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Modele stochastique sur horizon fini

A I'étape k, on observe I'état x, et prend une décision vy € Uy (xk).
Puis une variable aléatoire wy est générée selon une loi de probabilité
Pr(- | xk, ux). On observe wg, on paye un coit gi(xk, Uk, wk), et
I'état a la prochaine étape est xx11 = (X, Uk, Wk ).
a I'étape k, on a:

X, = état du systeme a |'étape k;

u, = décision prise a I'étape k.

wk = perturbation (var. aléatoire) produite a I'étape k.

g = fonction de colit;

f, = fonction de transition;

On cherche une politique admissible 7 = (ug, - .., uy—1) qui
minimise |'espérance mathématique du co(it total,

N—-1

E | gnO) + D (i, ik, wi)
k=0
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X

In(x) = gn(x) pour x € Xy,
Ji(x) = colit espéré total optimal de I'étape k
a la fin, si on est dans I'état x a I'étape k

= inf ]Ewk [gk(X7 U,Wk)+Jk+1(fk(X, U,Wk))]
u€ Uy (x)

pour 0 < k< N -1, x e X,
ol w suit la loi Py(- | x, u), et

p(x) = arg mi?)]Ewk [gr(x, uywi) + Jie1 (fe(x, u,wi))] -

ueU,(x
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Exemple de gestion d’un inventaire

Nous pouvons appliquer I'algorithme de programmation dynamique
si tout est discret et fini.

Reprenons un exemple de gestion d'inventaire (Exemple 1.3.2 de
Bertsekas), en notant

Xx = niveau des stocks au début du mois k,

avant de commander;
ux = nombre de biens commandés (et recus) au début du mois k;
wix = nombre de bien demandés par les clients durant le

mois k. On suppose que les wy dont des variables
aléatoires discrétes indépendantes;

Nous supposons de plus que pas plus de deux unités ne peuvent étre
stockées:
Xk + ug < 2.

La demande excédentaire (wx — xx — uy) est perdue.
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Exemple de gestion d’un inventaire (suite)

Le colit de stockage pour la période k est
2
(Xk + ug — wk) ,

impliquant une pénalité a la fois pour |'excés d'inventaire et pour la
demande non satisfaite a la fin de la période k.

Le colit de commande est de 1 par unité commandé.
Par conséquent,

8r(Xk, Ui, wi) = g + (X + u — wk)2-

Le co(it terminal est supposé nul:

glxn) = 0.
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Exemple de gestion d’un inventaire (suite)

On prendra N = 3, xo = 0, et, pour tout k,

0.1 siwg=0,
p(wk) =€ 0.7 siw,=1,
0.2 siwg=2.

Nous pouvons démarrer |'algorithme de programmation dynamique
avec

J(x3) = 0.
Pour kK =0, 1 ou 2, nous avons la récurrence
J(xic) = min Eey, [une+ (i + i —wi)?+ Jks1(max{0, xe + ux —wi b)),
sous les contraintes

ug € {0,1,2},
ui € [0,2 - Xk].
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Exemple de gestion d’un inventaire: périodes 2

Considérons les trois états possibles.
Tout d'abord,
J2(O) = rTl]I|2n sz[u2 + (U2 - w2)2]
= min up + 0.1(2)? + 0.7(u2 — 1) 4+ 0.2(up — 2)%.
uz
En comparant explicitement les valeurs pour u; =0, 1, 2, nous

obtenons
5(0) = 1.3, 15(0) = 1.

De méme,

H(1) = 0.3, 53(1) =

0,
5(2) =1.1, p3(2) = 0.
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Exemple de gestion d’un inventaire: période 1

De la méme maniere,
J1(0) = min E,, [u1 + (1 — w1)? + Jo(max{0, uy — w1})].
up

Il est facile de calculer
J1(0) = min{2.8,2.5,3.68} = 2.5, uj(0) = 1.

De méme,
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Exemple de gestion d’un inventaire: période 0

De la méme maniére, on peut montrer
Jo(0) = 3.7, pp(0) = 1.

Par conséquent, la politique optimale est de commander une unité si
le stock est vide, et de ne rien commander sinon. Le colit espéré a
['étape initiale est 3.7.
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Objectifs du chapitre

L'énumération devient vite lourde.

Dans ce chapitre, on va examiner des modeles (ou exemples) plus
particuliers et caractériser la forme de la politique optimale p} et de
la fonction de colit anticipé Jy.

Fabian Bastin Programmation dynamique



Systeme linéaire a colit quadratique

X, = vecteur de dimension n,

Uy vecteur de dimension m,
wr = vecteur de dimension n, E[wy] = 0, Var[wy] < oo,

indép. de (xk, uk), et les wy sont indépendants.

X1 = fe(Xk, uk, wi) = Arx + Broug + wy,
!
gnv(xn) = xyQuxw,
Xk, uk) = X Quxi + uj Ry,

ol Ak, Bk, Qk, et Rk sont des matrices, les Qx sont symétriques et
définies semi-positives, les R, sont symétriques et définies positives.
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Le modele se généralise facilement au cas ot E[wy] # 0 et ou les
formes quadratiques sont décentrées. Le coiit total pourrait ainsi
avoir la forme

N-1
E | (v —xn) Qulxn = %n) + D (0 — %) Qu(ic — Xie) + uj Ricue)
k=0

On ne le fera pas pour éviter d'alourdir la notation. On se ramene
au cas centré par simple changement de variable.
Les équations de la PD deviennent:

In(xv) = gn(xn) = xy Quxn,
J(xk) = nl11in E [XLQka + U Ry uy
k

+ Jir1(Akxk + Bruk + wi)], k < N.
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On va montrer que les fonctions J, sont quadratiques en xj et uy,
et que /1 (xx) est linéaire en x, et ne dépend pas des lois de
probabilité des wy. Ainsi, pour ce modele, on peut remplacer les wj
par leurs espérances sans changer la politique optimale!

C'est le principe du modeéle déterministe équivalent.

Posons Ky = Qu, et pour k < N,

Ly = —(BiKis1Bik + Ri) 1B Kii1Ax,
Ki = Al(Kis1 — Kir1Bi(BiKicr1Bi + Ri) 7' Bi K1) A + Qi
= A;(KkJrl(Ak + Bkl_k) + Q. (Eq de Riccati)

La proposition qui suit donne la forme de la politique optimale, qui
est trés facile a calculer et a implanter via une rétroaction
(“feedback™) linéaire, avec matrices de gain Ly.
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Proposition. Les matrices K sont symétriques et définies
semi-positives et les Ly sont donc bien définies.

