
Chapitre 7: Modèles sur Horizon Infini

Fabian Bastin

DIRO, Université de Montréal

IFT-6521 – Hiver 2011

Fabian Bastin Programmation dynamique

Horizon infini

Nombre illimité d’étapes, système stationnaire:
Uk , Xk , gk , fk , et Pk sont les mêmes pour tout k .

à l’étape k , on observe l’état xk , on prend une décision uk ∈ U(xk),
puis une variable aléatoire wk est générée selon la loi P(· | xk , uk).
On paye un coût d’espérance g(xk , uk), et l’état à la prochaine
étape est xk+1 = f (xk , uk ,wk).

Nous avons éliminé le paramètre wk de la fonction g .
Équivaut à remplaçer g(xk , uk ,wk) par E[g(xk , uk ,wk)|xk , uk].

Fabian Bastin Programmation dynamique

Modèles en temps discret

Coût espéré total sur horizon infini, avec facteur d’actualisation
α ≤ 1, pour une politique π = (µ0, µ1, . . .):

Jπ(x0) = lim
N→∞

E

[
N−1∑
k=0

αkg(xk , uk)

]
où uk = µk(xk) et xk+1 = f (xk , uk ,wk) pour tout k.
Si le taux d’intérêt par étape est r , alors α = 1/(1 + r).
Le coût espéré total optimal sur horizon infini:

J∗(x0) = inf
π
Jπ(x0).

Plusieurs jeux de conditions peuvent garantir que J∗(x0) existe et
est fini, qu’une politique stationnaire optimale existe, et qu’on peut
les calculer.

Ces modèles peuvent en fait englober tous ceux que nous avons vus
auparavant.

Fabian Bastin Programmation dynamique

Exemples de telles conditions:

Si la fonction g est bornée, disons |g(x , u,w)| ≤ M et si 0 < α < 1,
alors le coût espéré total est borné par

∑∞
k=0 α

kM = M/(1− α).

Si g est bornée et α = 1, mais qu’il existe au moins un état
absorbant dans lequel les coûts sont nuls et que l’on atteindra à un
instant aléatoire (temps d’arrêt) T1 tel que E[T1] <∞ pour toute
politique, ou pour au moins une politique si les coûts sont non
négatifs, alors le coût espéré total est borné par ME[T1].

Souvent, T1 est borné par une v.a. géométrique. C’est vrai par
exemple s’il existe des constantes n0 <∞ et ρ < 1 telles qu’à partir
de n’importe quel état, on a P[T1 > n0] ≤ ρ.

Les modèles avec un nombre fini d’étapes entrent aussi dans ce
cadre: il suffit de mettre le numéro de l’étape courante dans l’état.

Certains jeux de conditions permettent des fonctions g non bornées.

Voir DPOC, vol. 2, pour plus de détails.
Fabian Bastin Programmation dynamique

Coût moyen par étape, pour une politique π = (µ0, µ1, . . .):

Jπ(x0) = lim
N→∞

E

[
1

N

N−1∑
k=0

g(xk , uk)

]
.

Coût moyen optimal:

J∗(x0) = inf
π
Jπ(x0).

Le coût moyen peut être non nul seulement si le coût espéré total
est infini. D’habitude, Jπ et J∗ ne dépendent pas de x0.

Une politique π est dite stationnaire si elle est de la forme
π = (µ, µ, µ, . . .). Dans ce cas, on parlera souvent, par abus de
langage, de la politique µ, et on notera Jπ par Jµ.

Une politique stationnaire µ est optimale si Jµ(x) = J∗(x) pour tout
x , et ε-optimale si Jµ(x) ≤ J∗(x) + ε pour tout x .

Fabian Bastin Programmation dynamique

Modèles à étapes discrètes (ou événements discrets)

On observe le système à des instants aléatoires
t0 = 0 ≤ t1 ≤ t2 ≤ . . . (les instants des événements).

Soit N(t) = sup{k : tk ≤ t} = nombre d’événements durant (0, t].

à l’instant tk , le système “saute” dans l’état xk , on l’observe et on
prend une décision uk , on paye un coût dont l’espérance est
g(xk , uk), et la paire wk = (tk+1 − tk , xk+1) est générée selon une
loi de probabilité qui dépend de (xk , uk).

Fabian Bastin Programmation dynamique

Coût espéré total actualisé sur horizon fini t, avec taux
d’actualisation ρ > 0 (i.e., facteur d’actualisation e−ρt pour une
période de temps t), pour une politique π = (µ0, µ1, . . .):

Jπ,t(x0) = E

N(t)∑
k=0

e−ρtkg(xk , uk)


où uk = µk(xk). Si pas d’actualisation: ρ = 0.

Dans le cas de l’horizon fini, on suppose que la valeur courante de
tk est incluse dans l’état xk , si nécessaire.

Parfois, un coût est cumulé de façon continue, à un taux g̃(x , u,w)
si on est dans l’état x , on a pris la décision u, et l’élément aléatoire
est w . Notre formulation couvre ce cas en prenant

g(xk , uk) = E
[∫ tk+1

tk

e−ρt g̃(xk , uk ,wk)dt

]
.

Coût espéré optimal:

J∗t (x0) = inf
π
Jπ,t(x0).

Fabian Bastin Programmation dynamique

Coût espéré total actualisé sur horizon infini:

Jπ(x0) = lim
t→∞

Jπ,t(x0).

Le coût espéré total optimal:

J∗(x0) = inf
π
Jπ(x0).

Coût moyen par unité de temps sur horizon infini, pour une
politique π = (µ0, µ1, . . .):

Jπ(x0) = lim
t→∞

E

1

t

N(t)∑
k=0

g(xk , uk)

 .
Le coût moyen optimal:

J∗(x0) = inf
π
Jπ(x0).

Le coût moyen peut être non nul seulement si le coût espéré total
est infini. D’habitude, Jπ et J∗ ne dépendent pas de x0.

Fabian Bastin Programmation dynamique

Temps discret

Pour le modèle sur horizon infini, on définit la fonction de coût
anticipé optimal pour un modèle à horizon tronqué: J0(x) = 0 et

Jk(x) = coût espéré total optimal si on est dans l’état x

et s’il ne reste que k étapes

= min
u∈U(x)

Ew [g(x , u) + αJk−1(f (x , u,w))] pour k > 0.

On s’attend à ce que Jk → J∗ lorsque k →∞, et que

µ∗(x) = arg min
u∈U(x)

Ew [g(x , u) + αJ∗(f (x , u,w))]

définisse une politique optimale. On va montrer que sous certaines
conditions, cela est vrai et que l’on peut borner |Jk(x)− J∗(x)| et
supx∈X |Jk(x)− J∗(x)|, et le taux de convergence de cette erreur
vers 0.

On va supposer (sauf lorsqu’on dira le contraire) que g est bornée
et que w prend ses valeurs dans un ensemble D dénombrable.

Fabian Bastin Programmation dynamique

Notation. Soit B(X) l’ensemble des fonctions bornées V : X → R.
La norme sup d’une fonction V ∈ B(X) est définie par

‖V ‖ = ‖V ‖∞ = sup
x∈X
|V (x)|.

On définit les applications T : B(X)→ B(X) et Tµ : B(X)→ B(X),
pour une politique stationnaire µ, par

T (J)(x) = min
u∈U(x)

Ew [g(x , u) + αJ(f (x , u,w))] ,

Tµ(J)(x) = Ew [g(x , µ(x)) + αJ(f (x , µ(x),w))] .

Ce sont les opérateurs de la PD. Les images de T et Tµ sont dans
B(X) car g est bornée. On peut composer ces applications:

T k(J) = T (T k−1(J)),

T k
µ (J) = Tµ(T k−1

µ (J)),

TµiTµi+1 · · ·Tµk−1
(J) = Tµi (Tµi+1 · · ·Tµk−1

)(J).

