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Dualité : relations à la procédure du simplexe

Résoudre le primal par le simplexe donne la solution duale.

Supposons que le programme

min
x

cT x

t.q. Ax = b

x ≥ 0.

a la solution réalisable de base optimale x = (xB , 0), avec la base
correspondante à B.

Solution du dual

max
λ

λTb

t.q. λTA ≤ cT

en termes de B ?
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Relations à la procédure du simplexe

Supposons

A =
(
B D

)
, xB = B−1b, rTD = cTD − cTB B−1D.

Si x est optimal, rTD ≥ 0, et donc

cTB B−1D ≤ cTD .

Avec
λT = cTB B−1,

nous avons

λTA =
(
λTB λTD

)
=
(
cTB cTB B−1D

)
≤
(
cTB cTD

)
= cT .
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Relations à la procédure du simplexe

Dès lors,
λTA ≤ cT ,

i.e. λ est réalisable pour le dual.

De plus,
λTb = cTB B−1b = cTB xB

et donc la valeur de la fonction objectif duale pour ce λ est égale à
la valeur du problème primal. Dès lors λ est optimal pour le dual.
On retrouve le principal résultat du théorème de dualité.
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Relations à la procédure du simplexe

Théorème Si le programme linéaire (sous forme standard) a une
solution de base realisable optimale, correspondant à la base B, le
vecteur λ t.q. λT = cTB B−1 est une solution optimale du
programme dual correspondant. Les valeurs optimales des deux
programmes sont égales.
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Exemple

min
x
− x1 − 4x2 − 3x3

t.q. 2x1 + 2x2 + x3 ≤ 4

x1 + 2x2 + 2x3 ≤ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

 2 2 1 1 0 4
1 2 2 0 1 6
−1 −4 −3 0 0 0


puis  1 1 1

2
1
2 0 2

−1 0 1 −1 1 2
3 0 −1 2 0 8


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Exemple

Ensuite,  3
2 1 0 1 −1

2 1
−1 0 1 −1 1 2
2 0 0 1 1 10


On a

B =

(
2 1
2 2

)
B−1 =

(
1 −1

2
−1 1

)
La solution optimale est

x1 = 0, x2 = 1, x3 = 2.
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Exemple : dual

max
λ

4λ1 + 6λ2

t.q. 2λ1 + λ2 ≤ −1

2λ1 + 2λ2 ≤ −4

λ1 + 2λ2 ≤ −3

λ1 ≤ 0, λ2 ≤ 0.

La solution du dual s’obtient directement de la dernière ligne du
tableau du simplexe, sous les colonnes où apparâıt l’identité dans le
premier tableau (comme les coûts initiaux associés sont nuls) :

λT =
(
−1 −1

)
.
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Multiplicateurs du simplexe

À n’importe quelle itération du simplexe, nous pouvons former le
vecteur λT satisfaisant

λT = cTB B−1.

Ce vecteur n’est pas une solution du dual à moins que B ne soit
une base optimale pour le primal. Mais il peut être utilisé à chaque
itération pour calculer les coûts réduits, et il aura une
interprétation économique.

Pour cette raison, le vecteur λT = cTB B−1 est souvent appelé le
vecteur des multiplicateurs du simplexe.
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Interprétation économique

Comme d’ordinaire, dénotons les colonnes de A par a1, a2, . . . , an,
et par e1, e2, . . . , em les m vecteurs unités dans Em.

Étant donné une base B, consistant de m colonnes de A, n’importe
quel autre vecteur peut être construit comme combinaison linéaire
de ces vecteurs de base.

S’il y a un coût unité ci associé avec chaque vecteur de base ai , le
coût d’un vecteur construit y à partir de la base peut être calculé
comme le combinaison linéaire correspondante des c ′i s associés à la
base. L’expression de y à partir de la base est

B−1y

et le coût associé
cTB B−1y .
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Interprétation économique

En particulier, le coût du vecteur unité ej , quand reconstruit à
partir de la base B, est λj , la je composante de

λT = cTB B−1.

En effet,
λj = λT ej = cTB B−1ej .

Dès lors, les λ′js peuvent être interprétés comme les prix
synthétiques des vecteurs unités.