La politique optimale et la fonction de coiit optimal Ji, pour
0 < k < N, sont donnés par

pr(x) = Lixx,
N—-1

) = xiKix+ > Elw/ K.
=k
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Preuve. Par induction arriére sur k.
Pour k = N — 1, en utilisant le fait que E[wy_1] =0, et Ky = Qn,

Iv—1(xn-1) = Lflnin E [xy_1 @u-1Xnv—1 + uy_1 Rv—1un—1
N—1

+(An—1xn—1 + Bn—1un—1 + wy_1)’
Kn(An—1xn—1 + By—1un—1 + wn—1)]
= xy_1@n-1Xn—1
+xp_1 ANt KnAN—1xv—1 + E[w)y_; Knwi_1]
+ m‘_"l [uh—1Rn-1un—1 + ty_1By_1KnBrn-1un-1

+2X//V_1A/N_1KNBN71UN71] .
En mettant a 0 la dérivée p.r. a uy_1, on obtient

2Rn_1un—_1 + 28;\,_1KNBN_1UN_1 + 2(XI/\I—1A/N—1 KNBN—l), =0

Fabian Bastin Programmation dynamique



Puisque Ry_1 est définie positive et B,’V_IKNBN_l est définie
semi-positive, cela implique que la commande optimale est la valeur
de up_1 qui satisfait cette équation, i.e.,

why_1(xk) = —(Rn_1 + By_1KnBr-1) " By _ 1 KNAn-_1Xn-1

= Ly_1xn-1-

En remplagant uy_1 par py_q(xn—1) dans I'expression pour Jy_1,
on obtient.

In—1(xn-1) = xy_1 Kn—1xn—1 + E[wy_; Knwy-1].

Pour le voir, développons I'expression de Jy_1(xy—1)-
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En remplagant uy_1 par la décision optimale, nous obtenons

Iv-1(xv-1) = xy_1 Qu-1Xn—1
+ Xp_1 A1 KnAn—1xv-1 + E[wh_; Knwi_1]
+ v lvo i Rv-iby—axv—1 + Xy 1 Ly 1 By 1 KnBn-1Ln-1xn-1
+2xy_1An_1KnBn-1Ln-1xn-1]

= xy_1Qn-1xn—1 + E[wy_; Knwy—_1]
+ xy_1(Ay_1KnAn—1 + Ly_Ryv—1Lln—1 + Ly_1By_1KnBn-1Lln-1
+ 2A,N—1KNBN—1LN—1)XN—1

Or,
Ly_1(Rn-1+ Bv-1KnBn-1)Ln-1 + 2AN_ 1 KnBn-1Ln-1
= Ay KnBn_1 [(By_1KnBn-1+ Rv-1)7Y]’

(Rn—1+ Bn_1KnBn_1)Ln—1 + 2AN_1KnBn-1Ln-1
= Ay_1KnBr-1ln-1
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Deés lors

JN_]-(XN—].) = X;\I—]_ (QN—l + A/N_]_ KNAN_]_
+Ay_1KnBn—1Ln—1) xn—1 + E[wy_; Kywn_1]
= xy_1Kn—1xn—1 + E[wy_; Knwy_1].

La matrice Kjy_1 est symétrique et elle est définie semi-positive,
puisque cette derniére expression est > 0 car Qn_1, Ry_1, et Ky
sont définies semi-positives. Cela prouve le résultat pour k = N — 1.
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On suppose maintenant que le résultat tient pour k + 1 et on
prouve que cela implique qu'il tient pour k. On a

N-1

/ /
Jer1 (k1) = X Kiroaen + Y E[w/Kjaw)]
j=k+1

ol la somme est simplement une constante qui n'a pas d'influence
sur la politique optimale.

On peut refaire exactement le méme raisonnement que pour
k+1=N, en remplacant N par k + 1, et on obtient le résultat. [J
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Etat partiellement observé.

Un résultat semblable tient aussi si on ne peut pas observer |I'état x
au complet, mais seulement une transformation linéaire

zi = Cuxpe + vic

ol les v sont des vecteurs aléatoires indépendants entre eux et
indépendants des wy. La politique optimale a alors la forme

() = L Blx | 1]

ou Iy = (ug,...,Uk—1, 20, --,2k) est I'information disponible a
I'étape k.
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Modele stationnaire sur horizon infini.

Supposons que (Ak, Bk, Qk, Rx) = (A, B, Q, R) pour tout k.
Lorsque k — —o0, on s'attend a ce que K, — K ou K satisfait
I'équation de Riccati algébrique

K=A(K—-KB(B'KB+R)'B'K)A+ Q. (1)
La politique optimale sur horizon infini sera alors stationnaire:
w(x) = Lx

ol
L = —(B'KB + R)"1B'KA.

On peut prouver que cela est vrai sous les conditions qui suivent.
D'abord quelques définitions.

Décomposons @ = C'C ou C est r X nsi r = rang(Q).
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(Définition 4.1.1 DPOC) La paire (A, B) est dite contrdlable si la
matrice n X nm
(B,AB,A’B,..., A" !B)

est de rang n. La paire (A, C) est dite observable si la matrice
nmxn

C
CA
— (C/, A/C/, s (Anfl)lc/)/
CAnfl

est de rang n. En d’autres termes (A’, C') est contrdlable.
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Controlabilité

La contrélabilité implique qu'en I'absence de bruit (si wyx = 0), a
partir de n'importe quelle position initiale, on peut ramener le
systeme a 0 en n étapes par un choix approprié de ug, ..., Up_1:

Up—1
xn =A%+ (B,AB,...,A"'B)| : |,
Uo
et donc
Up—1
X, — A'xg = (B, AB, ..., A" !B)
to
Le caractére contrdlable garantit |'existence d’une solution au

systéme ainsi construit (on peut isoler une sous-matrice n X n
inversible).
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Observabilité

L'observabilité implique qu’en observant Cxp, ..., Cx,_1, on peut en
déduire I'état initial xg du systeme xx41 = Axk, car

C
Cxo A
: = . X0-
Cxp—1 CA.n—l

L'observabilité est équivalente a la propriété qu’en I'absence de
contrdle, xx — 0 si Cxx — 0.

Cela implique aussi que si xLka — 0, alors x, — 0, comme

Q= CC.
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En I'absence de bruit, on a
xk = (A+ BL)xx_1 = (A+ BL)kx. (2)

Ce systéme en boucle fermée est dit stable si et seulement si x, — 0
lorsque k — oo, i.e., si et seulement si toutes les valeurs propres de
la matrice A+ BL (qui sont en général des nombres complexes) sont
strictement a l'intérieur du cercle unité.

Proposition. Si (A, B) est contrdlable et (A, C) est observable,
alors
lim Ky =K
k——o0
ou K est une matrice définie positive qui est I'unique solution de (1)
dans |'espace des matrices définies semi-positives, et le systeme (2)
est stable.

Preuve: Voir DPOC, Proposition 4.4.1.
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Matrices aléatoires.

Supposons que les matrices A, et By ne sont plus constantes, mais
aléatoires. La politique optimale est encore de la forme

1 (X) = Liexic,

si on prend soin de remplacer les formes quadratiques A}, Ki41Ax,
A;KkHBk, etc., par leurs espérances conditionnelles

E[A, Kit1Ak | Ki+1], E[A, Kit1Bx | Kik+1], etc., dans les
expressions pour Ky et L.