On note J ≤ J ′ si J(x) ≤ J ′(x) pour tout x ∈ X .
Fabian Bastin Programmation dynamique

Définition. Une application T : B(X)→ B(X) est dite
contractante en m étapes de module ρ si

‖T m(J)− T m(J ′)‖ ≤ ρ‖J − J ′‖,

pour tout J, J ′ ∈ B(X), pour une constante ρ < 1.
Si m = 1, on dit simplement que T est contractante.

Théorème du point fixe pour les applic. contractantes.
Si T : B(X)→ B(X) est contractante en m étapes alors il existe un
et un seul J∗ ∈ B(X) tel que T (J∗) = J∗, i.e., T possède un point
fixe unique dans B(X).
De plus, pour tout J ∈ B(X), limk→∞ ‖T k(J)− J∗‖ = 0.

Fabian Bastin Programmation dynamique

On montre ici que les applications T et Tµ de la programmation
dynamique sont monotones et contractantes.

Proposition (monotonicité).
Si J ≤ J ′, alors T k(J) ≤ T k(J ′) et T k

µ (J) ≤ T k
µ (J ′), pour k ≥ 1.

Preuve: Découle directement de la définition + induction sur k . �

Proposition: (contraction).
Si α < 1, J et J ′ sont dans B(X), et µ est une politique
stationnaire, alors, pour tout k ≥ 1, on a

‖T k(J)− T k(J ′)‖ ≤ αk‖J − J ′‖,
‖T k

µ (J)− T k
µ (J ′)‖ ≤ αk‖J − J ′‖.

Fabian Bastin Programmation dynamique

Preuve: Par la proposition précédente, comme ‖ · ‖ = ‖ · ‖∞,

J ′ ≤ J + ‖J − J ′‖
⇒ T (J ′) ≤ T (J + ‖J − J ′‖) = T (J) + α‖J − J ′‖
⇒ T 2(J ′) ≤ T (T (J) + α‖J − J ′‖) = T 2(J) + α2‖J − J ′‖

...
...

⇒ T k(J ′) ≤ T (T k−1(J) + αk−1‖J − J ′‖) = T k(J) + αk‖J − J ′‖
⇒ T k(J ′)− T k(J) ≤ αk‖J − J ′‖

et on peut répéter le même argument en permutant J et J ′. On fait
la même chose avec Tµ. �

Fabian Bastin Programmation dynamique

Corollaire. (a) J∗ et Jµ sont les solutions uniques, dans B(X), des
équations fonctionnelles (de Bellman):

J∗ = T (J∗) et Jµ = Tµ(Jµ).

(b) Pour tout J ∈ B(X),

lim
k→∞

‖T k(J)− J∗‖ = lim
k→∞

‖T k
µ (J)− Jµ‖ = 0.

(c) Une politique station. µ est optimale ssi Tµ(J∗) = T (J∗).

Preuve: Les deux premiers items découlent directement du théorème
du point fixe. (DPOC donne aussi une preuve directe.) Pour le
dernier item, on a Tµ(J∗) = T (J∗) = J∗ ssi J∗ = Jµ (par le
théorème du point fixe), ssi µ est optimale. �

On voit qu’une politique optimale stationnaire existe ssi il existe un
µ qui fait atteindre le minimum dans l’équation de Bellman.

Fabian Bastin Programmation dynamique

Approximations successives (itération des valeurs)

ALGORITHME AS;
k ← 0;
Choisir ε > 0 et J0 ∈ B(X) (première approximation de J∗);
RÉPÉTER

k ← k + 1; Jk ← T (Jk−1);
TANT QUE ‖Jk − Jk−1‖ > ε;
RETOURNER µ̃ = arg minµ Tµ(Jk−1) comme approx. de µ∗.

Par la propriété de contraction, on a

‖Jk − J∗‖ ≤ α‖Jk−1 − J∗‖ ≤ · · · ≤ αk‖J0 − J∗‖.
L’erreur diminue donc de manière géométrique (ou exponentielle) en
fonction de k . De plus,

‖Jk − J∗‖ ≤ α‖Jk−1 − J∗‖ ≤ α(‖Jk − Jk−1‖+ ‖Jk − J∗‖),
ce qui fournit une borne sur la distance entre Jk et J∗:

‖Jk − J∗‖ ≤ ‖Jk − Jk−1‖α/(1− α).

Fabian Bastin Programmation dynamique

On peut raffiner ces bornes comme suit. Pour J0 ∈ B(X), posons

γk = inf
x∈X

[T k(J0)(x)− T k−1(J0)(x)];

γk = sup
x∈X

[T k(J0)(x)− T k−1(J0)(x)];

ck = γkα/(1− α);

ck = γkα/(1− α).

Proposition. On a

ck ≤ J∗ − T k(J0) ≤ ck ,

et ces bornes ne s’élargissent jamais, ni d’un coté ni de l’autre,
lorsqu’on augmente k.

Fabian Bastin Programmation dynamique

Preuve. Prenons J = Jk−1 = T k−1(J0) et γ = γk . On a

T (J) ≥ J + γ

⇒ T 2(J) ≥ T (J) + αγ ≥ J + γ + αγ

⇒ T 3(J) ≥ T (J) + αγ + α2γ ≥ J + γ + αγ + α2γ
...

⇒ T n+1(J) ≥ T (J) + (α + α2 + · · ·+ αn)γ.

En prenant la limite:

J∗ = lim
n→∞

T n+1(J) ≥ T (J) + γα/(1− α) = T k(J0) + ck .

L’autre borne se démontre de la même manière.
Pour la preuve qu’elles ne s’élargissent pas, voir DPOC. �

Cas particulier: si J0 ≤ J∗, alors on aura toujours ck ≥ 0.

Fabian Bastin Programmation dynamique

Si µ est telle que Tµ(J) = T (J) (elle fait atteindre le minimum
partout), on peut appliquer la proposition précédente avec Jµ et Tµ
à la place de J∗ et T , ce qui donne

ck ≤ Jµ − Tµ(J) ≤ ck .

On obtient alors

0 ≤ Jµ − J∗ ≤ (Jµ − T (Jk−1))− (J∗ − T (Jk−1)) ≤ ck − ck .

Comme
ck ≤ J∗ − Jk ≤ ck ,

on a
Jk + ck ≤ J∗ ≤ Jk + ck .

à la fin de l’algorithme, comme approximation finale de J∗, on
pourra prendre par exemple la médiane

Jk + (ck − ck)/2.

Fabian Bastin Programmation dynamique

Approximation des opérateurs.

Souvent, lorsqu’on applique l’opérateur T ou Tµ à une fonction J,
on ne peut pas calculer T (J) ou Tµ(J) exactement sur tout l’espace
d’états, mais seulement une approximation.
C’est le cas lorsque l’espace d’états est très grand ou infini.

Soit J̃ une approximation de T (J), telle que

−δ− ≤ T (J)− J̃ ≤ δ+.

En appliquant la proposition précédente avec J = T k−1(J0), on
obtient

−δ− + ck ≤ J∗ − J̃ ≤ δ+ + ck .

Souvent, en pratique, on connait J et J̃, mais pas T (J).
Il faudra donc estimer δ− et δ+. On peut le faire, par exemple, en
réévaluant T (V) sur une grille plus fine, ou encore aux endroits ou
on pense que l’erreur peut être importante.

Fabian Bastin Programmation dynamique

On a aussi les bornes suivantes:

Proposition (L’Ecuyer, 1983): Soient J et J̃ dans B(X) tels que

−δ− ≤ T (J)− J̃ ≤ δ+ et

Tµ(J)− J̃ ≤ δ0.

