
Modèle stochastique sur horizon fini

Fabian Bastin

DIRO, Université de Montréal

IFT-6521 – Hiver 2013

Fabian Bastin Programmation dynamique

Modèle stochastique sur horizon fini

A l’étape k , on observe l’état xk et prend une décision uk ∈ Uk(xk).
Puis une variable aléatoire ωk est générée selon une loi de probabilité
Pk(· | xk , uk). On observe ωk , on paye un coût gk(xk , uk , ωk), et
l’état à la prochaine étape est xk+1 = fk(xk , uk , ωk).

à l’étape k , on a:
xk = état du système à l’étape k ;
uk = décision prise à l’étape k .
ωk = perturbation (var. aléatoire) produite à l’étape k .
gk = fonction de coût;
fk = fonction de transition;

On cherche une politique admissible π = (µ0, . . . , µN−1) qui
minimise l’espérance mathématique du coût total,

E

[
gN(xN) +

N−1∑
k=0

gk(xk , uk , ωk)

]
.

Fabian Bastin Programmation dynamique

On a

JN(x) = gN(x) pour x ∈ XN ,

Jk(x) = coût espéré total optimal de l’étape k

à la fin, si on est dans l’état x à l’étape k

= inf
u∈Uk (x)

Eωk
[gk(x , u, ωk) + Jk+1(fk(x , u, ωk))]

pour 0 ≤ k ≤ N − 1, x ∈ Xk ,

où ωk suit la loi Pk(· | x , u), et

µ∗k(x) = arg min
u∈Uk (x)

Eωk
[gk(x , u, ωk) + Jk+1(fk(x , u, ωk))] .

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire

Nous pouvons appliquer l’algorithme de programmation dynamique
si tout est discret et fini.

Reprenons un exemple de gestion d’inventaire (Exemple 1.3.2 de
Bertsekas), en notant

xk = niveau des stocks au début du mois k ,
avant de commander;

uk = nombre de biens commandés (et reçus) au début du mois k ;
ωk = nombre de bien demandés par les clients durant le

mois k . On suppose que les ωk dont des variables
aléatoires discrètes indépendantes;

Nous supposons de plus que pas plus de deux unités ne peuvent être
stockées:

xk + uk ≤ 2.

La demande excédentaire (ωk − xk − uk) est perdue.

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire (suite)

Le coût de stockage pour la période k est

(xk + uk − ωk)2,

impliquant une pénalité à la fois pour l’excès d’inventaire et pour la
demande non satisfaite à la fin de la période k .

Le coût de commande est de 1 par unité commandé.

Par conséquent,

gk(xk , uk , ωk) = uk + (xk + uk − ωk)2.

Le coût terminal est supposé nul:

g(xN) = 0.

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire (suite)

On prendra N = 3, x0 = 0, et, pour tout k ,

p(ωk) =


0.1 si ωk = 0,

0.7 si ωk = 1,

0.2 si ωk = 2.

Nous pouvons démarrer l’algorithme de programmation dynamique
avec

J3(x3) = 0.

Pour k = 0, 1 ou 2, nous avons la récurrence

Jk(xk) = min
uk

Eωk
[uk +(xk +uk−ωk)2 +Jk+1(max{0, xk +uk−ωk})],

sous les contraintes

uk ∈ {0, 1, 2},
uk ∈ [0, 2− xk].

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire: périodes 2

Considérons les trois états possibles.

Tout d’abord,

J2(0) = min
u2

Eω2 [u2 + (u2 − ω2)2]

= min
u2

u2 + 0.1(u2)2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2.

En comparant explicitement les valeurs pour u2 =0, 1, 2, nous
obtenons

J2(0) = 1.3, µ∗2(0) = 1.

De même,

J2(1) = 0.3, µ∗2(1) = 0,

J2(2) = 1.1, µ∗2(2) = 0.

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire: période 1

De la même manière,

J1(0) = min
u1

Eω1 [u1 + (u1 − ω1)2 + J2(max{0, u1 − ω1})].

Il est facile de calculer

J1(0) = min{2.8, 2.5, 3.68} = 2.5, µ∗1(0) = 1.

De même,

J1(1) = 1.5, µ∗2(1) = 0,

J1(2) = 1.68, µ∗2(2) = 0.

Fabian Bastin Programmation dynamique

Exemple de gestion d’un inventaire: période 0

De la même manière, on peut montrer

J0(0) = 3.7, µ∗0(0) = 1.

Par conséquent, la politique optimale est de commander une unité si
le stock est vide, et de ne rien commander sinon. Le coût espéré à
l’étape initiale est 3.7.

Fabian Bastin Programmation dynamique

Objectifs du chapitre

L’énumération devient vite lourde.

Dans ce chapitre, on va examiner des modèles (ou exemples) plus
particuliers et caractériser la forme de la politique optimale µ∗k et de
la fonction de coût anticipé Jk .

Fabian Bastin Programmation dynamique

Système linéaire à coût quadratique

xk = vecteur de dimension n,

uk = vecteur de dimension m,

wk = vecteur de dimension n, E[wk] = 0, Var[wk] <∞,

indép. de (xk , uk), et les wk sont indépendants.

xk+1 = fk(xk , uk ,wk) = Akxk + Bkuk + wk ,

gN(xN) = x ′NQNxN ,

gk(xk , uk) = x ′kQkxk + u′kRkuk ,

où Ak , Bk , Qk , et Rk sont des matrices, les Qk sont symétriques et
définies semi-positives, les Rk sont symétriques et définies positives.

Fabian Bastin Programmation dynamique

Le modèle se généralise facilement au cas où E[wk] 6= 0 et où les
formes quadratiques sont décentrées. Le coût total pourrait ainsi
avoir la forme

E

[
(xN − xN)′QN(xN − xN) +

N−1∑
k=0

(
(xk − xk)′Qk(xk − xk) + u′kRkuk

)]
.

On ne le fera pas pour éviter d’alourdir la notation. On se ramène
au cas centré par simple changement de variable.

Les équations de la PD deviennent:

JN(xN) = gN(xN) = x ′NQNxN ,

Jk(xk) = min
uk

E
[
x ′kQkxk + u′kRkuk

+ Jk+1(Akxk + Bkuk + wk)] , k < N.

Fabian Bastin Programmation dynamique

On va montrer que les fonctions Jk sont quadratiques en xk et uk ,
et que µ∗k(xk) est linéaire en xk , et ne dépend pas des lois de
probabilité des wk . Ainsi, pour ce modèle, on peut remplacer les wk

par leurs espérances sans changer la politique optimale!
C’est le principe du modèle déterministe équivalent.

Posons KN = QN , et pour k < N,

Lk = −(B ′kKk+1Bk + Rk)−1B ′kKk+1Ak ,

Kk = A′k(Kk+1 − Kk+1Bk(B ′kKk+1Bk + Rk)−1B ′kKk+1)Ak + Qk

= A′kKk+1(Ak + BkLk) + Qk . (Eq. de Riccati)

La proposition qui suit donne la forme de la politique optimale, qui
est très facile à calculer et à implanter via une rétroaction
(“feedback”) linéaire, avec matrices de gain Lk .

Fabian Bastin Programmation dynamique

Proposition. Les matrices Kk sont symétriques et définies
semi-positives et les Lk sont donc bien définies.
La politique optimale et la fonction de coût optimal Jk , pour
0 ≤ k < N, sont donnés par

µ∗k(xk) = Lkxk ,

Jk(xk) = x ′kKkxk +
N−1∑
j=k

E[w ′jKj+1wj].

Fabian Bastin Programmation dynamique

Preuve. Par induction arrière sur k .
Pour k = N − 1, en utilisant le fait que E[wN−1] = 0, et KN = QN ,

JN−1(xN−1) = min
uN−1

E
[
x ′N−1QN−1xN−1 + u′N−1RN−1uN−1

+(AN−1xN−1 + BN−1uN−1 + wN−1)′

KN(AN−1xN−1 + BN−1uN−1 + wN−1)]

= x ′N−1QN−1xN−1

+x ′N−1A
′
N−1KNAN−1xN−1 + E[w ′N−1KNwN−1]

+ min
uN−1

[
u′N−1RN−1uN−1 + u′N−1B

′
N−1KNBN−1uN−1

+2x ′N−1A
′
N−1KNBN−1uN−1

]
.