Comme

y =
m∑
j=1

yjej ,

nous avons comme coût pour y

cTB B−1y =
m∑
j=1

cTB B−1ejyj =
m∑
j=1

λjyj = λT y .
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Interprétation économique : optimalité

L’optimalité du primal correspond à la situation où chaque vecteur
a1, a2, . . . , an, est ”moins cher” quand construit à partir de la base
que quand acheté directement à son propre prix.

Dans ce cas, nous avons

λTai ≤ ci , i = 1, 2, . . . , n,

ou de manière équivalente

λTA ≤ cT .
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Sensibilité

Continuation de l’interprétation des variables duales comme prix.

Considérons le problème standard,

min
x

cT x

t.q. Ax = b

x ≥ 0

avec la base optimale B et la solution correspondante (xB , 0), où
xB = B−1b. Une solution correspondante du dual est

λT = cTB B−1.

Sous l’hypothèse de non-dégénérescence, de petits changements
dans b ne conduiront pas à un changement de base optimale.
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Sensibilité

Considérons un petit changement ∆b. Comme la base optimale n’a
pas changée, la nouvelle solution optimale est

x = (xB + ∆xB , 0),

où
∆xB = B−1∆b.

Le changement correspondant pour la fonction objectif est

∆z = cTB ∆xB = λT∆b.

Dès lors, λ mesure la sensibilité de la fonction objectif à un petit
changement dans le terme de droite des contraintes d’égalité : un
changement de b à b + ∆b conduit à un changement de la
fonction objectif de λTb,
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Sensibilité et multiplicateurs du simplexe

Puisque λj est le prix du vecteur unité ej quand exprimé à partir de
la base B, il mesure directement le changement dans le coût à
partir d’un changement dans la je composante du vecteur b. Cela
s’observe aussi depuis la relation précédente

∆z = cTB ∆xB = λT∆b.

Dès lors, λj peut être considére comme le prix marginal de bj ,
puisque modifier bj en bj + ∆bj conduit à un changement de la
valeur optimale de λj∆bj .
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Écarts de complémentarité

Théorème : écarts de complémentarite – forme asymétrique
Soit x et λ des solutions pour les programmes primal et dual, le
primal étant exprimé sous forme standard. Une condition
nécessaire et suffisante pour que x et λ soient tous deux solutions
optimales est que pour tout i

1 xi > 0⇒ λTai = ci
2 xi = 0⇐ λTai < ci
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Écarts de complémentarité : preuve du théorème

Sous les conditions énoncées,

(λTA− cT )x = 0.

Dès lors,
λTb = cT x ,

et par le corollaire du théorème de dualité faible, λ et x sont
solutions optimales de leur problème respectif.

De manière réciproque, si les solutions sont optimales, par le
théorème de dualité forte,

λTb = cT x ,

et donc
(λTA− cT )x = 0.

Comme x ≥ 0, λTA ≤ c , les conditions tiennent.
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Écarts de complémentarité

Théorème : écarts de complémentarite – forme symétrique
Soit x et λ des solutions pour les programmes primal et dual, le
primal étant exprimé avec les contraintes linéaires sous forme
Ax ≥ b. Une condition nécessaire et suffisante pour que x et λ
soient tous deux solutions optimales est que pour tout i

1 xi > 0⇒ λTai = ci
2 xi = 0⇐ λTai < ci
3 λj > 0⇒ ajx = bj
4 λj = 0⇐ ajx > bj

Démonstration.

Similaire au théorème précédent.
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Méthode du simplexe dual

Souvent, on peut obtenir une solution de base du problème linéaire
non réalise, mais associée à des multiplicateurs du simplexe qui
sont réalisables pour le problème dual.

Dans le tableau du simplexe, cette situation revient à ne pas avoir
d’éléments négatifs dans la dernière ligne, tout en ayant une
solution de base non réalisable.

Ceci arrive par exemple si on résoud un problème, puis on veut en
résoudre un nouveau après avoir changer b.

On va travailler sur le problème dual en partant du tableau primal.
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Méthode du simplexe dual : principes

En termes du primal :

maintenir l’optimalité de la dernière ligne ;

aller vers la réalisabilité.

En termes du primal :

maintenir la réalisabilité ;

aller vers l’optimalité.
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Méthode du simplexe dual

On considère le problème

min
x

cT x

t.q. Ax = b

x ≥ 0.

Supposons qu’une base B est connue, et soit

λT = cTB B−1.

On suppose λ réalisable pour le dual.

La solution xb = B−1b est dit dual-réalisable.