Par ailleurs, dans le cas stationnaire, le systeme est stable seulement
si la mesure d'incertitude

T = E[A’|E[B?] — (E[A]E[B])?

n'est pas trop grande. Si T dépasse un certain seuil (trop
d'incertitude), Ky diverge lorsque k — —oo et |'optimisation sur
horizon infini n'a plus de sens.
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Modele d’inventaire

X = Niveau d'inventaire au début du mois k,
avant de commander (entier ou réel);
Uy = Quantité commandée au début du mois k;

Niveau d'inventaire aprés avoir commandé;

Yk = Xk + Uk

W = Demande durant le mois k (sont indép.);
K+ cu = Colit d'une commande de taille u;
r(xk+1) = Coit d'inventaire payé a la fin du mois k;

L'algorithme de la PD vu au chapitre 1 devient tres coliteux lorsque
le nombre de valeurs de x; possibles est trés grand.

Hypothese: Supposons que K = 0 et que r est une fonction
continue, convexe et telle que

XI|_>rr;o r(x) = Xli)rroo(cx + r(x)) = oc.
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Exemple: r(x) = pmax(0, —x) + hmax(0,x) ou p > c et h > 0.
On suppose que les inventaires négatifs sont permis:

X1 = Xk + U — Wi = Vi — W
On n’a pas a tenir compte des revenus de vente. On a alors

In(xn) = 0;

Ji(xx) = colit espéré total optimal pour les mois k a N
= miny, >0 (cuk + E[r(xk + uk — wi) + J1(xk + ux — wi)])
= miny, >y (cyx + E[r(yk — wi) + T (v — wi)]) — oxk

= miny, >y Gk()/k) — Xk

Gr(y) = cy + E[r(y — wi) + Jkq1(y — wi)]

est le colit espéré pour k a N si x, = 0 et on commande y.
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La proposition qui suit montre que la politique optimale est de
toujours ramener le niveau d’inventaire a la valeur Sy qui minimise
G si on est en dessous et de ne rien commander si on est au
dessus.

Il suffit donc de trouver le min pour le cas ol xx = 0.

Proposition. Pour chaque k < N, Gj et J, sont des fonctions
convexes telles que Gk(y) — oo et Jx(y) — oo lorsque y — +o0.
La politique optimale est définie par

11 (x) = max(0, S — x)

ou Sy est la valeur de y qui minimise Gi(y).
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Preuve. Par induction arriére sur k.

Pour k = N —1, Gn-1(y) = cy + E[r(y — wn—_1)] est convexe car r
est convexe, et Gy_1(y) — oo quand |y| — oo en supposant que la
loi de wy_1 est “raisonnable”. (Pour &tre rigoureux, il faudrait
ajouter des hypotheses sur cette loi et divers détails techniques.
Bertsekas suppose que les wy prennent leurs valeurs dans un
intervalle borné, mais on peut &tre moins restrictif.)

[l y a donc une valeur finie et unique de y qui minimise Gy_1(y)-
Appelons-la Sy_1. Si Sy_1 > xy_1, cette valeur est la valeur
optimale de yy_1, i.e., la valeur optimale de uy_1 est Sy_1 — xy—1.
On aura JNfl(XNfl) = (5/\/,1 — XN,1)C + GNfl(SNfl).

Si Sy_1 < xn_1, on est bloqué par la contrainte
YN—1 > XN—1 > Sy—1. On prendra yy_1 = xy_1, i.e., uy_1 = 0.
Cela donne 11j,_(x) = max(0, Sy_1 — x).
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Il reste a montrer les propriétés de Jy_1. On a

(5/\/,1 — X)C + E[r(SN,l - WNfl)] if x < Syn_1,

In-1(x) = E[r(x — wy_1)] if x> Sy_1,

qui est continue, convexe, et tend vers l'infini lorsque |x| — oo,
grace aux propriétés de r.

Si on suppose que les propriétés tiennent pour k + 1, on peut
montrer par les mémes arguments et en utilisant aussi |'hypothese
que Jiy1 est convexe, que cela implique qu'elles tiennent pour k. [J

Exercice: complétez les détails de la preuve pour passer de k+1 a k.
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cy +H(y)

In-1n 1)
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Coiit fixe positif.

Supposons maintenant qu’il y a un cofit fixe K > 0 pour
commander. On définit G, de la méme fagon:

Gi(y) = colit espéré pour k a N si x, = 0, on a déja payé le coiit
fixe, et on commande y. On a

Jk(Xk) = min |:Gk(Xk), (K + Gk(Xk + uk)):| — CX)

min

u,>0

= min {Gk(xk), min (K + Gk(yk))] — CXk.
Y= Xk

Cette fonction Ji n'est pas convexe. Et G, n’est pas nécessairement
convexe non plus. Mais on peut prouver la forme de la politique
optimale en utilisant une notion plus générale de convexité.

Ce genre de technique peut étre utile en général pour déterminer et
prouver la forme de la politique optimale dans le cas ou il y a des
colits fixes pour les transactions.
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K-convexité

Définition. (4.2.1, DPOC) Une fonction g : R — R est
K-convexe, pour K > 0, si

g(y) —gly — b)
b

K+g(2+y)2g(y)+2< >,szo,b>0, y.

Ci-dessous, g (en rouge) est K-convexe pour K = 1, mais pas pour

K <1.
A
3Ak
2Ak
K=1-
0
% % : —— > X
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Une conséquence importante est qu'une fonction g : R — R est
K-convexe, pour K > 0, si

K+ely+b)—gly)  gly) —gly —b)
b2 - bl

Vy,Vby > 0,Vby > 0.

Lemme 4.2.1 (page 167).
(a) Si g est convexe, alors g est K-convexe pour tout K > 0.
(b) Si g1 est K-convexe et g» L-convexe, alors
ag1 + Bg» est (aK + [L)-convexe.
(c) Si g est K-convexe et W une v.a. aléatoire, alors
h(y) = E[|g(y — W)]|] est K-convexe si h(y) < oo pour tout y.
(d) Si g est continue et K-convexe et si limy,_, 4o, g(y) = 00, alors
il existe deux constantes s < S telles que:
(i) g(y) = g(S) pour tout y;
(i1) g(y) > &(s) = &(S) + K pour y <'s;
(i) g(y) est décroissante pour y < s;
(iv) gly) <g(z) + Ksis<y <z
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Proposition. Pour chaque kK < N, Gy et Ji sont des fonctions
continues et K-convexes telles que Gk(y) — oo et Jk(y) = o0
lorsque y — +oo. La politique optimale est une politique de type
(s,S) non stationnaire, définie par

Sk — X Si Xy < Sk;

pi(xk) = {

0 Si Xj > Sk,

ou Sy est la valeur de y qui minimise Gg(y) et sk est la plus petite
valeur de y telle que Gi(y) = K + Gk(Sk)-

Intérét du résultat: simplifie beaucoup les calculs!
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Preuve du lemme. (a), (b), (c) découlent directement de la
définition. Prouvons (d).

(i): Puisque g(y) — oo lorsque |y| — oo, g posséde un miminum.
Soit S un endroit ou il est atteint.

(ii): Soit s < S le plus petit y tel que g(y) = g(S) + K.

Pour y <'s, on a par la K-convexité

K+g(S)—gls) . &ls) —&y)
S—s - s—y

Puisque K + g(S) — g(s) =0, cela donne g(y) > g(s) = K+ g(5).
Mais par définition de s, on a g(y) > g(S) + K = g(s).