En mettant à 0 la dérivée p.r. à uN−1, on obtient

2RN−1uN−1 + 2B ′N−1KNBN−1uN−1 + 2(x ′N−1A
′
N−1KNBN−1)′ = 0

Fabian Bastin Programmation dynamique

Puisque RN−1 est définie positive et B ′N−1KNBN−1 est définie
semi-positive, cela implique que la commande optimale est la valeur
de uN−1 qui satisfait cette équation, i.e.,

µ∗N−1(xk) = −(RN−1 + B ′N−1KNBN−1)−1B ′N−1KNAN−1xN−1

= LN−1xN−1.

En remplaçant uN−1 par µ∗N−1(xN−1) dans l’expression pour JN−1,
on obtient.

JN−1(xN−1) = x ′N−1KN−1xN−1 + E[w ′N−1KNwN−1].

Pour le voir, développons l’expression de JN−1(xN−1).

Fabian Bastin Programmation dynamique

En remplaçant uN−1 par la décision optimale, nous obtenons

JN−1(xN−1) = x ′N−1QN−1xN−1

+ x ′N−1A
′
N−1KNAN−1xN−1 + E[w ′N−1KNwN−1]

+
[
x ′N−1L

′
N−1RN−1LN−1xN−1 + x ′N−1L

′
N−1B

′
N−1KNBN−1LN−1xN−1

+2x ′N−1A
′
N−1KNBN−1LN−1xN−1

]
= x ′N−1QN−1xN−1 + E[w ′N−1KNwN−1]

+ x ′N−1(A′N−1KNAN−1 + L′N−1RN−1LN−1 + L′N−1B
′
N−1KNBN−1LN−1

+ 2A′N−1KNBN−1LN−1)xN−1

Or,

L′N−1(RN−1 + BN−1KNBN−1)LN−1 + 2A′N−1KNBN−1LN−1

= A′N−1K
′
NBN−1

[
(B ′N−1KNBN−1 + RN−1)−1

]′
(RN−1 + BN−1KNBN−1)LN−1 + 2A′N−1KNBN−1LN−1

= A′N−1KNBN−1LN−1

Fabian Bastin Programmation dynamique

Dès lors

JN−1(xN−1) = x ′N−1

(
QN−1 + A′N−1KNAN−1

+A′N−1KNBN−1LN−1

)
xN−1 + E[w ′N−1KNwN−1]

= x ′N−1KN−1xN−1 + E[w ′N−1KNwN−1].

La matrice KN−1 est symétrique et elle est définie semi-positive,
puisque cette dernière expression est ≥ 0 car QN−1, RN−1, et KN

sont définies semi-positives. Cela prouve le résultat pour k = N − 1.

Fabian Bastin Programmation dynamique

On suppose maintenant que le résultat tient pour k + 1 et on
prouve que cela implique qu’il tient pour k . On a

Jk+1(xk+1) = x ′k+1Kk+1xk+1 +
N−1∑
j=k+1

E[w ′jKj+1wj]

où la somme est simplement une constante qui n’a pas d’influence
sur la politique optimale.
On peut refaire exactement le même raisonnement que pour
k + 1 = N, en remplaçant N par k + 1, et on obtient le résultat. �

Fabian Bastin Programmation dynamique

État partiellement observé.

Un résultat semblable tient aussi si on ne peut pas observer l’état xk
au complet, mais seulement une transformation linéaire

zk = Ckxk + vk

où les vk sont des vecteurs aléatoires indépendants entre eux et
indépendants des wk . La politique optimale a alors la forme

µ∗k(Ik) = Lk E[xk | Ik]

où Ik = (u0, . . . , uk−1, z0, . . . , zk) est l’information disponible à
l’étape k .

Fabian Bastin Programmation dynamique

Modèle stationnaire sur horizon infini.

Supposons que (Ak ,Bk ,Qk ,Rk) = (A,B,Q,R) pour tout k.
Lorsque k → −∞, on s’attend à ce que Kk → K où K satisfait
l’équation de Riccati algébrique

K = A′(K − KB(B ′KB + R)−1B ′K)A + Q. (1)

La politique optimale sur horizon infini sera alors stationnaire:

µ∗(x) = Lx

où
L = −(B ′KB + R)−1B ′KA.

On peut prouver que cela est vrai sous les conditions qui suivent.
D’abord quelques définitions.

Décomposons Q = C ′C où C est r × n si r = rang(Q).

Fabian Bastin Programmation dynamique

(Définition 4.1.1 DPOC) La paire (A,B) est dite contrôlable si la
matrice n × nm

(B,AB,A2B, . . . ,An−1B)

est de rang n. La paire (A,C) est dite observable si la matrice
nm × n 

C
CA

...
CAn−1

 = (C ′,A′C ′, . . . , (An−1)′C ′)′

est de rang n. En d’autres termes (A′,C ′) est contrôlable.

Fabian Bastin Programmation dynamique

Contrôlabilité

La contrôlabilité implique qu’en l’absence de bruit (si wk = 0), à
partir de n’importe quelle position initiale, on peut ramener le
système à 0 en n étapes par un choix approprié de u0, . . . , un−1:

xn = Anx0 + (B,AB, . . . ,An−1B)

un−1
...
u0

 ,

et donc

xn − Anx0 = (B,AB, . . . ,An−1B)

un−1
...
u0

 .

Le caractère contrôlable garantit l’existence d’une solution au
système ainsi construit (on peut isoler une sous-matrice n × n
inversible).

Fabian Bastin Programmation dynamique

Observabilité

L’observabilité implique qu’en observant Cx0, . . . ,Cxn−1, on peut en
déduire l’état initial x0 du système xk+1 = Axk , car

 Cx0
...

Cxn−1

 =


C
CA

...
CAn−1

 x0.

L’observabilité est équivalente à la propriété qu’en l’absence de
contrôle, xk → 0 si Cxk → 0.

Cela implique aussi que si x ′kQxk → 0, alors xk → 0, comme
Q = CC ′.

Fabian Bastin Programmation dynamique

En l’absence de bruit, on a

xk = (A + BL)xk−1 = (A + BL)kx0. (2)

Ce système en boucle fermée est dit stable si et seulement si xk → 0
lorsque k →∞, i.e., si et seulement si toutes les valeurs propres de
la matrice A + BL (qui sont en général des nombres complexes) sont
strictement à l’intérieur du cercle unité.

Proposition. Si (A,B) est contrôlable et (A,C) est observable,
alors

lim
k→−∞

Kk = K

où K est une matrice définie positive qui est l’unique solution de (1)
dans l’espace des matrices définies semi-positives, et le système (2)
est stable.

Preuve: Voir DPOC, Proposition 4.4.1.

Fabian Bastin Programmation dynamique

Matrices aléatoires.

Supposons que les matrices Ak et Bk ne sont plus constantes, mais
aléatoires. La politique optimale est encore de la forme

µ∗k(xk) = Lkxk ,

si on prend soin de remplacer les formes quadratiques A′kKk+1Ak ,
A′kKk+1Bk , etc., par leurs espérances conditionnelles
E[A′kKk+1Ak | Kk+1], E[A′kKk+1Bk | Kk+1], etc., dans les
expressions pour Kk et Lk .

Par ailleurs, dans le cas stationnaire, le système est stable seulement
si la mesure d’incertitude

T = E[A2]E[B2]− (E[A]E[B])2

n’est pas trop grande. Si T dépasse un certain seuil (trop
d’incertitude), Kk diverge lorsque k → −∞ et l’optimisation sur
horizon infini n’a plus de sens.

Fabian Bastin Programmation dynamique

Modèle d’inventaire

xk = Niveau d’inventaire au début du mois k ,
avant de commander (entier ou réel);

uk = Quantité commandée au début du mois k ;
yk = xk + uk = Niveau d’inventaire après avoir commandé;
wk = Demande durant le mois k (sont indép.);
K + cu = Coût d’une commande de taille u;
r(xk+1) = Coût d’inventaire payé à la fin du mois k ;

L’algorithme de la PD vu au chapitre 1 devient très coûteux lorsque
le nombre de valeurs de xk possibles est très grand.

