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Chemin central

Aspects similaires a la programmation linéaire :
@ algorithmes itératifs
@ pour un itéré donné, calcul d'une direction de recherche, puis
d'une longueur de pas le long de cette direction.

Considérons le programme

min ¢’ x
sa. Ax=b
x > 0.
Définissons les ensembles
Fp d:ef{x|Ax =b,x >0}
o def

Fp = {x|Ax = b,x > 0}

Fabian Bastin IFT2505



Prboléeme barriere

On suppose que Fp est non vide et que I'ensemble de solutions
optimales pour ce probléeme est borné.

Soit i > 0. Probleme barriere (PB) :

n
T
min ¢’ x — log x;
i MZ gX;
Jj=1
sa. Ax=b
x> 0.
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Prboléeme barriere vs Probleme linéaire

Si i = 0, on retrouve le probleme original en permettant a x
d’'avoir des composantes nulles :

n
min CTX}Z‘{XJ'
X
j=1

s.a. Ax=0>b
x > 0.
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Chemin central

Soit x(u), la solution au PB étant donné p. En faisant varier i
continliment vers 0, nous obtenons le chemin central primal.

Si t — o0, la solution s’approche du centre analytique de la région
réalisable, lorsque celle-ci est bornée : le terme barriere prédomine
alors dans I'objectif.

Comme i — 0, ce chemin converge vers le centre analytique de la
face optimale {x|c"x = z*, Ax = b, x > 0}, ol z* est la valeur

optimale du programme linéaire.

L'idée de base est de résoudre une succession de problemes
barrieres pour des valeurs décroissantes de (.
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Fonction lagrangienne

Réécrivons la contrainte Ax = b sous la forme Ax — b =0, et

introduisons un vecteur y, en associant une composante y; a une
. n _ )

contrainte » 7 ; a;x; = bj.

yi joue a peu pres le méme rble que les variables duales

précédentes, mais est appelé a présent multiplicateur de Lagrange.
Lagrangien :

L(x)=c x—uZIong T(Ax — b).

On cherche a minimiser cette fonction en annulant son gradient.
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Minimisation du lagrangien

Vil(x)=0
<:>cj—ﬁ.—yTaj:0,j:1,...,n
j

e X M4+ ATy =c

En notant s; = 1/x;, I'ensemble des conditions d'optimalité
(primales, duales, minimisation du lagrangien) s'écrit :

xos=pul
Ax=b
Aly+s=c
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Lien avec le dual

y est une solution duale réalisable et ¢ — ATy > 0.

En effet, le dual est

max y'b
y
sa. ATy <c
Comme
ATy +s=c
S = ﬁ
Xj
nous avons
ATy < c.
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Considérons le programme

max xq
s.a. 0<x <1
0§X2§1.

On réécrit ce systeme sous forme standard

min — xy

sa. x31+x3=1
X0+ x4 =1
x1>0,x>0,x3>0,x4 >0.
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Conditions d'optimalité

X151 = [
X285 = [
X353 = [
X454 = b
x1+x3=1
X0+ x4 =1
y1+s=-1
y2+s5=0
y1+s3=0
Yo+5s,=0
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Conditions d'optimalité

De

vo+s=0

yo+s5,=0
on a sy = sg.
On en déduit aussi

X2 = Xq,
et de la
1
X2 = X4 = E
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Conditions d'optimalité

On a aussi
—].251—53:ﬁ—ﬁ
X1 X3
s -—1=L__F
x1 1—x

S —x1(1—x1) = pu(l —x1) — pxy
<:>X127X1:,u72/,LX1
& x¢—(1—2u)x —p=0.

Le discriminant de cette équation quadratique est
p=(1—2u)+4p=1+47
et de la

X1

1 -2put/1+4p2
B 2
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Chemin central

Pour 1 grand, on doit choisir la racine correspondant a '+'.
D’autre part,

1
X — (1,2> , comme p — 0.

On converge vers le centre analytique de la face optimale
{x|x1=1,0<x <1}

plutdt qu'un coin du carré.