(iii) Pour y; < y» <'s, on a de (i) et la K-convexité

. K+(S) —8() > g(y2) —gln)

0
S—w Y2 — W

et donc g(y1) > g(y2).



(iv) On veut montrer que K + g(z) > g(y)sis<y < z.
Si y = s ou y = z, facile a vérifier.
Siy > S, alors par la K-convexité,

K+g(z) —gly)
z—y y—

Sis<y<S§, alors

g(s)—&ly) _ K+g(S
S—y S—y - y—s

|
piR
S

v

=
S

|
o
O

qui implique

(g(s) — &)y —s) > (gly) — &(s))(S—y)

et donc
(g(s) —g(¥))(S—s) =0.
Ainsi
K+g(z) > K+g(S)=2g(s) > gly)



Plan de preuve de la proposition. Par induction sur k, comme
d’habitude.
Pour k = N — 1, Gy_1 est convexe, et donc K-convexe. On a

Iv-1(x) = min [GNl(X), gg(K + Gn-1(y))| — ex

K+ GN—I(SN—I) —cx  six < sy_1,
Gn-1(x) — cx Si X > Sy_1.

La politique 1,4 qui fait atteindre le min a la forme voulue.

Pour montrer que Jy_1 est K-convexe, on considére 3 cas:
(D)y>sny-1, Q) y<y+br<sy-1,et(3) y <sy_1<y-+ b
Dans chaque cas, on montre que la définition de K-convexité tient.
On montre facilement que Gpy_7 est continue, car r |'est, et dés lors
Jn—1 est continue. Gy_1(y) — oo et Jy_1(y) — oo lorsque

y — £oo de la méme facon que pour le cas ot K = 0. On a donc le
résultat pour k = N — 1.

On montre ensuite que si on suppose le résultat vrai pour k + 1,
cela implique qu'il tient aussi pour k. [
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Un modele de gestion de portefeuille.

Xp = capital initial a investir;

x, = capital de l'investisseur au début de la période k;

n types d’actifs risqués et un type d'actif sans risque;

s, = taux de rendement sans risque pour la période k;

e = (ex1,- .-, €kn) = taux de rendement des n actifs risqués pour
la période k. Ce sont des vecteurs aléatoires indépendants, dont la
loi est telle que les espérances que nous allons considérer sont finies;
ur = (Uk 1, - - ., Uk,n) = montants investis dans les différents actifs
risqués a la période k;

Le capital évolue selon:

X4l = § €k, ilk,i + Sk(Xk — U1 — -+ — Uk.n)
i—1
= Ska-i-E €k,i — Sk)Uk,i-
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L'investisseur a une fonction d'utilité U, et veut maximiser
E[U(xn)], I'espérance de I'utilité de son capital final.

Hypotheéses: On suppose que U est concave et appartient a3 C?, i.e.
est deux fois continliment différentiable. continue, que
E[U(xn)] < o0, et que U satisfait:

—U'(x)/U"(x) = a+ bx.
Par exemple, les fonctions suivantes satisfont ces conditions:

U(x)=1—e>/3 U(x) = In(x + a).
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Les équations de la PD:

InO) = Ulxw),
-/k(Xk) = mﬁxE[U(xN)\xk]

= max E [Jk+1 (Ska + E(e/ﬂ; — sk)uk7,-)] (3)

Uk, 15---5Uk,n .
i=1

Proposition. Pour 0 < k < N, on a

a

pr(x) = ( + bSka> Qg

SN—1 """ Sk+1
ol vy = (ak1,...,0n) dépend de la loi de probabilité de e, mais
pas de xi. (On peut déterminer a via (3).) De plus, Ji satisfait

Slx)

— = bx.
J;(/(X) SN—1 """ Sk +bx
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Preuve. (Pas complétement rigoureuse, comme dans DPOC.)

On suppose que la politique optimale existe et est différentiable en
Xk (vrai si U et les lois des e, sont suffisamment régulieres).
Supposons qu'un portfolio optimal existe et est de la forme

a

() = o) (5

+ bSkX) )
" Sk+1

ol les ay(x) = (ak,1(x), ..., ak n(x)) sont des vecteurs de fonctions
différentiables.
En particulier,

pn—1(x) = an-1(x)(a + bsy-1x).

On va montrer que doy j(x)/dx = 0, ce qui impliquera que a ;(x)
est constante en x.
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La preuve se fait par induction arriére sur k.
Prenons k = N — 1, xy_1 = x et sy_1 = s.
Puisque 113,_4(x) est le portefeuille optimal, on a

o - JEUGw)
dUNfl,i un_1=p_1 (%)
d
= m 5X+ZeN 1j — uN 1,
= E |(ey_1;—s)U sx+z en_1; — S)an_1,(x)(a+ bsx)

en supposant que I'on peut échanger la dérivée et I'espérance (le
théoreme de convergence dominée de Lebesgue donne des
conditions suffisantes pour cela).
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En dérivant la derniére équation par rapport a x, et en supposant
encore que I'on peut passer la dérivée a I'intérieur de [E, on obtient

0 = E (eN_L,- U” XN 5+Z EN—-1,j — <Oz/\/_17j(X)bS

—I—%(x)(a + bsx)) )]

n

= E |U"(xn)(a+ bsx) Z(eN_L,- —s)(en—1j — s)daNc_!i;j(X) (4)
+E UH(XN)(eN—l,i —s)s |1+ Z(GN_LJ' — S)OéN_l,j(X)b . (5)

j=1

Mais on sait que

U/(XN) n
U 0) = a+bxy = a+b|sx+ ;(e,v_lyj —s)an—1,j(x)(a + bsx)
= (a+bsx) |1+ ) (en—1j—S)ans1j(x)b ] . (6)
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Si on isole U”(xy) dans cette expression et on remplace dans le
second membre de (5), on obtient

—E[U/(x)(en—1,i — $)ls/(a + bsx),

et on a vu plus haut que cette espérance vaut 0.
On obtient ainsi, pour i =1,...,n,

daN,lJ(X)

dx =0

E | (a+ bsx)U"(xn) Y (en-1, — s)(en-1; — S)
j=1

ce systeme de n équations s'écrit sous forme matricielle:
(a+ bsx)MV,an-1(x) = 0,

ol Vyan—1(x) est un vecteur dont I'élément j est day_1 j(x)/dx,
et M est une matrice n X n dont I'élément (/, ) est
E[U"(xn)(en—1,i — s)(en—1j — 5)].

Si on suppose que M est inversible (ce qui est vrai sauf dans les
cas dégénérés), on obtient que day_1,j(x)/dx = 0 pour tout j.
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Montrons maintenant que

_J;\/—1(X) _a "
) =3 + bx. (7)

Notant J(x) = Jy—1(x) = E[U(xn)], On a

J(X) =E [U ((1 + Z(EN_LJ' — S)OzN_ij) SX + Z(eN_l’j - s)aN_lJa) ]
j=1 j=1

On dérive 2 fois par rapport a x pour obtenir J'(x) et J”(x):

J/(X) = E XN) l—i—ZeN 1j — aN 1’Jb s

2
J'(x) = E|U"(x 1+Z en_1j—s)an_1b| s
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Puis, si on exprime U”(x) en fonction de U’(x) via (6) et si on
remplace dans J”(x), puis on divise |'expression de J'(x) par cette
expression de J”(x), on obtient (7).