Hypothèse: Supposons que K = 0 et que r est une fonction
continue, convexe et telle que

lim
x→∞

r(x) = lim
x→−∞

(cx + r(x)) =∞.

Fabian Bastin Programmation dynamique

Exemple: r(x) = p max(0,−x) + hmax(0, x) où p > c et h > 0.

On suppose que les inventaires négatifs sont permis:

xk+1 = xk + uk − wk = yk − wk .

On n’a pas à tenir compte des revenus de vente. On a alors

JN(xN) = 0;
Jk(xk) = coût espéré total optimal pour les mois k à N

= minuk≥0 (cuk + E[r(xk + uk − wk) + Jk+1(xk + uk − wk)])
= minyk≥xk (cyk + E[r(yk − wk) + Jk+1(yk − wk)])− cxk
= minyk≥xk Gk(yk)− cxk

où
Gk(y) = cy + E[r(y − wk) + Jk+1(y − wk)]

est le coût espéré pour k à N si xk = 0 et on commande y .

Fabian Bastin Programmation dynamique

La proposition qui suit montre que la politique optimale est de
toujours ramener le niveau d’inventaire à la valeur Sk qui minimise
Gk si on est en dessous et de ne rien commander si on est au
dessus.

Il suffit donc de trouver le min pour le cas où xk = 0.

Proposition. Pour chaque k < N, Gk et Jk sont des fonctions
convexes telles que Gk(y)→∞ et Jk(y)→∞ lorsque y → ±∞.
La politique optimale est définie par

µ∗k(x) = max(0,Sk − x)

où Sk est la valeur de y qui minimise Gk(y).

Fabian Bastin Programmation dynamique

Preuve. Par induction arrière sur k .
Pour k = N − 1, GN−1(y) = cy + E[r(y − wN−1)] est convexe car r
est convexe, et GN−1(y)→∞ quand |y | → ∞ en supposant que la
loi de wN−1 est “raisonnable”. (Pour être rigoureux, il faudrait
ajouter des hypothèses sur cette loi et divers détails techniques.
Bertsekas suppose que les wk prennent leurs valeurs dans un
intervalle borné, mais on peut être moins restrictif.)

Il y a donc une valeur finie et unique de y qui minimise GN−1(y).
Appelons-la SN−1. Si SN−1 ≥ xN−1, cette valeur est la valeur
optimale de yN−1, i.e., la valeur optimale de uN−1 est SN−1 − xN−1.
On aura JN−1(xN−1) = (SN−1 − xN−1)c + GN−1(SN−1).

Si SN−1 < xN−1, on est bloqué par la contrainte
yN−1 ≥ xN−1 > SN−1. On prendra yN−1 = xN−1, i.e., uN−1 = 0.
Cela donne µ∗N−1(x) = max(0,SN−1 − x).

Fabian Bastin Programmation dynamique

Il reste à montrer les propriétés de JN−1. On a

JN−1(x) =

{
(SN−1 − x)c + E[r(SN−1 − wN−1)] if x < SN−1,

E[r(x − wN−1)] if x ≥ SN−1,

qui est continue, convexe, et tend vers l’infini lorsque |x | → ∞,
grâce aux propriétés de r .

Si on suppose que les propriétés tiennent pour k + 1, on peut
montrer par les mêmes arguments et en utilisant aussi l’hypothèse
que Jk+1 est convexe, que cela implique qu’elles tiennent pour k. �

Exercice: complétez les détails de la preuve pour passer de k + 1 à k .

Fabian Bastin Programmation dynamique

- cy

- cy

y

H(y)

cy + H(y)

S N - 1

c SN - 1

JN - 1(xN - 1)

xN - 1S N - 1

Fabian Bastin Programmation dynamique

Coût fixe positif.

Supposons maintenant qu’il y a un coût fixe K > 0 pour
commander. On définit Gk de la même façon:
Gk(y) = coût espéré pour k à N si xk = 0, on a déjà payé le coût
fixe, et on commande y . On a

Jk(xk) = min

[
Gk(xk), min

uk≥0
(K + Gk(xk + uk))

]
− cxk

= min

[
Gk(xk), min

yk≥xk
(K + Gk(yk))

]
− cxk .

Cette fonction Jk n’est pas convexe. Et Gk n’est pas nécessairement
convexe non plus. Mais on peut prouver la forme de la politique
optimale en utilisant une notion plus générale de convexité.

Ce genre de technique peut être utile en général pour déterminer et
prouver la forme de la politique optimale dans le cas où il y a des
coûts fixes pour les transactions.

Fabian Bastin Programmation dynamique

K -convexité

Définition. (4.2.1, DPOC) Une fonction g : R→ R est
K -convexe, pour K ≥ 0, si

K + g(z + y) ≥ g(y) + z

(
g(y)− g(y − b)

b

)
, ∀ z ≥ 0, b > 0, y .

Ci-dessous, g (en rouge) est K -convexe pour K = 1, mais pas pour
K < 1.

X
0 1 2 3 4 5

0

K = 1

2

3

Fabian Bastin Programmation dynamique

Une conséquence importante est qu’une fonction g : R→ R est
K -convexe, pour K ≥ 0, si

K + g(y + b2)− g(y)

b2
≥ g(y)− g(y − b1)

b1
∀y , ∀b1 > 0,∀b2 > 0.

Lemme 4.2.1 (page 167).
(a) Si g est convexe, alors g est K -convexe pour tout K ≥ 0.
(b) Si g1 est K -convexe et g2 L-convexe, alors

αg1 + βg2 est (αK + βL)-convexe.
(c) Si g est K -convexe et W une v.a. aléatoire, alors

h(y) = E[|g(y −W)|] est K -convexe si h(y) <∞ pour tout y .
(d) Si g est continue et K -convexe et si limy→±∞ g(y) =∞, alors

il existe deux constantes s ≤ S telles que:
(i) g(y) ≥ g(S) pour tout y ;
(ii) g(y) > g(s) = g(S) + K pour y < s;
(iii) g(y) est décroissante pour y < s;
(iv) g(y) ≤ g(z) + K si s ≤ y ≤ z .

Fabian Bastin Programmation dynamique

X
0 1 2 3 4 5s S

0

1

2

3

4

G(S)

K + G(S)

Fabian Bastin Programmation dynamique

Proposition. Pour chaque k < N, Gk et Jk sont des fonctions
continues et K -convexes telles que Gk(y)→∞ et Jk(y)→∞
lorsque y → ±∞. La politique optimale est une politique de type
(s, S) non stationnaire, définie par

µ∗k(xk) =

{
Sk − xk si xk < sk ;

0 si xk ≥ sk ;

où Sk est la valeur de y qui minimise Gk(y) et sk est la plus petite
valeur de y telle que Gk(y) = K + Gk(Sk).

Intérêt du résultat: simplifie beaucoup les calculs!

Fabian Bastin Programmation dynamique

Preuve du lemme. (a), (b), (c) découlent directement de la
définition. Prouvons (d).

(i): Puisque g(y)→∞ lorsque |y | → ∞, g possède un miminum.
Soit S un endroit où il est atteint.

(ii): Soit s ≤ S le plus petit y tel que g(y) = g(S) + K .
Pour y < s, on a par la K -convexité

K + g(S)− g(s)

S − s
≥ g(s)− g(y)

s − y
.

Puisque K + g(S)− g(s) = 0, cela donne g(y) ≥ g(s) = K + g(S).
Mais par définition de s, on a g(y) > g(S) + K = g(s).

(iii) Pour y1 < y2 < s, on a de (i) et la K -convexité

0 >
K + g(S)− g(y2)

S − y2
≥ g(y2)− g(y1)

y2 − y1

et donc g(y1) > g(y2).