Alors

−ϕ(J − J̃, δ−) ≤ J∗ − J̃ ≤ ϕ(J̃ − J, δ+)

0 ≤ Jµ − J∗ ≤ ϕ(J − J̃, δ+) + ϕ(J̃ − J, δ0),

où

ϕ(V , x) = x +
α

1− α
max(0,V + x) pour V ∈ B(X).

Fabian Bastin Programmation dynamique

Notation matricielle pour X fini.

X = {1, . . . , n}
Pij(u) = P[xk+1 = j | xk = i , uk = u].

Les fonctions J ∈ B(X) sont alors des vecteurs à n dimensions:

J =

J(1)
...

J(n)

 , T (J) =

T (J)(1)
...

T (J)(n)

 .

Pour une politique stationnaire µ donnée, on a le vecteur de coûts

gµ =

g(1, µ(1)
...

g(n, µ(n)


et la matrice des probabilités de transition

Pµ =

p11(µ(1)) · · · p1n(µ(1))
...

...
...

pn1(µ(n)) · · · pnn(µ(n))


Fabian Bastin Programmation dynamique

On peut alors écrire Tµ(J) sous forme matricielle:

Tµ(J) = gµ + αPµJ

et l’équation Tµ(Jµ) = Jµ devient un système d’équations linéaires:

Jµ = gµ + αPµJµ, i.e., (I − αPµ)Jµ = gµ,

dont la solution est

Jµ = (I − αPµ)−1gµ.

Les valeurs propres de αPµ sont toutes dans le cercle de rayon α < 1
dans le plan complexe. Cela implique que (I − αPµ) est inversible.

Fabian Bastin Programmation dynamique

Gauss-Seidel

Dans l’algorithme AS tel qu’il est formulé, on doit conserver et
utiliser Jk−1 tant qu’on n’a pas calculé Jk(x) pour tous les états x .
Si l’espace d’états est fini et de cardinalité n, il faut alors réserver de
la mémoire pour 2 vecteurs de taille n.

Que se passe-t-il si on utilise un seul vecteur J et que l’on utilise les
nouvelles valeurs de x dès qu’on les a calculées?

C’est la méthode de Gauss-Seidel.

Fabian Bastin Programmation dynamique

ALGORITHME AS-GS, pour X fini;
Choisir J ∈ B(X) (première approximation de J∗);
RÉPÉTER

POUR CHAQUE x ∈ X FAIRE J(x)← T (J)(x);
TANT QUE “pas satisfait”;
RETOURNER µ̃ = arg minµ Tµ(J) comme approx. de µ∗.

L’énoncé J(x)← T (J)(x) modifie J en un seul point et cette
nouvelle valeur de J(x) sera immédiatement utilisée par la suite.

La boucle “POUR CHAQUE ...” transforme une fonction J ∈ B(X)
en une nouvelle fonction, disons F (J). Si les états sont {1, 2, . . . , n}
et sont traités dans l’ordre par l’algorithme, on a

F (J)(i) = min
u∈U(i)

g(i , u) + α

 i−1∑
j=1

pij(u)F (J)(j) +
n∑
j=i

pij(u)J(j)

 .
On définit Fµ de la même façon.

Fabian Bastin Programmation dynamique

Proposition. L’opérateur F : B(X)→ B(X) est contractant de
module α, tout comme T , ce qui assure la convergence. De plus, si
J ≤ T (J) ≤ J∗, alors T k(J) ≤ F k(J) ≤ J∗, donc dans ce cas
l’erreur diminue au moins aussi vite avec F qu’avec T .

Preuve. Pour J et J ′ dans B(X), on montre par induction sur i que
|F (J)(i)− F (J ′)(i)| ≤ α‖J − J ′‖. On a

|F (J)(1)− F (J ′)(1)| ≤ αmax
j∈X
|J(j)− J ′(j)| = α‖J − J ′‖.

Si on suppose que |F (J)(j)− F (J ′)(j)| ≤ α‖J − J ′‖ pour tout j < i ,
alors

|F (J)(i)− F (J ′)(i)|

≤ αmax

(
max
j<i
|F (J)(j)− F (J ′)(j)|, max

j≥i
|J(j)− J ′(j)|

)
≤ α‖J − J ′‖.

On a donc ‖F (J)− F (J ′)‖ ≤ α‖J − J ′‖, et même chose pour Fµ.

La preuve de la deuxième partie (monotonicité) se fait facilement
par induction sur i pour chaque k , puis sur k . �

Fabian Bastin Programmation dynamique

Lorsqu’on utilise les bornes sur l’erreur, il n’est pas clair que les
bornes convergent plus vite avec AS-GS qu’avec AS standard. Le
principal avantage de AS-GS est qu’il demande moins de mémoire.
D’autre part, AS est plus facile à paralléliser.

Généralisation. On peut mettre à jour les valeurs de J(i) en
visitant les états i de manière arbitraire, possiblement aléatoire. La
convergence est assurée en autant que chaque état est visité
infiniment souvent lorsque le nombre d’itérations tend vers l’infini.
Une version du théorème du point fixe s’applique même si les
différents états visités (i.e., la mise à jour de J(i) pour les différents
i) se fait de manière asynchrone. Cela facilite les implantations
parallèles.

On pourrait par exemple avoir:
RÉPÉTER

CHOISIR un i au hasard dans X ;
FAIRE J(i)← T (J)(i);

TANT QUE “pas satisfait”;

Fabian Bastin Programmation dynamique

Itération des politiques (IP)

ALGORITHME IP;
Choisir ε > 0;
Choisir une politique stat. µ (première approx. de µ∗);
RÉPÉTER

Trouver J tel que J = Tµ(J); (on a J = Jµ)
Trouver µ tel que Tµ(J) = T (J) (nouvelle politique);

TANT QUE ‖J − T (J)‖ > ε;
RETOURNER µ.

Note: lorsqu’on cherche un nouveau µ, on se restreint aux politiques
admissibles raisonnables, compte tenu de la structure du problème.

Souvent, µ change très peu d’une itération à l’autre.
Dans ce cas, seulement quelques lignes du système d’équations
linéaire J = Tµ(J) vont changer et il suffira de faire une
“mise-à-jour” de la solution.

Fabian Bastin Programmation dynamique

Proposition. à chaque itération de cet algorithme, la fonction
J = Jµ ne peut augmenter en aucun point par rapport au J
précédent. Elle ne peut que diminuer. De plus, dès que J ou µ ne
change pas d’une itération à la suivante, la politique µ est
nécessairement optimale.

Dans le cas où le nombre total de politiques stationnaires est fini
(e.g., si X et U le sont), on peut remplacer “> ε” par “> 0” et
l’algorithme s’arrête toujours après un nombre fini d’itérations et
retourne une politique optimale.

Fabian Bastin Programmation dynamique

Preuve. Soit ν la politique a une itération donnée et µ la politique
a l’itération suivante. On veut montrer que Jµ ≤ Jν .
Par définition de µ, on a

Tµ(Jν) = T (Jν) ≤ Tν(Jν) = Jν .

Ainsi, par la monotonicité de Tµ, T k+1
µ (Jν) ≤ T k

µ (Jν), et, en vertu
des équations de Bellman,

Jµ = lim
k→∞

T k
µ (Jν) ≤ Jν .

Si Jµ = Jν , alors Jν = Tµ(Jν) = T (Jν) et donc Jν = J∗, car c’est le
seul point fixe de T . En d’autres mots, si µ n’est pas encore
optimale, on doit avoir Jµ(x) < Jν(x) pour au moins un état x ∈ X .