Si xB ≥ 0, cette solution est aussi primal-réalisable, et est par
conséquent optimale.
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Méthode du simplexe dual

Comme λ est réalisable pour le dual,

λTaj ≤ cj , j = 1, 2, . . . , n.

Si, comme d’ordinaire, nous supposons que B est constitué des m
premières colonnes de A, i.e.

B =
(
a1 a2 . . . am

)
,

nous avons

λTaj = cTB B−1aj = cTB ej = cj , j = 1, 2, . . . ,m.

où ej est le je vecteur unité.

En appliquant l’hypothèse de non-dégénérescence pour le dual,
nous avons aussi

λTaj < cj , j = m + 1,m + 2, . . . , n.
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Méthode du simplexe dual

Un cycle du simplexe, appliqué au dual, reviendra à échanger deux
composantes de λ, de manière à ce qu’une inégalité stricte
devienne une égalité, et vice-versa, tout en augmentant la valeur
du dual.

Les m égalités dans la nouvelle solution détermineront une nouvelle
base.

Soit ui la ie ligne de B−1, et

λ
T

= λT − εut .

Nous avons (avec ε ≥ 0)

λ
T
aj = λTaj − εuiaj .
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Méthode du simplexe dual

Rappelons la notation préalablement introduite

zj = cTB yj .

Dès lors,
λTaj = cTB B−1aj = zj .

Comme
uiaj = yij ,

nous avons

λ
T
aj = cj , j = 1, 2, . . . ,m, i 6= j ,

λ
T
ai = ci − ε,

λ
T
aj = zj − εyij , j = m + 1,m + 2, . . . , n.
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Méthode du simplexe dual

De plus,

λ
T
b = λTb − εuib = λTb − εxBi .

Comme
λTaj < cj , j = m + 1, . . . , n,

nous cherchons à augmenter le terme de gauche, ce qui revient à
considérer les situations où yij < 0 dans

λTaj = zj − εyij , j = m + 1,m + 2, . . . , n.

Nous cherchons à ramener la valeur à cj , sans la dépasser (sinon on
violerait les conditions de réalisabilité du dual), aussi nous prenons

ε0 = min
j

{
zj − cj
yij

t.q. yij < 0

}
.
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Algorithme du simplexe dual

Etape 1 Etant donnée une solution de base dual-réalisable xB , si
xB ≥ 0, la solution est optimale : arrêt. Sinon, sélectionner un
indice i tel que xBi < 0.

Etape 2 Si tous les yij ≥ 0, j = 1, 2, . . . , n, le dual n’a pas de
maximum. Sinon, calculer

ε0 = min
j

{
zj − cj
yij

t.q. yij < 0

}
.

Soit k l’indice correspondant (unique si l’hypothèse de
non-dégénérescence s’applique).

Etape 3 Former une nouvelle base B en remplaçant ai par ak . En
utilisant cette base, déterminer la solution de base dual-réalisable
xB correspondante.
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Simplexe dual : exemple

min
x

3x1 + 4x2 + 5x3

soumis à x1 + 2x2 + 3x3 ≥ 5

2x1 + 2x2 + x3 ≥ 6

x1, x2, x3 ≥ 0.

En introduisant des variables de surplus, nous obtenons

min
x

3x1 + 4x2 + 5x3

soumis à x1 + 2x2 + 3x3 − x4 = 5

2x1 + 2x2 + x3 − x5 = 6

x1, x2, x3, x4, x5 ≥ 0.
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Simplexe dual : exemple

Si nous changeons le signe des inégalités, nous obtenons

min
x

3x1 + 4x2 + 5x3

soumis à − x1 − 2x2 − 3x3 + x4 = −5

− 2x1 − 2x2 − x3 + x5 = −6

x1, x2, x3, x4, x5 ≥ 0.

conduisnat au tableau

x4 −1 −2 −3 1 0 −5
x5 −2 −2 −1 0 1 −6

3 4 5 0 0 0

La base (a4, a5) est dual-réalisable comme tous les coûts réduits
sont non-négatifs.
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Simplexe dual : exemple

Nous devons sélectionner une composante de xB qui sont
strictement négative pour la retirer de l’ensemble des variables de
base. Prenons par exemple x5 = −6.