Fabian Bastin Programmation dynamique

(iv) On veut montrer que K + g(z) ≥ g(y) si s ≤ y ≤ z .
Si y = s ou y = z , facile à vérifier.
Si y > S , alors par la K -convexité,

K + g(z)− g(y)

z − y
≥ g(y)− g(S)

y − S
≥ 0.

Si s < y < S , alors

g(s)− g(y)

S − y
=

K + g(S)− g(y)

S − y
≥ g(y)− g(s)

y − s

qui implique

(g(s)− g(y))(y − s) ≥ (g(y)− g(s))(S − y)

et donc
(g(s)− g(y))(S − s) ≥ 0.

Ainsi
K + g(z) ≥ K + g(S) = g(s) ≥ g(y).

Fabian Bastin Programmation dynamique

Plan de preuve de la proposition. Par induction sur k , comme
d’habitude.
Pour k = N − 1, GN−1 est convexe, et donc K -convexe. On a

JN−1(x) = min

[
GN−1(x), min

y≥x
(K + GN−1(y))

]
− cx

=

{
K + GN−1(SN−1)− cx si x < sN−1,

GN−1(x)− cx si x ≥ sN−1.

La politique µ∗N−1 qui fait atteindre le min a la forme voulue.

Pour montrer que JN−1 est K -convexe, on considère 3 cas:
(1) y ≥ sN−1, (2) y < y + b2 ≤ sN−1, et (3) y < sN−1 < y + b2.
Dans chaque cas, on montre que la définition de K -convexité tient.
On montre facilement que GN−1 est continue, car r l’est, et dès lors
JN−1 est continue. GN−1(y)→∞ et JN−1(y)→∞ lorsque
y → ±∞ de la même façon que pour le cas où K = 0. On a donc le
résultat pour k = N − 1.

On montre ensuite que si on suppose le résultat vrai pour k + 1,
cela implique qu’il tient aussi pour k. �

Fabian Bastin Programmation dynamique

Un modèle de gestion de portefeuille.

x0 = capital initial à investir;
xk = capital de l’investisseur au début de la période k ;
n types d’actifs risqués et un type d’actif sans risque;
sk = taux de rendement sans risque pour la période k ;
ek = (ek,1, . . . , ek,n) = taux de rendement des n actifs risqués pour
la période k . Ce sont des vecteurs aléatoires indépendants, dont la
loi est telle que les espérances que nous allons considérer sont finies;
uk = (uk,1, . . . , uk,n) = montants investis dans les différents actifs
risqués à la période k;

Le capital évolue selon:

xk+1 =
n∑

i=1

ek,iuk,i + sk(xk − uk,1 − · · · − uk,n)

= skxk +
n∑

i=1

(ek,i − sk)uk,i .

Fabian Bastin Programmation dynamique

L’investisseur a une fonction d’utilité U, et veut maximiser
E[U(xN)], l’espérance de l’utilité de son capital final.

Hypothèses: On suppose que U est concave et appartient à C 2, i.e.
est deux fois continûment différentiable. continue, que
E[U(xN)] <∞, et que U satisfait:

−U ′(x)/U ′′(x) = a + bx .

Par exemple, les fonctions suivantes satisfont ces conditions:

U(x) = 1− e−x/a, U(x) = ln(x + a).

Fabian Bastin Programmation dynamique

Les équations de la PD:

JN(xN) = U(xN),

Jk(xk) = max
π

E[U(xN) | xk]

= max
uk,1,...,uk,n

E

[
Jk+1

(
skxk +

n∑
i=1

(ek,i − sk)uk,i

)]
.(3)

Proposition. Pour 0 ≤ k < N, on a

µ∗k(xk) =

(
a

sN−1 · · · sk+1
+ bskxk

)
αk

où αk = (αk,1, . . . , αk,n) dépend de la loi de probabilité de ek mais
pas de xk . (On peut déterminer αk via (3).) De plus, Jk satisfait

−
J ′k(x)

J ′′k (x)
=

a

sN−1 · · · sk
+ bx .

Fabian Bastin Programmation dynamique

Preuve. (Pas complètement rigoureuse, comme dans DPOC.)
On suppose que la politique optimale existe et est différentiable en
xk (vrai si U et les lois des ek sont suffisamment régulières).
Supposons qu’un portfolio optimal existe et est de la forme

µ∗k(x) = αk(x)

(
a

sN−1 · · · sk+1
+ bskx

)
,

où les αk(x) = (αk,1(x), . . . , αk,n(x)) sont des vecteurs de fonctions
différentiables.

En particulier,

µ∗N−1(x) = αN−1(x)(a + bsN−1x).

On va montrer que dαk,i (x)/dx = 0, ce qui impliquera que αk,i (x)
est constante en x .

Fabian Bastin Programmation dynamique

La preuve se fait par induction arrière sur k.
Prenons k = N − 1, xN−1 = x et sN−1 = s.
Puisque µ∗N−1(x) est le portefeuille optimal, on a

0 =
dE[U(xN)]

duN−1,i

∣∣∣∣
uN−1=µ∗N−1(x)

=
d

duN−1,i
E

U
sx +

n∑
j=1

(eN−1,j − s)uN−1,j


= E

(eN−1,i − s)U ′

sx +
n∑

j=1

(eN−1,j − s)αN−1,j(x)(a + bsx)


en supposant que l’on peut échanger la dérivée et l’espérance (le
théorème de convergence dominée de Lebesgue donne des
conditions suffisantes pour cela).

Fabian Bastin Programmation dynamique

En dérivant la dernière équation par rapport à x , et en supposant
encore que l’on peut passer la dérivée à l’intérieur de E, on obtient

0 = E

(eN−1,i − s)U ′′(xN)

s +
n∑

j=1

(eN−1,j − s)

(
αN−1,j(x)bs

+
dαN−1,j

dx
(x)(a + bsx)

))]

= E

U ′′(xN)(a + bsx)
n∑

j=1

(eN−1,i − s)(eN−1,j − s)
dαN−1,j(x)

dx

 (4)

+E

U ′′(xN)(eN−1,i − s)s

1 +
n∑

j=1

(eN−1,j − s)αN−1,j(x)b

 . (5)

Mais on sait que

− U ′(xN)

U ′′(xN)
= a + bxN = a + b

sx +
n∑

j=1

(eN−1,j − s)αN−1,j(x)(a + bsx)


= (a + bsx)

1 +
n∑

j=1

(eN−1,j − s)αN−1,j(x)b

 . (6)
Fabian Bastin Programmation dynamique

Si on isole U ′′(xN) dans cette expression et on remplace dans le
second membre de (5), on obtient

−E[U ′(xN)(eN−1,i − s)]s/(a + bsx),

et on a vu plus haut que cette espérance vaut 0.
On obtient ainsi, pour i = 1, . . . , n,

E

(a + bsx)U ′′(xN)
n∑

j=1

(eN−1,i − s)(eN−1,j − s)
dαN−1,j(x)

dx

 = 0.

ce système de n équations s’écrit sous forme matricielle:

(a + bsx)M∇xαN−1(x) = 0,

où ∇xαN−1(x) est un vecteur dont l’élément j est dαN−1,j(x)/dx ,
et M est une matrice n × n dont l’élément (i , j) est
E[U ′′(xN)(eN−1,i − s)(eN−1,j − s)].

Si on suppose que M est inversible (ce qui est vrai sauf dans les
cas dégénérés), on obtient que dαN−1,j(x)/dx = 0 pour tout j .

Fabian Bastin Programmation dynamique

Montrons maintenant que

−
J ′N−1(x)

J ′′N−1(x)
=

a

s
+ bx . (7)

Notant J(x) = JN−1(x) = E[U(xN)], On a

J(x) = E

U
1 +

n∑
j=1

(eN−1,j − s)αN−1,jb

 sx +
n∑

j=1

(eN−1,j − s)αN−1,ja

 .
On dérive 2 fois par rapport à x pour obtenir J ′(x) et J ′′(x):

J ′(x) = E

U ′(xN)

1 +
n∑

j=1

(eN−1,j − s)αN−1,jb

 s


J ′′(x) = E

U ′′(xN)

1 +
n∑

j=1

(eN−1,j − s)αN−1,jb

2

s2

 .
Fabian Bastin Programmation dynamique

Puis, si on exprime U ′′(x) en fonction de U ′(x) via (6) et si on
remplace dans J ′′(x), puis on divise l’expression de J ′(x) par cette
expression de J ′′(x), on obtient (7).