Tant que l’algorithme ne s’arrête pas, il améliore nécessairement la
politique à chaque itération. Donc le nombre d’itérations ne peut
pas dépasser le nombre total de politiques stationnaires. �

Fabian Bastin Programmation dynamique

Algorithme d’IP modifié

En pratique, lorsque X est très grand, on ne peut résoudre
l’équation J = Tµ(J) qu’approximativement à chaque itération.
L’une des façons de faire cela est d’utiliser l’algorithme des
approximations successives pour un nombre fini d’itérations, disons
mk itérations lors du k-ième tour de boucle de l’algorithme IP. On
remplace alors “Trouver J ...” par “J ← Tmk

µ (J)”.

On peut montrer qu’en autant que les mk sont tous positifs, la suite
des fonctions J visitées par cet algorithme converge vers J∗ dans le
sens que ‖J − J∗‖ → 0, et que si le nombre de politiques
stationnaires est fini, alors après un nombre fini k∗ d’itérations
toutes les politiques visitées seront optimales. Par contre, J ne sera
peut-être jamais exactement égal à J∗.

On peut aussi approximer Jµ d’une autre façon, puis choisir une
prochaine politique µ telle que Tµ(J) est “proche” de T (J).
Lorsqu’on décide de s’arrêter, on peut calculer les mêmes bornes sur
l’erreur que pour AS.

Fabian Bastin Programmation dynamique

DPOC (Vol. 2, Proposition 1.3.6) nous dit ce qui se passe à la
limite lorsque l’erreur d’approximation est bornée par le même
constante à toutes les itérations.

Proposition. Si à chaque itération de IP, on trouve J tel que
‖J − Tµ(J)‖ ≤ δ, puis µ tel que ‖Tµ(J)− T (J)‖ ≤ ε, alors

lim sup
k→∞

‖Jµ − J∗‖ ≤ ε+ 2αδ

(1− α)2
.

Par contre, cette proposition ne donne pas de bornes sur Jµ − J∗ à
une itération donnée.

Fabian Bastin Programmation dynamique

Programmation linéaire

Si J ≤ J∗, alors J ≤ T (J), et vice-versa.
On voit que J∗ est le “plus grand” J tel que J ≤ T (J).
En d’autres mots, si |X | = n <∞, le vecteur J∗ est la solution
optimale du problème de programmation linéaire:

maximiser J(1) + · · ·+ J(n)

s.l.c. J(i) ≤ g(i , u) + α(Pi1(u)J(1) + · · ·+ Pin(u)J(n))

pour i = 1, . . . , n, u ∈ U(i).

Maximiser la somme revient à rendre chaque contrainte active.

Ce problème possède n variables et U(1) + · · ·+ U(n) contraintes.
On le résoudra habituellement par une méthode duale, car il a y
beaucoup moins de variables que de contraintes. Mais la résolution
devient très difficile (ou impossible) si n est trop grand.

Fabian Bastin Programmation dynamique

Chaque politique µ correspond à une base réalisable du PL dual, et
vice-versa. La matrice de base correspondante est I − αPµ et on a
µ(i) = u ssi la variable duale correspondante est strictement
positive.

Les contraintes qui sont satisfaites à égalité par la solution optimale
correspondent aux paires (i , u) telles que la décision u est optimale
dans l’état i .

Si dans la méthode IP, on ne change la politique à chaque itération
que pour l’état i pour lequel |J(i)− T (J)(i)| est le plus grand, alors
cette méthode est équivalente, pivot pour pivot, à appliquer
l’algorithme dual du simplexe au PL.

Fabian Bastin Programmation dynamique

Exemple: remplacement d’un équipement

Une machine (ou un équipement) est dans l’un des états {1, . . . , n}.
Plus l’état est élevé, plus la détérioration est avancée.Si l’état est i
au début d’une période, le coût d’opération (espéré) pour cette
période est g(i) et l’état sera j au début de la prochaine période
avec probabilité pij . Au début de chaque période, on peut laisser la
machine pour une autre période (u = 0), ou encore la remplacer par
une neuve (u = 1) au coût R, auquel cas la machine sera dans l’état
1 (neuve) et y restera au moins jusqu’à la prochaine période. Les
coûts sont actualisés par un facteur α par période.

Soit J∗(i) le coût espéré total optimal actualisé, sur horizon infini, à
partir de maintenant, si on est dans l’état i . L’équation de la PD:

J∗(i) = min

R + g(1) + αJ∗(1), g(i) + α

n∑
j=1

pijJ
∗(j)

 , 1 ≤ i ≤ n.

La politique optimale: remplacer ssi J∗(i) = R + g(1) + αJ∗(1).
On peut calculer (approx.) J∗ par l’un des algorithmes: AS, IP, etc.

Fabian Bastin Programmation dynamique

Hypothèse D: g(i) est croissant en i et pour chaque j fixé,

P[xk+1 ≥ j | xk = i , u = 0] = pij + · · ·+ pin

est croissant en i . �

Cette hypothèse dit qu’une machine plus dégradée ne coûte pas
moins cher, et a au moins autant de chances d’atteindre un seuil de
dégradation donné à la prochaine étape, qu’une machine moins
dégradée.

Proposition. Sous l’hypothèse D, si J0 = 0 et Jk = T k(J0), alors
Jk(i) est croissante en i , et J∗(i) = limk→∞ Jk(i) est aussi
croissante en i . La politique optimale est donc déterminée par un
seuil i∗: on remplace ssi

i ≥ i∗
def
= inf{i : J∗(i) = R + g(1) + αJ∗(1)}.

Si cet ensemble est vide, on pose i∗ =∞.

Fabian Bastin Programmation dynamique

Preuve. On montre par induction sur k que Jk est croissante.
Vrai pour k = 0. Supposons que c’est vrai pour k − 1. On a

Jk(i) = min

R + g(1) + αJk−1(1), g(i) + α

n∑
j=1

pijJk−1(j)

 .
On peut réécrire la somme, en posant Jk−1(0) = 0, comme:

n∑
j=1

pijJk−1(j) =
n∑

j=1

(pij + · · ·+ pin)(Jk−1(j)− Jk−1(j − 1)).

L’hypothèse D nous assure que cette somme et g(i) sont croissants
en i , car Jk−1(j)− Jk−1(j − 1) ≥ 0 par l’hypothèse d’induction. �

Fabian Bastin Programmation dynamique

Coût total, α = 1 (plus court chemin stochastique)

Si α = 1, il faut faire des hypothèses garantissant que les coûts ne
s’accumulent pas à l’infini.
On va supposer ici que X = {1, . . . , n, t} et que chaque U(i) est fini.
L’état t est un état terminal (absorbant) dans lequel le coût est nul.
On a alors un problème de plus court chemin stochastique.

Définition. Une politique µ est propre s’il existe n0 <∞ tel que

ρµ
def
= max

i∈X
P[xn0 6= t | x0 = i , µ] < 1.

Autrement, elle est impropre.

Hypothèse PP. Il existe au moins une politique stationnaire propre,
et pour toute politique impropre, Jµ(i) =∞ pour au moins un i .

Fabian Bastin Programmation dynamique

Sous l’hypothèse PP, T et Tµ ne sont pas nécessairement des
applications contractantes par rapport à la norme sup, mais on peut
quand même montrer:

Proposition. (a) Si µ est propre, alors J = Jµ est l’unique solution
de l’équation J = Tµ(J), et pour tout J on a

Jµ = lim
k→∞

T k
µ (J).

(b) Si Tµ(J) ≤ J pour au moins un J, alors µ est propre.
(c) J = J∗ est l’unique solution de l’équation de Bellman J = T (J),
et pour tout J on a

J∗ = lim
k→∞

T k(J).

(d) Une politique stationnaire µ est optimale ssi Tµ(J∗) = T (J∗).

Fabian Bastin Programmation dynamique

Preuve. Pour (a), si µ est propre, on a, avec la notation vectorielle,

T k
µ (J) = gµ + PµT

k−1
µ (J) = · · · = Pk

µJ +
k−1∑
`=0

P`µgµ.

