur la période [ty, tx+1), actualisé au temps tx. Par exemple,
si le colit est cumulé continiiment au taux c(x, u) quand on est dans
I'état x et qu'on a pris la décision u, on aura

tep1—tk
g(Xk, Uk) =E |:/ eipCC(Xk, uk)dC .
0

On cherche une politique stationnaire © qui minimise le colit espéré
total actualisé sur horizon infini, pour un état initial xp fixé:

n—1

Julx0) = lim E > e g (e, ulxk)) | 1 xo
k=0
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Pour k > 1, le facteur d'actualisation espéré pour les k prochaines
étapes, si on est dans I'état x et on utilise la politique u, est

au(x, 1) = E [e7P%[xg = x, p] .

En particulier, pour k =1, on a

o1(x, p) = /OOO e " Q(d¢, X | x, u(x)).

Hypothese C: Contraction en m étapes.
La fonction de coiit g est bornée, et il existe un entier m > 0 et un
nombre réel o < 1 tels que

sup am(x, u) < a.
xeX, u
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On définit les opérateurs de la PD:

T = min [g0xu)+E e (0) [ 0 = .00 = u]]
= min [g(x,u)+ / e J(y)Q(dS, dy | x, u)
ueU(x) [0,00)x X

TuN)(x) = glxu(x))+E[eJ(xa) [ x0 = x,up = p(x)] .

Sous I'hypothese C, les opérateurs T™ et T/ sont contractants de
module a. On peut alors appliquer les algorithmes AS, ASG, IP, ...,
comme auparavant.
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Proposition. Sous I'hypothese C, on a T(J) = J ssi J = J*, et
limisoc | TE(J) = J]| = 0.

De méme, T,(J) = J ssi J = J,, et limj_ || Tl’j(J) —J||=0.

De plus, les bornes sur J* et J,, dérivées dans le contexte du temps
discret sont encore valides ici.
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Exemple: Vente d’un actif. Supposons que les offres arrivent
selon un processus de Poisson de taux A (les durées entre les offres
successives sont des v.a. i.i.d. exponentielles de moyenne 1/)). Les
montants des offres sont des v.a. i.i.d., indép. du proc. de Poisson.
Les revenus sont actualisés au taux p > 0. On veut maximiser le
revenu espéré total actualisé, sur horizon infini.

Soit A I'état dans lequel on a vendu. Autrement, I'état x est le
montant de |'offre courante. Si Z est la durée entre la date de
I'offre courante et celle de la prochaine offre, alors Z est une v.a.
continue de densité Ae™*¢ sur [0, 00), et les équations de récurrence
s'écrivent:
0 si x = A;
Jx) = )
max{x, a}  sinon,
ou, si on note par w le montant de la prochaine offre,
o A
a=E[e P J(w)] = / e Me P E[J(w)]d¢ = ﬁE[max(w, a)).
0 p

La politique optimale est d'accepter I'offre ssi x > a.
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Coiit moyen par unité de temps

On cherche une politique stationnaire p qui minimise le colit moyen
par unité de temps sur horizon infini.

J B[S 0 n0x) | o
hx) = i E [ty | 1, xo]

La durée espérée jusqu’a la prochaine transition, si on est dans |'état
x et on prend la décision u, est

T(x,u) =E[t1 — to|xo = x, up = u] = /OOOCQ(dQ,X | x, u).
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Hypothese U. Condition d'uniformisation.
La fonction g est bornée, et il existe un nombre réel 6 > 0 tel que

inf  T(x,u) > 4.
xeX, ueU(x)
Sous I'hypothése U, on peut transformer le modéle en un modéle en
temps discret équivalent dont les transitions se produisent a tous les

0 unités de temps. Cela s’appelle I'uniformisation du processus. On
remplace g, T, et Q par

g(x,u) = g(X7 u)é/%()@ U),
T(x,u) = 4,
Qe | x,u) = 5Q([O,oo)xo\x,u)—i—(1—7__(57”))11[x€o].

T(x, u)
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Si X est fini, si on pose pj;j(u) = Q([0,00) x {j} | i,u), et la loi de
probabilité Q(- | 7, u) correspond aux probabilités:

pij(u)d/7(i, u) si j # 1,
1—(1—pi(u)s/7(i,u) sij=i.

On a une transition a toutes les § unités de temps, mais elle ne
change I'état qu'avec probabilité 6 /7(x, u). Les transitions qui
laissent le systeme dans le méme état sont des pseudo-transitions,
qui ne servent qu'a uniformiser les durées entre les transitions de
maniére a obtenir un modele en temps discret uniformisé.

pij(u) =

On peut montrer que cette transformation ne change pas la valeur
de Ju(xo): Si E représente |'espérance associée a @, on a
N—-1

. 1~ ~
Julxo) = |'/(/“_§UP No > Bk (k) | 10
o k=0

On peut alors résoudre le modeéle uniformisé par les mémes
techniques que pour le modeéle en temps discret (AS, IP, ...), en



Les opérateurs de la PD s'écrivent:

Tuh)(x) = ammmrgﬁmmcmewv»

- mjwn@wmm+memmmeumwQ,

+ (1 - T(Xi(x))) ()

T(h) = mMin T.(h).