<= (33)

—2u+V14+4p? = -2u+2pu

De plus,

comme

— + 1.
442 +
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Chemin central

Deés lors, le chemin central est une ligne droite progressant du
centre analytique du carré (comme p — o0) vers le centre
analytique de la face optimale (comme p — 0).
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Chemin dual central

Partons a présent du probléme dual

max y ' b
sa. yTA+sT =c'

s> 0.

Le probleme barriéere associé est

n
max y b+ u Z log s;
j=1

sa. yTA+s! =c¢
s> 0.

T
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Chemin dual central

On suppose que Fp = {(y,s): yTA+sT =cT, s> 0} est non

vide, et I'ensemble des solutions optimales du dual est borné.
On obtient le chemin central dual en faisant tendre u vers 0.

Lagrangien :
n
Ly)=y b+ uz logs; — (yTA+sT —cT)x.
j=1
Des lors,

V,L=0% b —ax=0, Vi,
Vib=0e L _x =0, v
5
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Chemin dual central : conditions d'optimlaité

On obtient les conditions d’optimalité

xos=pul
Ax=Db
Aly+s=c.

On retrouve les mémes conditions que pour le chemin central.
Par conséquent, x est une solution réalisable primale et x > 0.

Considérons I'ensemble de niveau dual
Qz)={ylc"—y"A>0,y"b=12},
avec z < z*, la valeur optimale du dual.
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Chemin dual central : conditions d'optimlaité

Le centre analytique (y(z),s(z)) de Q coincide avec le chemin
central dual comme z tend vers z*.
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Chemin dual central : exemple

Reprenons le probleme

min — x1
sa. x3+x3=1
Xo+ x4 =1
x1 >0, >0,x3 >0,x4 > 0.

Le dual s'écrit

max y1 + y2

sa.y1 < —1
y2<0
y1 <0
y2 <0.
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Chemin dual central : exemple

On peut réécrire le dual comme

max y1 + y»
sa.y1+s —1
yvo+s5 =0.

Les conditions d'optimalité sont les mémes que pour le primal,
aussi

X2 = Xq4 = 5)
d'ou

Sp =S4 =2, yo = —2U.
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Chemin dual central : exemple

Nous avons également, en se rappelant de la résolution du primal,

n=-l-s
7]
x1 ()

2

i
_1_
1—2p+/1+4u2

Comme t — 0, y1 — —1, y» — 0.

Il s’agit de I'unique solution du probleme linéaire (les deux
contraintes sont actives)

Si i — o0, y est non borné, car I'ensemble dual réalisable est non
borné.
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Chemin central primal-dual

Hypothese : la région réalisable du probleme de programmation
linéaire a un intérieur non vide et un ensemble borné de solutions
optimales.

Le dual a un intérieur réalisable non vide, en vertu des conditions
(d’'optimalité) sur le lagrangien.

Le chemin primal-dual est I'ensemble des vecteurs
(x(),y (1), s(u)) satisfaisant les conditions
xos=pul
Ax=b
ATy +s=c
x>0,s>0
0 < < o0.
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Si les ensembles réalisables primal et dual ont des intérieurs non
vides, alors le chemin central (x(u), y(1), s(1)) existe pour tout ,
0< < o0

De plus, x(u) est le chemin central primal, (y(u),s(u)) est le
chemin central dual.

x(p) et (y(u),s(n)) convergent vers les centres analytiques des

faces des solutions optimales primales et duales, respectivement,
quand p — 0.
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Saut de dualité

Soit (x(u), y(1), s(u)) sur le chemin central primal-dual. Nous
avons
c"x—yTh=(ATy) x+s"x—yTb
=y Ax+s"x—yTb
—yTb+s'x—y'bh
=s'x

= npu.
Comme pour la dualité faible, c"x > yTb, et nu est appelé le saut
de dualité.

Soitg=c'x—yTh.

Comme y'b < z*, z* > cTx — g, et donc, étant donné (x, y, s),

on peut mesurer la qualité de x comme ¢’ x —z* < g.
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