Mais lorsque k →∞, Pk
µJ ≤ ρ

bk/n0c
µ ‖J‖ → 0 et donc

T k
µ (J)→

∞∑
`=0

P`µgµ = Jµ.

On a aussi T k+1
µ (J) = gµ + PµT

k
µ (J), qui devient, lorsque k →∞,

Jµ = gµ + PµJµ = Tµ(Jµ).

D’autre part, si J = Tµ(J), alors J = limk→∞ T k
µ (J) = Jµ, ce qui

démontre l’unicité.

Fabian Bastin Programmation dynamique

(b) Si Tµ(J) ≤ J, puisque Tµ est monotone,

Pk
µJ +

k−1∑
`=0

P`µgµ = T k
µ (J) ≤ J.

Ceci implique que µ est propre, car autrement au moins une des
composantes du vecteur défini par la somme à gauche devrait
diverger vers +∞ selon notre hypothèse PP.

(c) et (d): voir DPOC. �

Cette proposition tient même si les U(i) ne sont pas finis, par ex. si
les U(i) sont compacts et si les Pij(u) et g(i , u) sont continus en u.

Fabian Bastin Programmation dynamique

La proposition implique que l’algorithme AS converge vers J∗.
Il en est de même pour AS-GS.

S’il existe une politique optimale µ∗ sans cycle (i.e., on ne revient
jamais à un état déjà visité, ce qui implique en particulier que
Pii [µ

∗(i)] = 0 pour tout i), et si on démarre avec J0 =∞, alors
l’algorithme AS atteint J∗ (et ne bouge plus par la suite) après un
nombre fini d’itérations.

L’algorithme IP exact converge si on se limite à explorer des
politiques propres.

Pour l’algorithme IP modifié, on peut aussi adapter la preuve de
convergence si on suppose que J0 satisfait T (J0) ≤ J0.

Fabian Bastin Programmation dynamique

Exemple. On a 2 états: 0 et 1. L’état 0 est terminal.
Dans l’état 1, on choisit une décision u ∈ (0, 1]. Puis, avec
probabilité 1− u2 on fait un gain de u et on reste dans l’état 1, et
avec probabilité u2 on fait un gain de 0 et on passe à l’état terminal.
Une politique stationnaire µ correspond à choisir une valeur de
u = µ(1), et une telle politique est toujours propre.
On cherche une politique qui maximise le gain espéré total.
Interprétation: on peut voir u comme la “prime de protection”
demandée à une victime à chaque mois par une organisation
criminelle. On passe à l’état terminal lorsque la victime refuse de
céder. On a ici

Jµ(1) = (1− u2)(u + Jµ(1))

dont la solution est Jµ(1) = (1− u2)/u.
Ainsi, J∗(1) = sup0<u≤1 Jµ(1) =∞, mais aucune valeur de u ne
permet d’atteindre cette valeur: aucune politique n’est optimale.

Fabian Bastin Programmation dynamique

Si on remplaçait U = (0, 1] par un nombre fini de valeurs de u
positives, la proposition précédente s’appliquerait et la politique
optimale serait de choisir la plus petite valeur de u.

Si on prend plutôt U = [0, 1], l’hypothèse PP est violée car u = 0
définit une politique µ impropre pour laquelle Jµ(0) = Jµ(1) = 0.

à noter qu’il existe ici une politique non stationnaire pour laquelle le
gain espéré total est infini: prenons uk = µk(1) = 1/[4(k + 1)].
(Faire détails.)

Fabian Bastin Programmation dynamique

Fonction g non bornée.
Supposons que le nombre d’états est infini, que g n’est pas
nécessairement bornée et/ou que α peut valoir 1.

Dans ce cas, les choses se compliquent car il pourrait s’accumuler,
par exemple, un coût infini ou un revenu infini, ou même les deux en
même temps ce qui pourrait faire un coût net indéterminé.

L’algorithme de la PD fonctionne quand même et plusieurs
propriétés fonctionnent toujours sous l’une des conditions suivantes:
Hypothèse P: g(x , u) ≥ 0 pour tout x et u ∈ U(x).
Hypothèse N: g(x , u) ≤ 0 pour tout x et u ∈ U(x).

Fabian Bastin Programmation dynamique

Proposition. (a) Sous P ou N, J∗ = T (J∗) et Jµ = Tµ(Jµ). Ces
équations peuvent avoir d’autres solutions que J∗ et Jµ.
Mais sous P, aucune solution n’est plus petite, et sous N, aucune
solution n’est plus grande.
(b) Sous P, µ est optimale ssi T (J∗) = Tµ(J∗).

(c) Sous P, si J∞
def
= limk→∞ T k(0) satisfait J∞ = T (J∞) et si

J ∈ B(X) et α < 1, ou si 0 ≤ J ≤ J∗, alors limk→∞ T k(J) = J∗.
(d) Sous P, s’il existe k̄ tel que pour k ≥ k̄, x ∈ X et λ ∈ R,{

u ∈ U(x) | g(x , u) + αE[T k(J0)(f (x , u,w))] ≤ λ
}

est un ensemble compact, alors J∞ = J∗ et il existe une politique
stationnaire optimale.
(e) Sous N, µ est optimale ssi T (Jµ) = Tµ(Jµ).
(f) Sous N, si J ∈ B(X) et α < 1, ou si J∗ ≤ J ≤ 0, alors
lim
k→∞

T k(J) = J∗.

Fabian Bastin Programmation dynamique

Coût moyen par étape

Considérons un modèle actualisé avec X = {1, . . . , n} et α < 1.
Notons Jα,µ et J∗α les valeurs de Jµ et J∗ pour un α donné. On va
faire tendre α vers 1.

Coût moyen par étape, pour une politique stationnaire µ:

lim
N→∞

E

[
1

N

N−1∑
k=0

g(xk , µ(xk))

]

= lim
N→∞

lim
α→1−

E
[∑N−1

k=0 α
kg(xk , µ(xk))

]
∑N−1

k=0 α
k

= lim
α→1−

lim
N→∞

E
[∑N−1

k=0 α
kg(xk , µ(xk))

]
∑N−1

k=0 α
k

= lim
α→1−

(1− α)Jα,µ(x0)

si on suppose que l’on peut échanger les deux limites.

Fabian Bastin Programmation dynamique

On choisit un état, disons t, comme état de référence, et on pose:

hα,µ(i) = Jα,µ(i)− Jα,µ(t),

λα,µ = (1− α)Jα,µ(t),

hµ(i) = lim
α→1−

hα,µ(i) et

λµ = lim
α→1−

λα,µ

si ces deux limites existent. Les valeurs hα,µ(i) et hµ(i) représentent
un coût différentiel de l’état i par rapport à l’état de référence,
tandis que λµ représente le coût moyen par étape sur horizon infini,
sous la politique µ, pour x0 = t. En fait, sous l’hypothèse que tous
les états communiquent, λµ ne dépend pas de x0.

L’équation Jα,µ = gµ + αPµJα,µ se réecrit:

hα,µ + Jα,µ(t) = gµ + αPµ(hα,µ + Jα,µ(t))

λα,µ + hα,µ = gµ + αPµhα,µ,

qui devient, lorsque α→ 1−,

λµ + hµ = gµ + Pµhµ
def
= Tµ(hµ). (1)

Fabian Bastin Programmation dynamique

De la même manière, pour les valeurs optimales, on pose

h∗α(i) = J∗α(i)− J∗α(t),

λα = (1− α)J∗α(t),

h∗(i) = lim
α→1−

h∗α(i) et

λ∗ = lim
α→1−

λα

si ces deux limites existent. Les fonctions h∗α et h∗ représentent le
coût différentiel à l’optimum, et λ∗ le coût moyen optimal par
étape, sur horizon infini. Dans la plupart des cas, ce coût moyen ne
dépend pas de l’état initial x0.