Induction: on suppose le résultat vrai pour k + 1, et on montre que
cela implique qu'il est vrai pour k. Les détails sont semblables au
cas k=N —1. O
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Remarque: La politique optimale a I'étape k est la méme que si
c'était la derniere étape et que la fonction d'utilité était Jy,1. Cette
fonction Jx11 a exactement la méme forme que la fonction d'utilité,
avec a remplacé par a par a/(sy_1 - - sk) dans 'expression qui la
définit. La politique optimale aura donc la méme forme que si on
était a la derniére étape, avec a remplacé par a/(sy_1 - Sk).

Sia=0, ou si s, =1 pour tout k, alors la politique optimale est la
méme a toutes les étapes, et ne tient compte que de |'étape
courante. On agit toujours comme si on était a I'étape N — 1. Cela
s'appelle une politique myope.
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Si a # 0, cela équivaut a dire que sous les hypothéses de ce modeéle,
on peut optimiser a I'étape k en faisant I'"hypothése qu’a partir de la
prochaine étape tout notre argent sera investi sans risque. En effet,
a la derniére étape, aucune décision d’investissement dans des actifs
risqués n'était prise.

Cela revient a maximiser, par rapport a ux = (Ux 1, .., Uk.n),

E|U|( skr1--sn-1 Ska-i-g ki — Sk)Uk.i

Il s'agit d'une politique partiellement myope.

Si s, > 1 et k — —o0, on retrouve une stratégie myope.
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Temps d’arrét optimal

Supposons qu'a chaque étape k, on doit décider si on arréte le
systéme (et on encaisse un revenu ou un colit) ou si on continue.
L'espace d'états X peut étre partitionné en deux: les états ou il est
optimal de s'arréter et ceux ou il est optimal de continuer.

Exemple: vente d’un actif.

Durant chaque période k, 0 < k < N — 1, on recoit une offre wy
que I'on peut accepter a la fin de la période (au temps k + 1) si
aucune offre n'a encore été acceptée.

On suppose que les wy sont des v.a. indépendantes, et
indépendantes de nos décisions (pas nécessairement i.i.d.).

On pose 1, = 1 si on vend a |'étape k, ux = 0 sinon.
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L'état du systeme a I'étape k + 1 sera

wg Siug=---=ug=0;
Xk+1 = .
A sinon;

ol A est |'état dans lequel on a déja vendu.

On pose xp = ug = 0.

Les décisions admissibles pour kK > 1 sont uy =0si x, = A, uy =1
si xy # A, et u, € {0,1} sinon.

Si ux = 1, on recoit xx = wi_1 au temps k, que I'on place au taux
d’'intérét r pour les N — k périodes restantes. Le revenu a I'étape k,
actualisé au temps N, est donc

(14 r)Nkx  siug =1,

i (X, Ui, wi) = .
0 sinon.
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Soit Jx(xk) le revenu espéré optimal a partir du temps k jusqu’a la
fin, actualisé au temps N, si on est dans I'état x,. On obtient:

0 Si X, = A\;
Je(xk) = < xn si k=N et xy#A;
max((1 + r)N=*xi, E[Jkr1(wk)])  si k < N et xx # A.

La décision optimale, lorsqu'on a encore le choix, est de vendre
(accepter I'offre xx = wy_1) si et seulement si

det E[Jx+1(wk)]
Xy 2 oy = 7(1+r)’\’*" .

La politique optimale est déterminée par ces seuils a1, ..., an_1.
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On pose apy = 0. Pour xx # A, le revenu total espéré actualisé au
temps k est

Vk(Xk) = Jk(xk)/(1+r)N*k

B {XN sik=N;
I max(xi, E[Vigi(wi)]/(L+7)) sik<N

= max(xk, ak).

o = Elr(wOl/(L+ NV = E[Viepa (wi)]/(1+ 1)
(1+rax = E[Viga(xis1)]

= E[max(Xit1, cies1)]

= E[max(wg, aki1)]

= E[wd[wk > aria]] + Eloueralwi < apeqa]]

= E[wil[wk > arqa]] + a1 Plwic < vy, (8)
ce qui nous permet de calculer les o par récurrence.
Onaay=0, ay-1 =E[wy_1]/(1+r), etc.



Peut-on caractériser davantage cette politique? Intuitivement,
moins il reste de temps, moins on devrait étre exigeant, car il nous
reste moins d'opportunités; donc ay devrait diminuer avec k.

Proposition. Si les wy sont i.i.d., alors ay > 11 pour tout k.

/

a;
a

ACCEPT

REJECT

aN-1]----
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Proposition. Si les wy sont i.i.d., alors oy > 11 pour tout k.

Preuve. On note par w une v.a. qui a la méme loi que les wy.
I suffit de montrer que Vi (x) > Vi1(x) pour x > 0 et
1<k<N-1

Cela se fait aisément par induction sur k.

Pour k = N —1, on a Vy_1(x) > x = V(x).

Si on suppose que Vii1(x) > Viy2(x) pour tout x, alors

Vi(x) = max(x, E[Vira(w)]/(1+ r))
> max(x, E[Vigo(w)]/(1+ 1))
= Viy1(x).
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Que se passe-t-il lorsque N — 00?

Ou de facon équivalente, lorsque k — —o0?

Si on peut borner la suite des ay, cela montrera que cette suite
converge lorsque k — —oo. Par (8),

(1+rax < E[w]+ akss.

D'ou I'on tire

o < E[W] + Ot 1
1+r
< E[w]  E[w]+ akso
-~ 1+4r (1+r)?
< ..
— 1
< E —_—
=
1
= B < oo

en supposant r > 0.
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Ainsi, lorsque k — —o0, o, — @ pour une constante & qui satisfait

(1+r)a = E[max(w,a)]
= E[wl[w > a]] + aP[w < &].

Lorsque I'horizon tend vers l'infini, la politique optimale est une
politique stationnaire déterminée par le seuil a.

Dans ce modele, r > 0 fait qu'il devient plus attrayant de vendre
plus tot, a prix égal. Et si on avait r = 0 pour le modéle sur horizon
infini? Dans ce cas, a moins que |I'on atteigne la valeur maximale
que w peut prendre (ce qui est impossible pour plusieurs lois de
prob.), on attendra toujours indéfiniment...
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Achat avant une date limite.

Au lieu de vendre un actif, on veut (ou on doit) |'acheter au plus
tard au début de la période V. L'état x, a |'étape k est A sion a
déja acheté, et xx = wy_1 si on n'a pas encore acheté, ol wy_; est
le prix du marché pour le produit dont on a besoin, au début de la
période k.

Ici on minimise au lieu de maximiser.