Induction: on suppose le résultat vrai pour k + 1, et on montre que
cela implique qu’il est vrai pour k . Les détails sont semblables au
cas k = N − 1. �

Fabian Bastin Programmation dynamique

Remarque: La politique optimale à l’étape k est la même que si
c’était la dernière étape et que la fonction d’utilité était Jk+1. Cette
fonction Jk+1 a exactement la même forme que la fonction d’utilité,
avec a remplacé par a par a/(sN−1 · · · sk) dans l’expression qui la
définit. La politique optimale aura donc la même forme que si on
était à la dernière étape, avec a remplacé par a/(sN−1 · · · sk).

Si a = 0, ou si sk = 1 pour tout k , alors la politique optimale est la
même à toutes les étapes, et ne tient compte que de l’étape
courante. On agit toujours comme si on était à l’étape N − 1. Cela
s’appelle une politique myope.

Fabian Bastin Programmation dynamique

Si a 6= 0, cela équivaut à dire que sous les hypothèses de ce modèle,
on peut optimiser à l’étape k en faisant l’hypothèse qu’à partir de la
prochaine étape tout notre argent sera investi sans risque. En effet,
à la dernière étape, aucune décision d’investissement dans des actifs
risqués n’était prise.

Cela revient à maximiser, par rapport à uk = (uk,1, . . . , uk,n),

E

[
U

(
sk+1 · · · sN−1

(
skxk +

n∑
i=1

(ek,i − sk)uk,i

))]
.

Il s’agit d’une politique partiellement myope.

Si sk > 1 et k → −∞, on retrouve une stratégie myope.

Fabian Bastin Programmation dynamique

Temps d’arrêt optimal

Supposons qu’à chaque étape k , on doit décider si on arrête le
système (et on encaisse un revenu ou un coût) ou si on continue.
L’espace d’états Xk peut être partitionné en deux: les états où il est
optimal de s’arrêter et ceux où il est optimal de continuer.

Exemple: vente d’un actif.
Durant chaque période k , 0 ≤ k ≤ N − 1, on reçoit une offre wk

que l’on peut accepter à la fin de la période (au temps k + 1) si
aucune offre n’a encore été acceptée.
On suppose que les wk sont des v.a. indépendantes, et
indépendantes de nos décisions (pas nécessairement i.i.d.).
On pose uk = 1 si on vend à l’étape k , uk = 0 sinon.

Fabian Bastin Programmation dynamique

L’état du système à l’étape k + 1 sera

xk+1 =

{
wk si u0 = · · · = uk = 0;

∆ sinon;

où ∆ est l’état dans lequel on a déjà vendu.
On pose x0 = u0 = 0.
Les décisions admissibles pour k ≥ 1 sont uk = 0 si xk = ∆, uN = 1
si xN 6= ∆, et uk ∈ {0, 1} sinon.
Si uk = 1, on reçoit xk = wk−1 au temps k , que l’on place au taux
d’intérêt r pour les N − k périodes restantes. Le revenu à l’étape k,
actualisé au temps N, est donc

gk(xk , uk ,wk) =

{
(1 + r)N−kxk si uk = 1;

0 sinon.

Fabian Bastin Programmation dynamique

Soit Jk(xk) le revenu espéré optimal à partir du temps k jusqu’à la
fin, actualisé au temps N, si on est dans l’état xk . On obtient:

Jk(xk) =


0 si xk = ∆;

xN si k = N et xN 6= ∆;

max((1 + r)N−kxk , E[Jk+1(wk)]) si k < N et xk 6= ∆.

La décision optimale, lorsqu’on a encore le choix, est de vendre
(accepter l’offre xk = wk−1) si et seulement si

xk ≥ αk
def
=

E[Jk+1(wk)]

(1 + r)N−k
.

La politique optimale est déterminée par ces seuils α1, . . . , αN−1.

Fabian Bastin Programmation dynamique

On pose αN = 0. Pour xk 6= ∆, le revenu total espéré actualisé au
temps k est

Vk(xk) = Jk(xk)/(1 + r)N−k

=

{
xN si k = N;

max(xk , E[Vk+1(wk)]/(1 + r)) si k < N

= max(xk , αk).

On a

αk = E[Jk+1(wk)]/(1 + r)N−k = E[Vk+1(wk)]/(1 + r);

(1 + r)αk = E[Vk+1(xk+1)]

= E[max(xk+1, αk+1)]

= E[max(wk , αk+1)]

= E[wkI[wk > αk+1]] + E[αk+1I[wk ≤ αk+1]]

= E[wkI[wk > αk+1]] + αk+1P[wk ≤ αk+1], (8)

ce qui nous permet de calculer les αk par récurrence.
On a αN = 0, αN−1 = E[wN−1]/(1 + r), etc.

Fabian Bastin Programmation dynamique

Peut-on caractériser davantage cette politique? Intuitivement,
moins il reste de temps, moins on devrait être exigeant, car il nous
reste moins d’opportunités; donc αk devrait diminuer avec k.

Proposition. Si les wk sont i.i.d., alors αk ≥ αk+1 pour tout k .

0 1 2 N - 1 N k

ACCEPT

REJECT

a 1

a N - 1

a 2

Fabian Bastin Programmation dynamique

Proposition. Si les wk sont i.i.d., alors αk ≥ αk+1 pour tout k .

Preuve. On note par w une v.a. qui a la même loi que les wk .
Il suffit de montrer que Vk(x) ≥ Vk+1(x) pour x ≥ 0 et
1 ≤ k ≤ N − 1.
Cela se fait aisément par induction sur k.
Pour k = N − 1, on a VN−1(x) ≥ x = VN(x).
Si on suppose que Vk+1(x) ≥ Vk+2(x) pour tout x , alors

Vk(x) = max(x , E[Vk+1(w)]/(1 + r))

≥ max(x , E[Vk+2(w)]/(1 + r))

= Vk+1(x).

Fabian Bastin Programmation dynamique

Que se passe-t-il lorsque N →∞?
Ou de façon équivalente, lorsque k → −∞?
Si on peut borner la suite des αk , cela montrera que cette suite
converge lorsque k → −∞. Par (8),

(1 + r)αk ≤ E[w] + αk+1.

D’où l’on tire

αk ≤ E[w] + αk+1

1 + r

≤ E[w]

1 + r
+

E[w] + αk+2

(1 + r)2

≤ · · ·

≤ E[w]
∞∑
i=1

1

(1 + r)i

= E[w]
1 + r

r
< ∞.

en supposant r > 0.
Fabian Bastin Programmation dynamique

Ainsi, lorsque k → −∞, αk → ᾱ pour une constante ᾱ qui satisfait

(1 + r)ᾱ = E[max(w , ᾱ)]

= E[wI[w > ᾱ]] + ᾱP[w ≤ ᾱ].

Lorsque l’horizon tend vers l’infini, la politique optimale est une
politique stationnaire déterminée par le seuil ᾱ.

Dans ce modèle, r > 0 fait qu’il devient plus attrayant de vendre
plus tôt, à prix égal. Et si on avait r = 0 pour le modèle sur horizon
infini? Dans ce cas, à moins que l’on atteigne la valeur maximale
que w peut prendre (ce qui est impossible pour plusieurs lois de
prob.), on attendra toujours indéfiniment...

Fabian Bastin Programmation dynamique

Achat avant une date limite.

Au lieu de vendre un actif, on veut (ou on doit) l’acheter au plus
tard au début de la période N. L’état xk à l’étape k est ∆ si on a
déjà acheté, et xk = wk−1 si on n’a pas encore acheté, où wk−1 est
le prix du marché pour le produit dont on a besoin, au début de la
période k .
Ici on minimise au lieu de maximiser.

Le coût espéré total optimal à partir du temps k , actualisé au temps
k , si on est dans l’état xk 6= ∆, est

Vk(xk) =

{
xN si k = N;

min(xk , E[Vk+1(wk)]/(1 + r)) si k < N

= min(xk , αk)

où αN =∞, αN−1 = E[wN−1]/(1 + r), etc.