L’équation de Bellman J∗α = minµ{gµ + αPµJ
∗
α} se réécrit

λα + h∗α = min
µ
{gµ + αPµh

∗
α}

et devient à la limite

λ∗ + h∗ = min
µ

(gµ + Pµh
∗)

def
= T (h∗). (2)

Fabian Bastin Programmation dynamique

Le raisonnement que nous venons de faire est heuristique, à cause
des hypothèses que nous avons faites sur les limites.
S’il tient, (1) et (2) donnent des conditions nécessaires d’optimalité.
Sont-elles aussi suffisantes? Et si les états ne communiquent pas
tous sous certaines politiques?
Les propositions qui suivent répondent à ces questions.

Proposition.
Il existe une constante λ et une fonction h ∈ B(X) telles que

λ+ h = T (h)

si et seulement si λ = J∗(i) = minπ Jπ(i) (le coût moyen optimal)
pour tout i ∈ X .
Et si Tµ(h) = T (h) pour ce h, alors µ est optimale.
De même, il existe λµ et hµ ∈ B(X) tels que

λµ + hµ = Tµ(hµ)

si et seulement si λµ = Jµ(i) pour tout i ∈ X .

Fabian Bastin Programmation dynamique

Preuve partielle. Supposons que λ+ h = T (h).
Si π = (µ0, µ1, . . .) est une politique admissible et N > 0, alors

TµN−1
(h) ≥ T (h) = λ+ h,

TµN−2
(TµN−1

(h)) ≥ TµN−2
(λ+ h) = λ+ TµN−2

(h) ≥ 2λ+ h,

...

Tµ0 · · ·TµN−1
(h) ≥ Nλ+ h

et on a l’égalité partout si chaque µk fait atteindre le minimum. On
a donc, sous la politique π et pour x0 = i ,

1

N
E

[
h(xN) +

N−1∑
k=0

g(xk , µ(xk))

]
=

1

N
Tµ0 · · ·TµN−1

(h)(i)

≥ λ+
h(i)

N
.

Lorsque N →∞, cela donne Jπ(i) ≥ λ, avec l’égalité si chaque µk
fait atteindre le minimum.

Cette preuve fonctionne même si X et Y sont infinis. La preuve
dans l’autre direction dépend du fait que |X | est fini (voir DPOC).
�

Fabian Bastin Programmation dynamique

Etant donné une châıne de Markov à états finis, avec une matrice
de transition de probabilité P, une classe récurrente est un ensemble
d’états qui commiquent dans le sens que de chaque état de
l’ensemble, il existe une probabilité de 1 de visiter finalement tous
les autres états de l’ensemble, et une probabilité nulle d’aller à un
moment donné vers un état hors de l’ensemble.

Une politique µ est dite unichâıne si elle donne lieu à une seule
classe d’états récurrents (et éventuellement certains états
transitoires).

Proposition. Si µ est une politique unichâıne, alors le système
d’équations

λ+ h = Tµ(h), h(n) = 0,

possède l’unique solution (λ, h) = (λµ, hµ), où λµ = Jµ(i) pour
tout i .

Fabian Bastin Programmation dynamique

Proposition.
Supposons que l’une des trois conditions suivantes est vérifiée.
(C1) Toute politique optimale parmi les politiques stationnaires est
unichâıne.
(C2) Tous les états sont accessibles les uns des autres, i.e., pour
tous i , j dans X , il existe une politique stationnaire µ et k > 0 tels
que P[xk = j | x0 = i , µ] > 0.
(C3) Il existe un état i0 et des constantes L > 0 et ᾱ ∈ (0, 1) tels
que

sup
i∈X , ᾱ<α<1

|Jα(i)− Jα(i0)| ≤ L.

Alors J∗(i) ne dépend pas de i et on a

J∗(i) = λ∗ = lim
α→1−

(1− α)J∗α(i)

pour tout i , et λ∗ + h∗ = T (h∗), où h∗ est défini tel que
précédemment, peu importe le choix de l’état t.

Fabian Bastin Programmation dynamique

Exemple: remplacement d’un équipement (suite).
Même exemple, avec l’hypothèse D, mais on veut maintenant
minimiser le coût moyen par période, sur horizon infini.

Ici, les politiques ne sont pas toutes unichâınes. Par exemple, si
p1n = 0, la politique stupide qui consiste à toujours remplacer sauf
si on est dans l’état n donne lieu à deux classes d’états qui ne
communiquent pas entre elles: {1, . . . , n − 1} et {n}.
C2 n’est vérifiée que sous des hypothèses supplémentaires.
Mais on peut vérifier la condition C3: Pour α < 1, on a

J∗α(i) = min

R + g(1) + αJ∗α(1), g(i) + α

n∑
j=1

pijJ
∗
α(j)

 ,
d’où 0 ≤ J∗α(i)− J∗α(1) ≤ R + g(1) + αJ∗α(1)− J∗α(1)

≤ max

0, R − α
n∑

j=1

p1j(J
∗
α(j)− J∗α(1))

 ≤ R.

Fabian Bastin Programmation dynamique

Il s’ensuit que l’équation d’optimalité

λ+ h(i) = min

R + g(1) + h(1), g(i) +
n∑

j=1

pijh(j)


possède une solution (λ, h) et la politique optimale consiste à
prendre la décision qui minimise cette expression, pour chaque i .

On a aussi que h(i) = limα→1−(J∗α(i)− J∗α(1)) est croissant en i (en
raison de l’hypothèse D), ce qui implique que la politique optimale
consiste à remplacer ssi

i ≥ i∗
def
= inf{i : λ+ h(i) = R + g(1) + h(1)}.

Si cet ensemble est vide, on pose i∗ =∞.

Fabian Bastin Programmation dynamique

Algorithmes de calcul

Les algorithmes pour le cas actualisé se transposent au cas du coût
moyen. On suppose ici que X et U sont finis.

La méthode des approximations successives pour le vecteur des
valeurs relatives h, i.e., appliquée aux équations

λ+ h = T (h); h(t) = 0,

devient:

ALGORITHME ASR;
k ← 0; Choisir ε > 0 et t ∈ X ;
Choisir h0 ∈ B(X) tel que h0(t) = 0 (première approx. de h∗);
RÉPÉTER

k ← k + 1; λk ← T (hk−1)(t); hk ← T (hk−1)− λk ;
TANT QUE ‖hk − hk−1‖ > ε;
RETOURNER µ̃ = arg minµ Tµ(hk−1) comme approx. de µ∗.

Fabian Bastin Programmation dynamique

Cet algorithme ne converge pas toujours. Il peut cycler, en
particulier si la suite des états visités est périodique.

La proposition suivante donne des conditions suffisantes assurant la
convergence. Si ces conditions ne sont pas vérifiées, ou si on n’en
est pas certain, on peut utiliser une version modifiée de l’algorithme
qui consiste à remplacer la matrice Pµ par

P̃µ = τPµ + (1− τ)I

pour chaque politique stationnaire µ, où 0 < τ < 1.

Fabian Bastin Programmation dynamique

Proposition. Supposons qu’il existe m > 0 tel que pour toute
politique π = (µ0, µ1, . . .), il existe ε > 0 et un état s ∈ X tels que
tous les éléments de la colonne s des matrices Pµm · · ·Pµ1 et
Pµm−1 · · ·Pµ0 sont ≥ ε. Alors:

(a) La suite des hk dans l’algorithme ASR converge vers une
solution h de l’équation de Bellman λ+ h = T (h), et λk converge
donc vers λ∗, le coût moyen optimal.