Le colit espéré total optimal a partir du temps k, actualisé au temps
k, si on est dans I'état xx # A, est

XN sik=0N;
min(xc, E[Vir1(wi)]/(1+7r)) sik <N

= min(xk, o)

Vk(Xk) =

ol apy = 00, apy_1 = E[WN,]_]/(]_ + r), etc.
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(1 + r)a,k = E[Vk+1(Wk)] (9)
= E[min(Wk7 Oék+1)]
= E[wd[wik < ak1]] + ar1Plwi > axia], (10)
ce qui nous permet de calculer les a par récurrence.
La politique optimale est ainsi déterminée par des seuils ax comme

pour le probleme du vendeur: on acheéte si et seulement si x, < .
On peut montrer, de la méme facon:

Proposition. Si les wy sont i.i.d., alors vy < a1 pour tout k.
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Prix corrélés.

On peut généraliser le modele au cas ou les wy sont dépendants.
Supposons, par exemple, que xg = 0 et

Xk41 = Wk = Axk + &k, 0<k<N-1,

ou A € [0,1) est une constante et les &, sont des v.a. i.i.d. a valeur
dans [0,00), avec £ = E[¢x] > 0. Pour simplifier, supposons que
r = 0. On a alors, pour le probleme de I'acheteur,

Je(xe) XN si k=N et xy # A,
X =
s min(xk, E[Jkp1(Axk +&k)])  si k < N et xx # A.
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Proposition. Pour k < N — 1, Jx(x) est croissante et concave en x
et on a Jk(x) < Jky1(x) pour tout x. La décision optimale a I'étape
k est d'acheter si x, < ay et d'attendre sinon, ou «ay est I'unique
valeur positive qui satisfait

ax = E[lJgp1(Aag + &)

De plus, on a ay < agq1.

Preuve. Par induction sur k.
Pour k=N —1, 0on a

In_1(x) = min(x, Ax + &) < x = Iy(x)

et le résultat tient avec ay_1 = Aay_1 + &, i.e., ay_1 = &/(1 = N).
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Supposons que le résultat tient pour k + 1 et montrons qu'il tient
alors aussi pour k. On a

J(x) = min(x, E[Ler1(Ax + &)])
= min(x, E[Jkg1(Ax + ks1)])
< min(x, E[Jk12(Ax + &k11)]) = Jkr1(x)

et Jk(x) est croissante et concave en x car Jyi1(x) I'est.
Par ailleurs, pour x = 0, E[Jk+1(&k)] > 0, ce qui implique que
Jk(x) = x pour x proche de 0. De plus,

Ji(x) = o(x) o E[Jkt1(Ax + &k)] pour x > ayeyq, car
a1 = Eldkr2(Aaks1 + &kt1)] = Eldir1(Aakyr + &)

Puisque Jk(x) est concave, cela implique aussi que ¢'(ay41) <1 et
que la fonction (x) doit avoir une pente strictement < 1 lorsqu’elle
croise f(x) = x. La valeur de x ou le croisement se produit est donc
unique et doit se trouver dans I'intervalle (0, ax11). Clest x = ax.
Cela complete la preuve. [J
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Option de type américaine pour une action dont le

prix suit une marche aléatoire.

(Ross, " Introduction to Stochastic Dynamic Programming”, 1983,
Section 1.3.)

On suppose que le prix de I'action de la firme ABC est x; au jour k,
et évolue selon une marche aléatoire:

k

Xk+1 = Xk + W = Xp + E w;j
i=0

ol les w; sont des v.a. i.i.d. de moyenne /.

On a une option d'achat pour une action au prix fixe K.
On peut I'exercer a I'un des N premiers jours.

Si on I'exerce au jour k, notre profit est max(0, xx — K).
On veut maximiser notre profit espéré.
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Soit Ji(xx) le profit espéré optimal si le prix est x; au jour k et que
I'on n'a pas encore exercé |'option. On a

() = max(0, xy — K) si k=N;
max(xk - K, ]E[Jk+1(Xk + Wk)]) si k < N.

Proposition. Ji(x) est continue et croissante en x et décroissante

en k, tandis que Jx(x) — x est décroissante en x.

La politique optimale consiste a exercer |'option au jour k si et

seulement si x, > ay, ou «y est la plus petite valeur qui satisfait

Jk(ak) = ax — K. De plus, aky1 < ai pour k < N.

Preuve. On montre la premiére partie par induction sur k.
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JIn(x) = max(0,x — K) est continue et croissante en x, et
In(x) — x = max(—x, —K) est décroissante en x.

De plus,

Inv—1(x) = max(x — K, E[Un(x + wy-1)])
> max(x — K, 0, E[x + wy_1 — K]) > Jn(x).

Si on suppose que Jiy1 a les propriétés désirées, pour k < N,
Jk(x) = max(x — K, E[Jks1(x + wk)])
est continue et croissante en x car Jiy1 |'est,
Ji(x) > max(x — K, E[Jkr2(x + wk)]) = Jkt1(x),
et

Jk(x) — x = max(—K, E[Jgr1(x + wk) — (x + wg)] + E[wk])

est décroissante en x grace a I'hypotheése sur Jii ;.
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Il est optimal d'exercer |'option a I'étape k si et seulement si
Jk(xx) = xx — K. Posons

ar =inf{x: Jg(x) —x = —=K}.

(ak = 00 si Jk(x) — x n'atteint jamais —K.)
Pour x > ay, on a Jx(x) — x < Jk(ak) — ax = —K et il est donc
optimal d'exercer. La politique optimale a donc la forme spécifiée.

Le fait que ak+1 < i découle du fait que Jey1(x) < Ji(x).
Supposons en effet par I'absurde que ayx41 > ak. Comme
Jk+1(ak) > akx — K, nous avons a présent (par définition de oy et
ak+1) Jk+1(ozk) >ar— K= Jk(ak). O
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La régle nous donne des seuils, mais pas de régle précise de calcul.
Regardons par exemple I'étape N — 1. Nous exercons si

xn—1 — K > Ey [In(xn-1 — K + w)]
= Ew[max{0, xy_1 — K + w}]
=Ew[(xn-1 — K+ w)I[xy_1 — K+ w > 0]]
= (xny—1 — K)P[xny—1 — K+ w > 0]+
Ew[wl[xy—1 — K+ w > 0]],
et donc si

(XN,1 — K)P[W < XN_1— K] > EW[W]I[W > XN-—1 — K]]

Notez que I'indicatrice a pour effet de "gommer” les valeurs
négatives de w.
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L'exemple n'a de sens que si i < 0. Comme aucun facteur
d’'actualisation n'est présent ici, seul I'évolution directe de x
importe. Si pu >0, Ew[xk+1] > Ew[xk], et il est préférable
d'attendre. Si p < 0, méme si en moyenne, la valeur de |'option
baisse, les variations aléatoires peuvent conduire a une valeur élevée
de 'option en certaines période. La stratégie d'exercice se base sur
cette observation.
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Ensemble d’arrét absorbant et regle du “un coup a

I’avance”

On considére un modeéle stationnaire général ou en plus (ou a
I'intérieur) de la décision uy a I'étape k, on peut arréter le systeme
et payer un colit terminal t(x;) fonction de I'état xx, ou bien
continuer. Si on se rend a I'étape N, on doit payer t(xy). On a

In(xn) = t(xn) et
Ji(xx) = min <t(xk), ueT/i(gk)]EWk [g(xk, u, wi) + k1 (F (xk, u, Wk))]> ,

pour k < N, et il est optimal de s'arréter au temps k si et seulement
si xy est dans

Ty = {x s t(x) < uénui?x)E [g(x, u,w) + Jkp1(f(x, u, W))]} .
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On voit que Jy_1(x) < Jy(x) et on montre facilement par induction
que Ji(x) < Jit1(x), pour tout x et k < N. Il en découle que
Tie © Tiy1 pour 0 < k < N.
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Proposition. Si I'ensemble Tp_q est absorbant tant que I'on ne
s'arréte pas, i.e.,, {x € Ty_1} = {f(x,u,w) € Ty_1}, alors

T, = Ty_1 pour tout kK < N.