Fabian Bastin Programmation dynamique

On a

(1 + r)αk = E[Vk+1(wk)] (9)

= E[min(wk , αk+1)]

= E[wkI[wk ≤ αk+1]] + αk+1P[wk > αk+1], (10)

ce qui nous permet de calculer les αk par récurrence.
La politique optimale est ainsi déterminée par des seuils αk comme
pour le problème du vendeur: on achète si et seulement si xk ≤ αk .
On peut montrer, de la même façon:

Proposition. Si les wk sont i.i.d., alors αk ≤ αk+1 pour tout k.

Fabian Bastin Programmation dynamique

Prix corrélés.

On peut généraliser le modèle au cas où les wk sont dépendants.
Supposons, par exemple, que x0 = 0 et

xk+1 = wk = λxk + ξk , 0 ≤ k ≤ N − 1,

où λ ∈ [0, 1) est une constante et les ξk sont des v.a. i.i.d. à valeur
dans [0,∞), avec ξ̄ = E[ξk] > 0. Pour simplifier, supposons que
r = 0. On a alors, pour le problème de l’acheteur,

Jk(xk) =

{
xN si k = N et xN 6= ∆;

min(xk , E[Jk+1(λxk + ξk)]) si k < N et xk 6= ∆.

Fabian Bastin Programmation dynamique

Proposition. Pour k ≤ N − 1, Jk(x) est croissante et concave en x
et on a Jk(x) ≤ Jk+1(x) pour tout x . La décision optimale à l’étape
k est d’acheter si xk ≤ αk et d’attendre sinon, où αk est l’unique
valeur positive qui satisfait

αk = E[Jk+1(λαk + ξk)].

De plus, on a αk ≤ αk+1.

Preuve. Par induction sur k .
Pour k = N − 1, on a

JN−1(x) = min(x , λx + ξ̄) ≤ x = JN(x)

et le résultat tient avec αN−1 = λαN−1 + ξ̄, i.e., αN−1 = ξ̄/(1− λ).

Fabian Bastin Programmation dynamique

Supposons que le résultat tient pour k + 1 et montrons qu’il tient
alors aussi pour k. On a

Jk(x) = min(x , E[Jk+1(λx + ξk)])

= min(x , E[Jk+1(λx + ξk+1)])

≤ min(x , E[Jk+2(λx + ξk+1)]) = Jk+1(x)

et Jk(x) est croissante et concave en x car Jk+1(x) l’est.
Par ailleurs, pour x = 0, E[Jk+1(ξk)] > 0, ce qui implique que
Jk(x) = x pour x proche de 0. De plus,

Jk(x) = ϕ(x)
def
= E[Jk+1(λx + ξk)] pour x ≥ αk+1, car

αk+1 = E[Jk+2(λαk+1 + ξk+1)] ≥ E[Jk+1(λαk+1 + ξk)].

Puisque Jk(x) est concave, cela implique aussi que ϕ′(αk+1) < 1 et
que la fonction ϕ(x) doit avoir une pente strictement < 1 lorsqu’elle
croise f (x) = x . La valeur de x où le croisement se produit est donc
unique et doit se trouver dans l’intervalle (0, αk+1). C’est x = αk .
Cela complète la preuve. �

Fabian Bastin Programmation dynamique

Option de type américaine pour une action dont le
prix suit une marche aléatoire.

(Ross, ”Introduction to Stochastic Dynamic Programming”, 1983,
Section 1.3.)

On suppose que le prix de l’action de la firme ABC est xk au jour k ,
et évolue selon une marche aléatoire:

xk+1 = xk + wk = x0 +
k∑

i=0

wi

où les wi sont des v.a. i.i.d. de moyenne µ.
On a une option d’achat pour une action au prix fixe K .
On peut l’exercer à l’un des N premiers jours.
Si on l’exerce au jour k, notre profit est max(0, xk − K).
On veut maximiser notre profit espéré.

Fabian Bastin Programmation dynamique

Soit Jk(xk) le profit espéré optimal si le prix est xk au jour k et que
l’on n’a pas encore exercé l’option. On a

Jk(xk) =

{
max(0, xN − K) si k = N;

max(xk − K , E[Jk+1(xk + wk)]) si k < N.

Proposition. Jk(x) est continue et croissante en x et décroissante
en k, tandis que Jk(x)− x est décroissante en x .
La politique optimale consiste à exercer l’option au jour k si et
seulement si xk ≥ αk , où αk est la plus petite valeur qui satisfait
Jk(αk) = αk − K . De plus, αk+1 ≤ αk pour k < N.

Preuve. On montre la première partie par induction sur k .

Fabian Bastin Programmation dynamique

JN(x) = max(0, x − K) est continue et croissante en x , et
JN(x)− x = max(−x ,−K) est décroissante en x .

De plus,

JN−1(x) = max(x − K , E[JN(x + wN−1)])

≥ max(x − K , 0, E[x + wN−1 − K]) ≥ JN(x).

Si on suppose que Jk+1 a les propriétés désirées, pour k < N,

Jk(x) = max(x − K , E[Jk+1(x + wk)])

est continue et croissante en x car Jk+1 l’est,

Jk(x) ≥ max(x − K , E[Jk+2(x + wk)]) = Jk+1(x),

et

Jk(x)− x = max(−K , E[Jk+1(x + wk)− (x + wk)] + E[wk])

est décroissante en x grâce à l’hypothèse sur Jk+1.
Fabian Bastin Programmation dynamique

Il est optimal d’exercer l’option à l’étape k si et seulement si
Jk(xk) = xk − K . Posons

αk = inf{x : Jk(x)− x = −K}.

(αk =∞ si Jk(x)− x n’atteint jamais −K .)
Pour x ≥ αk , on a Jk(x)− x ≤ Jk(αk)− αk = −K et il est donc
optimal d’exercer. La politique optimale a donc la forme spécifiée.

Le fait que αk+1 ≤ αk découle du fait que Jk+1(x) ≤ Jk(x).
Supposons en effet par l’absurde que αk+1 > αk . Comme
Jk+1(αk) ≥ αk − K , nous avons à présent (par définition de αk et
αk+1) Jk+1(αk) > αk − K = Jk(αk). �

Fabian Bastin Programmation dynamique

La règle nous donne des seuils, mais pas de règle précise de calcul.
Regardons par exemple l’étape N − 1. Nous exerçons si

xN−1 − K > Ew [JN(xN−1 − K + w)]

= Ew[max{0, xN−1 − K + w}]
= Ew[(xN−1 − K + w)I[xN−1 − K + w > 0]]

= (xN−1 − K)P[xN−1 − K + w > 0]+

Ew[wI[xN−1 − K + w > 0]],

et donc si

(xN−1 − K)P[w ≤ xN−1 − K] > Ew[wI[w > xN−1 − K]].

Notez que l’indicatrice a pour effet de ”gommer” les valeurs
négatives de w .

Fabian Bastin Programmation dynamique

L’exemple n’a de sens que si µ < 0. Comme aucun facteur
d’actualisation n’est présent ici, seul l’évolution directe de x
importe. Si µ ≥ 0, Ew[xk+1] ≥ Ew[xk], et il est préférable
d’attendre. Si µ < 0, même si en moyenne, la valeur de l’option
baisse, les variations aléatoires peuvent conduire à une valeur élevée
de l’option en certaines période. La stratégie d’exercice se base sur
cette observation.

Fabian Bastin Programmation dynamique

Ensemble d’arrêt absorbant et règle du “un coup à
l’avance”

On considère un modèle stationnaire général où en plus (ou à
l’intérieur) de la décision uk à l’étape k , on peut arrêter le système
et payer un coût terminal t(xk) fonction de l’état xk , ou bien
continuer. Si on se rend à l’étape N, on doit payer t(xN). On a
JN(xN) = t(xN) et

Jk(xk) = min

(
t(xk), min

u∈U(xk)
Ewk

[g(xk , u,wk) + Jk+1(f (xk , u,wk))]

)
,

pour k < N, et il est optimal de s’arrêter au temps k si et seulement
si xk est dans

Tk =

{
x : t(x) ≤ min

u∈U(x)
E [g(x , u,w) + Jk+1(f (x , u,w))]

}
.