(b) Si on définit

ck = min
x∈X

[T (hk)(x)− hk(x)];

ck = max
x∈X

[T (hk)(x)− hk(x)];

alors
ck ≤ λ∗ ≤ ck ,

et ces bornes ne s’élargissent jamais, ni d’un coté ni de l’autre,
lorsqu’on augmente k.

La version Gauss-Seidel de cet algorithme ne converge pas toujours.
Fabian Bastin Programmation dynamique

Si on remplace Pµ par P̃µ = τPµ + (1− τ)I pour chaque µ,
où 0 < τ < 1, l’opérateur T devient Tτ , défini par

Tτ (h)(i) = min
u∈U(i)

g(i , u) + (1− τ)h(i) + τ

n∑
j=1

pij(u)h(j)


= (1− τ)h(i) + min

u∈U(i)

g(i , u) + τ

n∑
j=1

pij(u)h(j)

 ,
i.e., Tτ (h) = (1− τ)h + min

µ
[gµ + τPµh] , et on obtient:

ALGORITHME ASR-τ ;
k ← 0; Choisir ε > 0, t ∈ X et τ > 0;
Choisir h0 ∈ B(X) tel que h0(t) = 0 (première approx. de h∗);
RÉPÉTER

k ← k + 1; λk ← Tτ (hk−1)(t); hk ← Tτ (hk−1)− λk ;
TANT QUE ‖hk − hk−1‖ > ε;
RETOURNER µ̃ = arg minµ Tµ(hk−1) comme approx. de µ∗.

Fabian Bastin Programmation dynamique

Proposition. Supposons que chaque politique µ est unichâıne et
que 0 < τ < 1. On considère la suite des constantes λk et des
vecteurs hk produits par l’algorithme ASR-τ .

Alors la suite des vecteurs (λk , τhk) converge vers un vecteur (λ, h)
qui est solution de l’équation de Bellman λ+ h = T (h). On a donc
λ = λ∗, le coût moyen optimal.

Fabian Bastin Programmation dynamique

Itération des politiques (IP)

Proposition. Si on se restreint à ne considérer que les politiques µ
pour lesquelles la chaine de Markov est irréductible (i.e. est
unichâıne et n’a pas d’état transitoire), ou encore si on s’assure de
ne jamais modifier la politique µ pour un état i tel que la décision
µ(i) pour la politique précédente fait encore atteindre le minimum,
alors l’algorithme IP converge en temps fini et retourne une
politique optimale.

ALGORITHME IP;
Choisir t ∈ X et ε > 0;
Choisir une politique stationnaire µ (première approx. de µ∗);
RÉPÉTER

Trouver (λ, h) tels que λ+ h = Tµ(h) et h(t) = 0;
(on a h = hµ)
Trouver µ tel que Tµ(h) = T (h) (nouvelle politique);

TANT QUE ‖λ+ h − T (h)‖ < ε;
RETOURNER µ.

Fabian Bastin Programmation dynamique

Modèle Semi-Markovien

Processus de renouvellement Markovien commandé (PRMC).
Le temps écoulé entre deux transitions successive est maintenant
aléatoire. Soient 0 = t0 ≤ t1 ≤ t2 ≤ · · · les instants des transitions
(ou étapes, ou événements).
N(t) = sup{k : tk ≤ t} = nombre d’événements durant (0, t].
à l’instant tk , le système “saute” dans l’état xk , on l’observe et on
prend une décision uk , et on paye un coût d’espérance g(xk , uk).
Puis le couple (tk+1 − tk , xk+1) est généré selon la loi de probabilité
conjointe Q(· | xk , uk).

Fabian Bastin Programmation dynamique

Coût total actualisé. Les coûts sont actualisés au taux ρ > 0.
Le coût g(xk , uk) peut représenter en fait l’espérance du coût total
cumulé sur la période [tk , tk+1), actualisé au temps tk . Par exemple,
si le coût est cumulé continûment au taux c(x , u) quand on est dans
l’état x et qu’on a pris la décision u, on aura

g(xk , uk) = E
[∫ tk+1−tk

0
e−ρζc(xk , uk)dζ

]
.

On cherche une politique stationnaire µ qui minimise le coût espéré
total actualisé sur horizon infini, pour un état initial x0 fixé:

Jµ(x0) = lim
n→∞

E

[
n−1∑
k=0

e−ρtkg(xk , µ(xk)) | µ, x0

]
.

Fabian Bastin Programmation dynamique

Pour k ≥ 1, le facteur d’actualisation espéré pour les k prochaines
étapes, si on est dans l’état x et on utilise la politique µ, est

αk(x , µ) = E
[
e−ρtk |x0 = x , µ

]
.

En particulier, pour k = 1, on a

α1(x , µ) =

∫ ∞
0

e−ρζQ(dζ,X | x , µ(x)).

Hypothèse C: Contraction en m étapes.
La fonction de coût g est bornée, et il existe un entier m > 0 et un
nombre réel α < 1 tels que

sup
x∈X , µ

αm(x , µ) ≤ α.

Fabian Bastin Programmation dynamique

On définit les opérateurs de la PD:

T (J)(x) = min
u∈U(x)

[
g(x , u) + E

[
e−ρt1J(x1) | x0 = x , u0 = u

]]
= min

u∈U(x)

[
g(x , u) +

∫
[0,∞)×X

e−ρζJ(y)Q(dζ, dy | x , u)

]
Tµ(J)(x) = g(x , µ(x)) + E

[
e−ρt1J(x1) | x0 = x , u0 = µ(x)

]
.

Sous l’hypothèse C, les opérateurs Tm et Tm
µ sont contractants de

module α. On peut alors appliquer les algorithmes AS, ASG, IP, ...,
comme auparavant.

Fabian Bastin Programmation dynamique

Proposition. Sous l’hypothèse C, on a T (J) = J ssi J = J∗, et
limk→∞ ‖T k(J)− J‖ = 0.
De même, Tµ(J) = J ssi J = Jµ, et limk→∞ ‖T k

µ (J)− J‖ = 0.

De plus, les bornes sur J∗ et Jµ dérivées dans le contexte du temps
discret sont encore valides ici.

Fabian Bastin Programmation dynamique

Exemple: Vente d’un actif. Supposons que les offres arrivent
selon un processus de Poisson de taux λ (les durées entre les offres
successives sont des v.a. i.i.d. exponentielles de moyenne 1/λ). Les
montants des offres sont des v.a. i.i.d., indép. du proc. de Poisson.
Les revenus sont actualisés au taux ρ > 0. On veut maximiser le
revenu espéré total actualisé, sur horizon infini.

Soit ∆ l’état dans lequel on a vendu. Autrement, l’état x est le
montant de l’offre courante. Si Z est la durée entre la date de
l’offre courante et celle de la prochaine offre, alors Z est une v.a.
continue de densité λe−λζ sur [0,∞), et les équations de récurrence
s’écrivent:

J(x) =

{
0 si x = ∆;

max {x , a} sinon,

où, si on note par w le montant de la prochaine offre,

a = E[e−ρZJ(w)] =

∫ ∞
0

λe−λζe−ρζE[J(w)]dζ =
λ

λ+ ρ
E[max(w , a)].

La politique optimale est d’accepter l’offre ssi x > a.
Fabian Bastin Programmation dynamique

Coût moyen par unité de temps

On cherche une politique stationnaire µ qui minimise le coût moyen
par unité de temps sur horizon infini.

Jµ(x0) = lim sup
N→∞

E
[∑N−1

k=0 g(xk , µ(xk)) | µ, x0

]
E [tN | µ, x0]

.

La durée espérée jusqu’à la prochaine transition, si on est dans l’état
x et on prend la décision u, est

τ̄(x , u) = E [t1 − t0|x0 = x , u0 = u] =

∫ ∞
0

ζQ(dζ,X | x , u).