Preuve. Sixy_o=x € Ty_1, alors xy_1 = f(x,u,w) € Ty_1, de
sorte que Jy—1(xy—1) = t(xny—1), et donc

t(x) < min E[g(x u,w) + In(f(x, u,w))]

ueU(x)
= ug}(}? E[g(x, u,w) + t(f(x, u, w))]
= ug]Ul? E[g(x, u,w) + Iy_1(f(x, u, w))],

ce qui veut dire que x € Ty_». On a donc Ty_1 € Ty_o, et donc
Tn—> = Ty—1. On montre de la méme maniere que Ty, = Ty_1
pour tout k. (Ou encore, par induction sur k.) [
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Ainsi, si Ty_1 est absorbant, la politique optimale a chaque étape
est de s'arréter si et seulement s'il est préférable de s'arréter
maintenant plutét que de continuer et de s'arréter obligatoirement a
la prochaine étape. Autrement dit, il suffit de regarder un coup a
I'avance (“one-step look ahead policy”).

Cette proposition s’applique dans les deux exemples qui suivent.
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Exemple: Probleme du vendeur avec retention des offres.

Revenons au probléeme de vente d'un actif. On suppose maintenant
que les offres qui ne sont pas acceptées immédiatement ne sont pas
rejetées, elles peuvent étre acceptées plus tard.

L'état x, indique I'offre courante et on a

Xk+1 = max(xg, w).

Question: Que fera-t-on si r = 07
Les récurrences pour V) deviennent

n(xn) = xw,
Vi(xi) = max(xk, E[Vigr1(max(xe, wi))]/(1+r)), k< N.
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L'ensemble d'arrét optimal a I'étape N — 1 est
Tyo1 = {x:x>E[max(x,w)]/(1+r)} = {x:x>a},
ou & est la solution de
(1+ r)a =E[max(a, w)] = aP[w < a] + E[wl[w > a]]

si la solution existe, & = oo sinon.

Cet ensemble Tp_1 est absorbant, car x, ne peut jamais diminuer
lorsque k augmente. On a donc T, = Ty_1 pour tout k, i.e., on
accepte la premiere offre qui atteint a.
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Exemple: Un voleur qui sait calculer.

a chaque période k (e.g., chaque nuit), un voleur peut tenter un
nouveau vol ou prendre sa retraite avec son profit déja accumulé, x.
S'il tente un vol, avec probabilité p il se fait prendre et perd tout, et
avec probabilité 1 — p il fait un gain wy (aléatoire).

Apres N périodes, il doit nécessairement se retirer avec son profit
xy, s'il ne I'a pas fait avant et s'il n'a pas été pris.

[l veut maximiser son profit espéré total, E[xy].

Les équations de la PD:

In(xv) = xw,
Ji(x) = max(xk, (1 = p)E[Jes1(xk + wi)]), k< N.
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On aici

Tt = {xix=(1-p)(x+Ew])}uU{a}
— {x:x>E[W]1 - p)/p} U{A}

ou A est I'état d'arrestation. Cet ensemble est absorbant au sens de
la proposition. La politique optimale est donc de se retirer dés que
le profit accumulé xi atteint @ = E[w](1 — p)/p, peu importe la
valeur de k.

Ce modele s'applique aussi a d’autres types de situations.
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Problemes d’ordonnancement et argument

d’échange de voisins.

On a un ensemble de /N taches a accomplir et on doit les ordonner.
Par exemple, N pieces a fabriquer dans un atelier, ou N voitures a
réparer, ou N dossiers a étudier, ou N articles a arbitrer, etc. On
veut minimiser un critére de performance qui s'exprime comme
I'espérance de la somme des colits pour les différentes taches.

Algorithme de PD standard: I'état a I'étape k est I'ensemble des
taches restantes.

Les modeles considérés ici sont stochastiques, mais I'information
obtenue au cours des premieres étapes n'est pas utile pour améliorer
les décisions futures, de sorte que la politique optimale sera une
politique en boucle ouverte (on peut trouver |'ordonnancement
optimal deés le départ).
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L'argument d’'échange de voisins dit que si
L={ioyfyeeyik—t1sls)siktay--oyin-1}
est un ordonnancement optimal et
L/ = {ig, il, ey I.kfl,j, l-,llk+2, ooy I'Nfl}

alors le colit espéré total pour L ne doit pas dépasser celui pour L'.
En général, cela ne donne que des conditions nécessaires
d’'optimalité, mais dans certains cas il devient évident que ces
conditions sont aussi suffisantes.
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Exemple: Ordonnancement des questions d’un quiz.

Il'y a NV questions, auxquelles on peut répondre dans I'ordre que I'on
veut. On répondra correctement a la question i avec probabilité p;,
et si on le fait on gagne R;. Deés que I'on échoue a une question,
c'est terminé. On veut maximiser notre gain total espéré.

A noter que la politique optimale est en boucle ouverte, car une fois
que I'on aura répondu aux k premiéres questions, on n'aura pas
davantage d'information qu'au départ qui puisse justifier de changer
notre ordonnancement des NN — k questions restantes.
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Soit J(S) le revenu espéré pour une suite ordonnée de questions S,
et soient L et L’ comme 3 la page précédente, ou L est optimal:

L = ity ik—1505Jyikt2s -5 in-1}
L = {i0>i17--'aik—l7j7 I ik+2>"'7iN—1}7
J(L) = S, ik=1}) + Pig -+ Pie_y (PiRi + pipj ;)

+pig -+ Pi_1 PP ({iks2s - -y in—1})i
I = o ik—1}) + Pi Py (PR + PpiRY)
+pi Pia PiPid(Liks2, -y in-1})-

Puisque L est optimale, on doit avoir J(L) > J(L'), i.e.,

piRi + pipjR; piR; + pipiRi, ..,
piRi/(1 — pi) piR;i/(1 — pj).

Il faut ordonner les taches par ordre décroissant de leur valeur de
piRi/(1 — pi).
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Ordonnancement sur un processeur, avec revenu

actualisé.

N taches. La tache i requiert un temps T; aléatoire de loi connue et
rapporte un revenu o' R; si on la compléte au temps t, ol v < 1 est
un facteur d'actualisation. Les v.a. T; sont supposées
indépendantes.

Les valeurs des T; des taches déja réalisées n'affectent les revenus
futurs que via un facteur d’actualisation commun, donc n'affectent
pas |'optimisation de I'ordonnancement des taches qui restent. On
peut ainsi déterminer I'ordonnancement optimal des le départ.