Fabian Bastin Programmation dynamique

On voit que JN−1(x) ≤ JN(x) et on montre facilement par induction
que Jk(x) ≤ Jk+1(x), pour tout x et k < N. Il en découle que
Tk ⊆ Tk+1 pour 0 ≤ k < N.

Fabian Bastin Programmation dynamique

Proposition. Si l’ensemble TN−1 est absorbant tant que l’on ne
s’arrête pas, i.e., {x ∈ TN−1} ⇒ {f (x , u,w) ∈ TN−1}, alors
Tk = TN−1 pour tout k < N.

Preuve. Si xN−2 = x ∈ TN−1, alors xN−1 = f (x , u,w) ∈ TN−1, de
sorte que JN−1(xN−1) = t(xN−1), et donc

t(x) ≤ min
u∈U(x)

E [g(x , u,w) + JN(f (x , u,w))]

= min
u∈U(x)

E [g(x , u,w) + t(f (x , u,w))]

= min
u∈U(x)

E [g(x , u,w) + JN−1(f (x , u,w))] ,

ce qui veut dire que x ∈ TN−2. On a donc TN−1 ⊆ TN−2, et donc
TN−2 = TN−1. On montre de la même manière que Tk = TN−1

pour tout k . (Ou encore, par induction sur k .) �

Fabian Bastin Programmation dynamique

Ainsi, si TN−1 est absorbant, la politique optimale à chaque étape
est de s’arrêter si et seulement s’il est préférable de s’arrêter
maintenant plutôt que de continuer et de s’arrêter obligatoirement à
la prochaine étape. Autrement dit, il suffit de regarder un coup à
l’avance (“one-step look ahead policy”).

Cette proposition s’applique dans les deux exemples qui suivent.

Fabian Bastin Programmation dynamique

Exemple: Problème du vendeur avec retention des offres.

Revenons au problème de vente d’un actif. On suppose maintenant
que les offres qui ne sont pas acceptées immédiatement ne sont pas
rejetées, elles peuvent être acceptées plus tard.
L’état xk indique l’offre courante et on a

xk+1 = max(xk ,wk).

Question: Que fera-t-on si r = 0?
Les récurrences pour Vk deviennent

VN(xN) = xN ,

Vk(xk) = max(xk , E[Vk+1(max(xk ,wk))]/(1 + r)), k < N.

Fabian Bastin Programmation dynamique

L’ensemble d’arrêt optimal à l’étape N − 1 est

TN−1 = {x : x ≥ E[max(x ,w)]/(1 + r)} = {x : x ≥ ᾱ},

où ᾱ est la solution de

(1 + r)ᾱ = E[max(ᾱ,w)] = ᾱP[w ≤ ᾱ] + E[wI[w > ᾱ]]

si la solution existe, ᾱ =∞ sinon.
Cet ensemble TN−1 est absorbant, car xk ne peut jamais diminuer
lorsque k augmente. On a donc Tk = TN−1 pour tout k , i.e., on
accepte la première offre qui atteint ᾱ.

Fabian Bastin Programmation dynamique

Exemple: Un voleur qui sait calculer.

à chaque période k (e.g., chaque nuit), un voleur peut tenter un
nouveau vol ou prendre sa retraite avec son profit déjà accumulé, xk .
S’il tente un vol, avec probabilité p il se fait prendre et perd tout, et
avec probabilité 1− p il fait un gain wk (aléatoire).
Après N périodes, il doit nécessairement se retirer avec son profit
xN , s’il ne l’a pas fait avant et s’il n’a pas été pris.
Il veut maximiser son profit espéré total, E[xN].
Les équations de la PD:

JN(xN) = xN ,

Jk(xk) = max (xk , (1− p)E[Jk+1(xk + wk)]) , k < N.

Fabian Bastin Programmation dynamique

On a ici

TN−1 = {x : x ≥ (1− p)(x + E[w])} ∪ {∆}
= {x : x ≥ E[w](1− p)/p} ∪ {∆}

où ∆ est l’état d’arrestation. Cet ensemble est absorbant au sens de
la proposition. La politique optimale est donc de se retirer dès que
le profit accumulé xk atteint ᾱ = E[w](1− p)/p, peu importe la
valeur de k .

Ce modèle s’applique aussi à d’autres types de situations.

Fabian Bastin Programmation dynamique

Problèmes d’ordonnancement et argument
d’échange de voisins.

On a un ensemble de N tâches à accomplir et on doit les ordonner.
Par exemple, N pièces à fabriquer dans un atelier, où N voitures à
réparer, ou N dossiers à étudier, ou N articles à arbitrer, etc. On
veut minimiser un critère de performance qui s’exprime comme
l’espérance de la somme des coûts pour les différentes tâches.

Algorithme de PD standard: l’état à l’étape k est l’ensemble des
tâches restantes.

Les modèles considérés ici sont stochastiques, mais l’information
obtenue au cours des premières étapes n’est pas utile pour améliorer
les décisions futures, de sorte que la politique optimale sera une
politique en boucle ouverte (on peut trouver l’ordonnancement
optimal dès le départ).

Fabian Bastin Programmation dynamique

L’argument d’échange de voisins dit que si

L = {i0, i1, . . . , ik−1, i , j , ik+2, . . . , iN−1}

est un ordonnancement optimal et

L′ = {i0, i1, . . . , ik−1, j , i ,ik+2, . . . , iN−1}

alors le coût espéré total pour L ne doit pas dépasser celui pour L′.
En général, cela ne donne que des conditions nécessaires
d’optimalité, mais dans certains cas il devient évident que ces
conditions sont aussi suffisantes.

Fabian Bastin Programmation dynamique

Exemple: Ordonnancement des questions d’un quiz.

Il y a N questions, auxquelles on peut répondre dans l’ordre que l’on
veut. On répondra correctement à la question i avec probabilité pi ,
et si on le fait on gagne Ri . Dès que l’on échoue à une question,
c’est terminé. On veut maximiser notre gain total espéré.

A noter que la politique optimale est en boucle ouverte, car une fois
que l’on aura répondu aux k premières questions, on n’aura pas
davantage d’information qu’au départ qui puisse justifier de changer
notre ordonnancement des N − k questions restantes.

Fabian Bastin Programmation dynamique

Soit J(S) le revenu espéré pour une suite ordonnée de questions S ,
et soient L et L′ comme à la page précédente, où L est optimal:

L = {i0, i1, . . . , ik−1, i , j , ik+2, . . . , iN−1},
L′ = {i0, i1, . . . , ik−1, j , i , ik+2, . . . , iN−1},

J(L) = J({i0, . . . , ik−1}) + pi0 · · · pik−1
(piRi + pipjRj)

+pi0 · · · pik−1
pipjJ({ik+2, . . . , iN−1});

J(L′) = J({i0, . . . , ik−1}) + pi0 · · · pik−1
(pjRj + pjpiRi)

+pi0 · · · pik−1
pjpiJ({ik+2, . . . , iN−1}).

Puisque L est optimale, on doit avoir J(L) ≥ J(L′), i.e.,

piRi + pipjRj ≥ pjRj + pjpiRi , i.e.,

piRi/(1− pi) ≥ pjRj/(1− pj).

Il faut ordonner les tâches par ordre décroissant de leur valeur de
piRi/(1− pi).

Fabian Bastin Programmation dynamique

Ordonnancement sur un processeur, avec revenu
actualisé.

N tâches. La tâche i requiert un temps Ti aléatoire de loi connue et
rapporte un revenu αtRi si on la complète au temps t, où α < 1 est
un facteur d’actualisation. Les v.a. Ti sont supposées
indépendantes.

Les valeurs des Ti des tâches déjà réalisées n’affectent les revenus
futurs que via un facteur d’actualisation commun, donc n’affectent
pas l’optimisation de l’ordonnancement des tâches qui restent. On
peut ainsi déterminer l’ordonnancement optimal dès le départ.