Fabian Bastin Programmation dynamique

Hypothèse U. Condition d’uniformisation.
La fonction g est bornée, et il existe un nombre réel δ > 0 tel que

inf
x∈X , u∈U(x)

τ̄(x , u) > δ.

Sous l’hypothèse U, on peut transformer le modèle en un modèle en
temps discret équivalent dont les transitions se produisent à tous les
δ unités de temps. Cela s’appelle l’uniformisation du processus. On
remplace g , τ̄ , et Q par

g̃(x , u) = g(x , u)δ/τ̄(x , u),

τ̃(x , u) = δ,

Q̃(• | x , u) =
δ

τ̄(x , u)
Q([0,∞)× • | x , u) +

(
1− δ

τ̄(x , u)

)
I[x ∈ •].

Fabian Bastin Programmation dynamique

Si X est fini, si on pose pij(u) = Q([0,∞)× {j} | i , u), et la loi de
probabilité Q̃(· | i , u) correspond aux probabilités:

p̃ij(u) =

{
pij(u)δ/τ̄(i , u) si j 6= i ,

1− (1− pii (u))δ/τ̄(i , u) si j = i .

On a une transition à toutes les δ unités de temps, mais elle ne
change l’état qu’avec probabilité δ/τ̄(x , u). Les transitions qui
laissent le système dans le même état sont des pseudo-transitions,
qui ne servent qu’à uniformiser les durées entre les transitions de
manière à obtenir un modèle en temps discret uniformisé.

On peut montrer que cette transformation ne change pas la valeur
de Jµ(x0): Si Ẽ représente l’espérance associée à Q̃, on a

Jµ(x0) = lim sup
N→∞

1

Nδ
Ẽ

[
N−1∑
k=0

g̃(xk , µ(xk)) | µ, x0

]
.

On peut alors résoudre le modèle uniformisé par les mêmes
techniques que pour le modèle en temps discret (AS, IP, ...), en
utilisant les fonctions de valeurs relatives.

Fabian Bastin Programmation dynamique

Les opérateurs de la PD s’écrivent:

Tµ(h)(x) = g̃(x , µ(x)) +

∫
X

h(y)Q̃(dy | x , µ(x)),

=
δ

τ̄(x , µ(x))

(
g(x , µ(x)) +

∫
X

h(y)Q([0,∞)× dy | x , µ(x))

)
,

+

(
1− δ

τ̄(x , µ(x))

)
h(x)

T (h) = min
µ

Tµ(h).

Proposition. Supposons que l’algorithme ASR converge (au sens
de la norme sup) vers une solution h̃ de l’équation T (h) = h + λ̃
(avec λ̃ = T (h̃)(t)). Alors toute politique µ telle que Tµ(h̃) = T (h̃)
est optimale et le coût moyen optimal par unité de temps est
λ = λ̃/δ.

Fabian Bastin Programmation dynamique

Le système d’équations Tµ(h) = h + λ̃ se réécrit:

h(x) + λ̃ =

(
1− δ

τ̄(x , µ(x))

)
h(x) +

δ

τ̄(x , µ(x))

(
g(x , µ(x))

+

∫
X

h(y)Q([0,∞)× dy | x , µ(x))

)
,

λ̃τ̄(x , µ(x))/δ = −h(x) + g(x , µ(x))

+

∫
X

h(y)Q([0,∞)× dy | x , µ(x)),

h(x) = g(x , µ(x))− λτ̄(x , µ(x))

+

∫
X

h(y)Q([0,∞)× dy | x , µ(x)).

De la même manière, T (h) = h + λ̃ s’écrit:

h(x) = min
µ

[g(x , µ(x))− λτ̄(x , µ(x))

+

∫
X
h(y)Q([0,∞)× dy | x , µ(x))

]
.

On peut utiliser cette formulation pour appliquer l’algorithme AS.
Fabian Bastin Programmation dynamique

Exemple. (“The streetwalker dilemma”)
On offre un certain type de service à des clients, qui arrivent selon
un processus de Poisson de taux r . Pour chaque client, avec
probabilité pi , pour i = 1, . . . , n, le client offre mi dollars pour
utiliser le service pendant Ti unités de temps. On a bien sûr
p1 + · · ·+ pn = 1. On peut rejeter l’offre (u = 0) ou l’accepter
(u = 1). Toutes les offres qui arrivent lorsqu’un client utilise le
service sont perdues. On veut maximiser le revenu moyen par unité
de temps sur horizon infini.

Notons i l’état dans lequel on vient de recevoir l’offre (mi ,Ti). On a

τ̄(i , 1) = Ti + 1/r , si g(i , 1) = mi ,
τ̄(i , 0) = 1/r , si g(i , 0) = 0.

L’équation d’optimalité devient:

h(i) = max

mi − (Ti + 1/r)λ+
n∑

j=1

pjh(j), −λ/r +
n∑

j=1

pjh(j)

 .

Politique optimale: accepter les offres qui satisfont mi/Ti ≥ λ et
rejeter les autres, où λ est le revenu optimal par unité de temps.Fabian Bastin Programmation dynamique

Exemple: Stratégie optimal d’investissement dans
un contexte de crédits d’impôts

[L’Ecuyer, Haurie, Hollander 1985]
Vers 1980, aux USA et au Canada, on donnait des crédits d’impôt
pour l’accroissement des dépenses en recherche et développement
(R&D) par rapport à la moyenne des trois dernières années.
Question: comment une entreprise peut-elle optimiser ses dépenses
de R&D dans un tel contexte?

Prenons un modèle simplifié. Supposons qu’un investissement de u
dollars pour une année donnée rapporte un profit net actualisé (au
début de la période) de r(u). Sans les crédits d’impôt, on choisira
bien sûr u qui maximise r(u).

Supposons maintenant que l’entreprise reçoit un gain net
additionnel de h(x , u) = γmax[0, u − (y1 + y2 + y3)/3] où
x = (y1, y2, y3) est le vecteur des montants investis au cours des 3
dernières années. Le prochain état sera f (x , u) = (u, y1, y2). Le
revenu net pour cette étape sera g(x , u) = h(x , u) + r(u).

Fabian Bastin Programmation dynamique

On veut maximiser le revenu net total actualisé, sur horizon infini:∑∞
k=0 α

kg(xk , uk). Il s’agit d’un problème déterministe.

Supposons que l’on impose u ∈ [0, b]. Les équations d’optimalité de
la PD s’écrivent alors:

J(x) = max
0≤u≤b

[h(x , u) + r(u) + αJ(f (x , u))] .

On peut résoudre cela par approx. successives ou par itération des
politiques, en approximant la fonction J.

Dans l’article cité, on partitionne l’espace d’états en boites
rectangulaires, et J est approximé par une fonction trilinéaire sur
chaque boite rectangulaire. à chaque étape de l’algorithme AS, la
fonction J est évaluée à chaque coin des boites, puis on interpole.
On raffine l’approximation périodiquement, en augmentant le
nombre de boites, au fur et à mesure des itérations. à la fin, on
calcule les bornes sur l’erreur en estimant c−, c+, etc.

Fabian Bastin Programmation dynamique

Exemple numérique:
γ = 0.5, α = 0.9, b = 4, r(u) = 2 ln(1 + u)− u.
Supposons que l’état initial est x = (1, 1, 1).

La solution optimale (montants annuels investis):

1.0 1.0 1.0
2.076 3.000 0.784 0.593 0.558
2.078 3.000 0.784 0.593 0.558
2.078 ...

Autres variantes: On pourrait considerer le revenu moyen par
année, sur horizon infini.

Pour la résolution, on pourrait considérer un algorithme d’itération
des politiques en approximant Jµ à chaque itération par une
combinaison linéaire de fonctions de base.

Fabian Bastin Programmation dynamique