Soient L et [’ comme dans 'exemple précédent, et soit t, l'instant
ol on termine la tache k — 1 et débute la suivante.
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Puisque les T; sont indépendants, on a

J(L) = J{io---sik-1}) + E[a® TRy + T T TR
—l—E[Oétk—’_T"—’—TjJ({ikJrz, RN I.N,]_})]
= J({ioy--ik-1}) +E[@*]E[a” R + TR
+E[@* T ({2, ine1})-
Tout comme dans 'exemple précédent, J(L) > J(L') implique que
ElaTR; + ot TiR)]
RE[a"] + RE[a"]E[a™]

piRi > piR;
1—pi 1-pj

Ela"R; +aiTTiR], e,

>
> RE[a"]+ RE[a]E[aT] e,

ot px = E[a"]. On doit ordonner les taches par ordre décroissant
de leur valeur de p;R;/(1 — p;), exactement comme dans |'exemple
précédent.
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Ordonnancement sur 2 processeurs en série.

N taches. La tache i requiert un temps a; sur la machine A, puis un
temps b; sur la machine B (déterministe). On veut minimiser le
temps total de traitement.

Soit X) I'ensemble des taches qui restent a traiter sur A et 7 la
quantité de travail en attente (“workload”) sur la machine B, a
I'instant ou I'on termine la k-ieme tache sur la machine A (étape
k). L'état a I'étape k est (Xi, 7x).

Si / est la prochaine tache sur A, on aura a I'étape k + 1:

Xir1 = Xk — {i}, T+l = max(O,Tk — a,-) + b;.
Lorsqu'on termine la derniere tache sur A, il reste un temps 7
avant de tout terminer. La récurrence de la PD s’écrit donc

In(psTn) = T,
Jk(Xk,Tk) = Irg)l(n [a,- + -/k+1(Xk - {i}, maX(O,Tk — a,-) + b,))]
k

pour k < N.
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Soient L et [’ comme dans les exemples précédents. L'argument
d’'échange des voisins i et j nous donne la condition d'optimalité

Jir2( Xk — {07}, 71) < T2 (X — {04}, 750)

ol 7j; et 7j; sont les valeurs de 741 pour L et L', respectivement.
Ceci implique que 7; < 7j; car Ji(Xk, 7k) est croissante en 7.

Pour L, on a

Ti = Tkyo = max(0,Tkq1 — aj) + bj
= max(0, max(0, 7« — a;) + bj — aj) + b;
= max(0, max(aj, 7«) + bj — aj — aj) + bj

(
(
max(—b; + a; + aj, max(a,-, Tk)) +bi—aj—aj+b;
aX(Tk, aj, aj+aj— b,-)—a,-—aj+b,-+bj.

|
3
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De méme,

Tji = max(Tk, aj, aj +aj — bj) —a; —aj + b + b;.

Deés lors,
Tij < Tjii < max(Tk, aj, aj + aj — b,') < max(Tk, aj, aj + aj — bj)
Ainsi, 7 > max(aj, a; + a; — b;), implique

Tk > max(aj, aj + aj — b;), et on a 7;; = 7j;. Autrement dit, L et L'
ont le méme colit.
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Si 7 < max(aj, aj + aj — b;), alors on doit avoir
max(a;, a; + aj — b;j) < max(aj, a; + a; — b;j), et on peut montrer
que ceci est équivalent a

min(a,-, bJ) S min(aj, b,)
Cela détermine un ordre unique pour chaque paire (7, ), sauf s'il y a

égalité ci-haut. Dans le cas ou il y a égalité, I'ordre n'a pas
d'importance.

Mis a part ces cas d'égalité, I'ordre unique pour chaque paire
détermine un ordre unique pour I'ensemble des taches.
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Intuition: Il faut éviter de laisser la machine B innocupée, car c’est
3 que le temps est perdu. Pour cela, on donne priorité aux taches
qui demandent tres peu de temps sur la machine A et/ou beaucoup
de temps sur la machine B.
Algorithme d’ordonnancement:
T+ {1,...,N}; L1+ ¢; L2 + ¢;
TANTQUE T # ¢ FAIRE
k < arg min;cT min(a;, b;);
Sl ax < by, mettre k a la fin de L1
SINON mettre k au début de L2:
L'ordonnancement choisi est la liste L1 suivie de la liste L2.

Proposition. Cet algorithme retourne un ordonnancement optimal.

Preuve: Exercice.
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PD pour évaluer une option américano-asiatique

Le prix d'un actif évolue selon un processus stochastique

{S(t), t > 0} a valeurs dans [0, 00). Ce processus est observé aux
instants (fixes) 0 =tg < t; < --- < t, = T. Un contrat financier
(option) de type américain-bermudien procure un revenu immédiat
gj(S(t1),....S(t;)) si on exerce 'option au temps t;, pour
m*<j<n.

En supposant que le processus évolue sous la mesure de risque
neutre et que le taux d'intérét est r, la valeur du contrat au temps
tj si (S(to),...,S5(¢t)) = (s0,---,sj) est vj(so,....s;), ol les
fonctions v; obéissent aux équations de récurrence:

max(0, gn(s1,--.,5n)) si j = n;
vi(s0,...,5;) = { max (gj(sl, s S))s vjh(so, o ,sj)> sim* <j<n
vjh(so, s S)) si j < m*.

avec la valeur de rétention

V-h(So, cey Sj) =E eir(tj“itj)\/jJrl(So, -y S, S(tj+1)) ’ S0,- -5 Sj
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Si g est trés simple, on peut parfois trouver une formule analytique
pour v;.

Si vj peut s'écrire comme une fonction de peu de variables, alors on
peut résoudre numériquement.

Exemple: Option de type asiatique, pour laquelle
gj(s1,...,s;) = max(0, 5, — K)
pour une constante K >0, ol 5, = (s1 +--- + 5))/J.

Dans ce cas, vj ne dépend que de (s;j,5;) (état a 2 dimensions):

max(0, 5, — K)) pour j = n;
vj(sj,5;) =  max (Ej - K, v}l(sj,Ej)) pour m* < j < nm;
v}l(sj,Ej) pour j < m*.

ou
v'(5.5) = e TR [ (S(ti41), G5 + S(141))/G + 1)) | 51
Pour m* < j < n, on exercera |'option ssi 3; — K > v/'(s}, 3).
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Quelle est la forme de la région d'exercice? Et des fonctions v}l et
v;?

Pour répondre a ces questions, il faut des hypothéses sur le
processus S.

Mouvement Brownien géométrique.
5(t) — S(O)G(r—az/Z)t—‘rJB(t)

ol r est le taux d'intérét sans risque, o est la volatilité, et B(-) est
un mouvement Brownien standard.

Pour to > t; > 0, B(t2) — B(t1) est une v.a. normale de moyenne 0
et variance t, — t1, indépendante des accroissements de B(-) en
dehors de [t1, to].

On peut par exemple supposer tj,1 —t; = h, Vj, et poser p = e=h.

Technique. . . voir Ben-Ameur, Breton et L'Ecuyer, Management
Science, 2002.
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