Soient L et L′ comme dans l’exemple précédent, et soit tk l’instant
où on termine la tâche k − 1 et débute la suivante.

Fabian Bastin Programmation dynamique

Puisque les Ti sont indépendants, on a

J(L) = J({i0, . . . , ik−1}) + E[αtk+TiRi + αtk+Ti+TjRj]

+E[αtk+Ti+TjJ({ik+2, . . . , iN−1})]

= J({i0, . . . , ik−1}) + E[αtk]E[αTiRi + αTi+TjRj]

+E[αtk+Ti+Tj]J({ik+2, . . . , iN−1}).

Tout comme dans l’exemple précédent, J(L) ≥ J(L′) implique que

E[αTiRi + αTi+TjRj] ≥ E[αTjRj + αTj+TiRi], i.e.,

RiE[αTi] + RjE[αTi]E[αTj] ≥ RjE[αTj] + RiE[αTj]E[αTi] i.e.,

piRi

1− pi
≥

pjRj

1− pj

où pk = E[αTk]. On doit ordonner les tâches par ordre décroissant
de leur valeur de piRi/(1− pi), exactement comme dans l’exemple
précédent.

Fabian Bastin Programmation dynamique

Ordonnancement sur 2 processeurs en série.

N tâches. La tâche i requiert un temps ai sur la machine A, puis un
temps bi sur la machine B (déterministe). On veut minimiser le
temps total de traitement.

Soit Xk l’ensemble des tâches qui restent à traiter sur A et τk la
quantité de travail en attente (“workload”) sur la machine B, à
l’instant où l’on termine la k-ième tâche sur la machine A (étape
k). L’état à l’étape k est (Xk , τk).

Si i est la prochaine tâche sur A, on aura à l’étape k + 1:

Xk+1 = Xk − {i}, τk+1 = max(0, τk − ai) + bi .

Lorsqu’on termine la dernière tâche sur A, il reste un temps τN
avant de tout terminer. La récurrence de la PD s’écrit donc

JN(φ, τN) = τN ,

Jk(Xk , τk) = min
i∈Xk

[ai + Jk+1(Xk − {i}, max(0, τk − ai) + bi))]

pour k < N.
Fabian Bastin Programmation dynamique

Soient L et L′ comme dans les exemples précédents. L’argument
d’échange des voisins i et j nous donne la condition d’optimalité

Jk+2(Xk − {i , j}, τi ,j) ≤ Jk+2(Xk − {i , j}, τj ,i)

où τij et τji sont les valeurs de τk+2 pour L et L′, respectivement.
Ceci implique que τij ≤ τji car Jk(Xk , τk) est croissante en τk .

Pour L, on a

τij = τk+2 = max(0, τk+1 − aj) + bj

= max(0, max(0, τk − ai) + bi − aj) + bj

= max(0, max(ai , τk) + bi − ai − aj) + bj

= max(−bi + ai + aj , max(ai , τk)) + bi − ai − aj + bj

= max(τk , ai , ai + aj − bi)− ai − aj + bi + bj .

Fabian Bastin Programmation dynamique

De même,

τji = max(τk , aj , ai + aj − bj)− ai − aj + bi + bj .

Dès lors,

τij ≤ τji ⇔ max(τk , ai , ai + aj − bi) ≤ max(τk , aj , ai + aj − bj)

Ainsi, τk ≥ max(aj , ai + aj − bj), implique
τk ≥ max(ai , ai + aj − bi), et on a τij = τji . Autrement dit, L et L′

ont le même coût.

Fabian Bastin Programmation dynamique

Si τk < max(aj , ai + aj − bj), alors on doit avoir
max(ai , ai + aj − bi) ≤ max(aj , ai + aj − bj), et on peut montrer
que ceci est équivalent à

min(ai , bj) ≤ min(aj , bi).

Cela détermine un ordre unique pour chaque paire (i , j), sauf s’il y a
égalité ci-haut. Dans le cas où il y a égalité, l’ordre n’a pas
d’importance.

Mis à part ces cas d’égalité, l’ordre unique pour chaque paire
détermine un ordre unique pour l’ensemble des tâches.

Fabian Bastin Programmation dynamique

Intuition: Il faut éviter de laisser la machine B innocupée, car c’est
là que le temps est perdu. Pour cela, on donne priorité aux tâches
qui demandent très peu de temps sur la machine A et/ou beaucoup
de temps sur la machine B.

Algorithme d’ordonnancement:
T ← {1, . . . ,N}; L1← φ; L2← φ;
TANTQUE T 6= φ FAIRE

k ← arg mini∈T min(ai , bi);
SI ak < bk , mettre k à la fin de L1
SINON mettre k au début de L2;

L’ordonnancement choisi est la liste L1 suivie de la liste L2.

Proposition. Cet algorithme retourne un ordonnancement optimal.

Preuve: Exercice.

Fabian Bastin Programmation dynamique

PD pour évaluer une option américano-asiatique

Le prix d’un actif évolue selon un processus stochastique
{S(t), t ≥ 0} à valeurs dans [0,∞). Ce processus est observé aux
instants (fixes) 0 = t0 < t1 < · · · < tn = T . Un contrat financier
(option) de type américain-bermudien procure un revenu immédiat
gj(S(t1), . . . ,S(tj)) si on exerce l’option au temps tj , pour
m∗ ≤ j ≤ n.

En supposant que le processus évolue sous la mesure de risque
neutre et que le taux d’intérêt est r , la valeur du contrat au temps
tj si (S(t0), . . . ,S(tj)) = (s0, . . . , sj) est vj(s0, . . . , sj), où les
fonctions vj obéissent aux équations de récurrence:

vj(s0, . . . , sj) =


max(0, gn(s1, . . . , sn)) si j = n;

max
(
gj(s1, . . . , sj), v

h
j (s0, . . . , sj)

)
si m∗ ≤ j < n;

vhj (s0, . . . , sj) si j < m∗.

avec la valeur de rétention

vhj (s0, . . . , sj) = E
[
e−r(tj+1−tj)vj+1(s0, . . . , sj ,S(tj+1)) | s0, . . . , sj

]
.

La valeur du contract au temps 0 est v0(s0).
Fabian Bastin Programmation dynamique

Si g est très simple, on peut parfois trouver une formule analytique
pour vj .

Si vj peut s’écrire comme une fonction de peu de variables, alors on
peut résoudre numériquement.

Exemple: Option de type asiatique, pour laquelle

gj(s1, . . . , sj) = max(0, s̄j − K)

pour une constante K > 0, où s̄j = (s1 + · · ·+ sj)/j .

Dans ce cas, vj ne dépend que de (sj , s̄j) (état à 2 dimensions):

vj(sj , s̄j) =


max(0, s̄n − K)) pour j = n;

max
(
s̄j − K , vhj (sj , s̄j)

)
pour m∗ ≤ j < n;

vhj (sj , s̄j) pour j < m∗.

où

vhj (sj , s̄j) = e−r(tj+1−tj)E [vj+1(S(tj+1), (j s̄j + S(tj+1))/(j + 1)) | sj] .

Pour m∗ ≤ j < n, on exercera l’option ssi s̄j − K ≥ vhj (sj , s̄j).

Fabian Bastin Programmation dynamique

Quelle est la forme de la région d’exercice? Et des fonctions vhj et
vj?

Pour répondre à ces questions, il faut des hypothèses sur le
processus S .

Mouvement Brownien géométrique.

S(t) = S(0)e(r−σ2/2)t+σB(t)

où r est le taux d’intérêt sans risque, σ est la volatilité, et B(·) est
un mouvement Brownien standard.

Pour t2 > t1 ≥ 0, B(t2)− B(t1) est une v.a. normale de moyenne 0
et variance t2 − t1, indépendante des accroissements de B(·) en
dehors de [t1, t2].

On peut par exemple supposer tj+1 − tj = h, ∀j , et poser ρ = e−rh.
Technique. . . voir Ben-Ameur, Breton et L’Ecuyer, Management
Science, 2002.

Fabian Bastin Programmation dynamique