Proposition. Supposons que I"algorithme ASR converge (au sens
de la norme sup) vers une solution h de I'équation T(h) = h+\
(avec A = T(h)(t)). Alors toute politique p telle que T,(h) = T(h)

est optimale et le colit moyen optimal par unité de temps est
A= M\/6.
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Le systéme d'équations T, (h) = h+ X se réécrit:
. 5 5
h A= 1— —
G+ ( T(x,

(X))> hC) + =) <g(X7M(X))
+/Xh(y)Q([0,oo)><C/y|X7N(X))>a

M(x,u(x)/8 = —h(x) + g(x, u(x))
+ [ H)Q(0.50)  dy | x.1).
h(x) = g(x u(x)) = AT(x, 1(x))
+ [ H)Q(0.50) % dy | ).
De la méme maniere, T(h) = h+ A s'écrit:

h(x) = ming(x, u(x)) = AT(x, p(x))

+/Xh(y)Q([07O<>) X dy [ x, u(x))| -

On peut utiliser cette formulation pour appliquer I'algorithme AS.
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Exemple. (“The streetwalker dilemma™)

On offre un certain type de service a des clients, qui arrivent selon
un processus de Poisson de taux r. Pour chaque client, avec
probabilité p;, pour i =1,...,n, le client offre m; dollars pour
utiliser le service pendant T; unités de temps. On a bien siir

p1+ -+ pn = 1. On peut rejeter I'offre (u = 0) ou I'accepter
(u=1). Toutes les offres qui arrivent lorsqu'un client utilise le
service sont perdues. On veut maximiser le revenu moyen par unité
de temps sur horizon infini.

Notons / I'état dans lequel on vient de recevoir I'offre (m;, T;). On a

7(,1) = Ti+1/r, sig(i,1) = m;,
7(,0) = 1/r, si g(i,0) = 0.

L'équation d’optimalité devient:

h(i) = maxqmi—(Ti+1/r)A+> pih(j), —Mr+>_ pih())

Jj=1 Jj=1

Politique optimale: accepter les offres qui satisfont m;/T; > ) et

\
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Exemple: Stratégie optimal d’investissement dans

un contexte de crédits d’impots

Vers 1980, aux USA et au Canada, on donnait des crédits d'imp6t
pour I'accroissement des dépenses en recherche et développement
(R&D) par rapport a la moyenne des trois derniéres années.
Question: comment une entreprise peut-elle optimiser ses dépenses
de R&D dans un tel contexte?

Prenons un modele simplifié. Supposons qu'un investissement de v
dollars pour une année donnée rapporte un profit net actualisé (au
début de la période) de r(u). Sans les crédits d'impét, on choisira
bien siir u qui maximise r(u).

Supposons maintenant que I'entreprise recoit un gain net
additionnel de h(x, u) = ymax[0, u — (y1 + y2 + y3)/3] ou

x = (y1, 2, y3) est le vecteur des montants investis au cours des 3
derniéres années. Le prochain état sera f(x, u) = (u,y1,y2). Le
revenu net pour cette étape sera g(x, u) = h(x,u) + r(u).
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On veut maximiser le revenu net total actualisé, sur horizon infini:
> 2o akg(xk, uk). 1l s'agit d’un probléme déterministe.

Supposons que I'on impose u € [0, b]. Les équations d'optimalité de
la PD s'écrivent alors:

J(x) = onax, [h(x, u) + r(u) + ad(f(x, u))].

On peut résoudre cela par approx. successives ou par itération des
politiques, en approximant la fonction J.

Dans I'article cité, on partitionne I'espace d'états en boites
rectangulaires, et J est approximé par une fonction trilinéaire sur
chaque boite rectangulaire. a chaque étape de I'algorithme AS, la
fonction J est évaluée a chaque coin des boites, puis on interpole.
On raffine I'approximation périodiquement, en augmentant le
nombre de boites, au fur et 3 mesure des itérations. a la fin, on
calcule les bornes sur I'erreur en estimant ¢, c™, etc.
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Exemple numérique:
v=05 a=009, b=4, r(u)=2In(1+u) — u.
Supposons que |'état initial est x = (1,1, 1).

La solution optimale (montants annuels investis):

1.0 1.0 1.0
2.076 3.000 0.784 0.593 0.558
2.078 3.000 0.784 0.593 0.558
2.078

Autres variantes: On pourrait considerer le revenu moyen par
année, sur horizon infini.

Pour la résolution, on pourrait considérer un algorithme d'itération
des politiques en approximant J,, a chaque itération par une
combinaison linéaire de fonctions de base.
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