Nous devons alors calculer les rapports

zj − cj
y2j

ou, en d’autres termes, les rapports entre l’opposé des coûts
reduits et les élements de la seconde ligne. Le plus petit rapport
(strictement) positif est obtenu avec l’élément y12 :

x4 −1 −2 −3 1 0 −5

x5 -2 −2 −1 0 1 −6

3 4 5 0 0 0
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Simplexe dual : exemple

Après le pivot, nous avons

x4 0 -1 −5
2 1 −1

2 −2

x1 1 0 1
2 0 −1

2 3
0 1 7

2 0 3
2 −9

puis
x2 0 1 5

2 −1 1
2 2

x1 1 0 −2 1 −1 1
0 0 1 1 1 −11

La solution (1, 2, 0) est optimale.
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Simplexe primal-dual

L’idée est de travailler simultanément sur le primal et le dual.

Principales idées :

trouver une solution réalisable pour le dual ;

l’améliorer à chaque étape en optimisant un problème primal
restreint associé ;

essayer de statisfaire les conditions d’écart de
complémentarité.

Il s’agit de la variante du simplexe la plus efficace pour les
problèmes de flots dans les réseaux.
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Simplexe primal-dual

Considérons à nouveau le primal

min
x

cT x

t.q. Ax = b

x ≥ 0.

et son dual

max
λ

λTb

t.q. λTA ≤ cT

Etant donné une solution réalisable λ pour le dual, définissons

P = {i |λTai = ci}.

Vu que λ est supposé réalisable, cela implique

λTai < ci , i /∈ P.
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Simplexe primal-dual

Correspondant à λ et P, nous définissons le problème primal
restreint associé

min
y

1T y

t.q. Ax + y = b

x ≥ 0, xi = 0 pour i /∈ P

y ≥ 0

où 1 designe the vecteur (1, 1, . . . , 1).

Le dual associé est appelé dual restreint associé

max
u

uTb

t.q. uTai ≤ 0, i ∈ P

u ≤ 1.
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Théorème d’optimalité primale-duale

Supposons que λ est réalisable pour le dual et que (x , y) est
réalisable pour le primal restreint associé, avec y = 0 (de sorte que
(x , y) est une solution optimal). Alors, x et λ sont optimaux pour
les programmes primal et dual originaux respectifs.

Démonstration.

x est clairement réalisable pour le primal : Ax = b. Nous avons
aussi, par définition de P, λTai = ci , si xi 6= 0, de sorte que

cT x = λTAx .

En combinant ces deux observations, nous avons

cT x = λTb,

impliquant l’optimalité de x et λ.
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Algorithme primal-dual

Etape 1 Etant donné une solution réalisable λ0 pour le dual,
déterminer le primal restreint associé.

Etape 2 Optimiser le primal restreint associé. Si la valeur optimale
de ce primal restreint associé (impliquant y = 0), la solution
correspondante est optimale pour le primal original, en vertu du
théorème d’optimalité primale-duale ; arrêt.

Etape 3 Si la valeur optimale du primal restreint associé est
strictement positive (i.e. if y 6= 0), la solution optimale de ce
primal restreint associé n’est pas réalisable pour le primal, et on
cherche à améliorer la solution réalisable du dual avant de
déterminer un nouveau primal restreint associé.
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Algorithme primal-dual

Etape 3 (suite) Obtenir du tableau du simplexe du primal
restreint la solution u0 du dual restreint associé. S’il n’y a pas de j
pour lequel uT0 aj > 0, le primal n’a pas de solution réalisable ;
arrêt. Sinon, construire le nouveau vecteur dual réalisable

λ = λ0 + ε0u0,

où

ε0 = min
j

{
cj − λT0 aj

uT0 aj

∣∣∣∣ uT0 aj > 0

}
.

Retour à l’étape 1, en utilisant ce λ.
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Algorithme primal-dual : preuve

Dans l’étape 3, il est indiqué que uT0 aj ≤ 0 pour tout j implique
que le primal n’a pas de solution réalisable.

Si uT0 aj ≤ 0 pour tout j , le vecteur

λε = λ0 + εu0

est réalisable pour le problème dual pour toute valeur positive de ε,
comme

λTε A = λT0 A + εuT0 A ≤ cT .

De plus, comme
uT0 b = 1T y > 0,

nous voyons que la quantité

λTε b = λT0 b + εuT0 b,

est non bornée, lorsque nous augmentons ε. Du théoreme de
dualité forte, le primal n’est pas réalisable.
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Algorithme primal-dual : preuve

Supposons à présent que pour au moins un j , uT0 aj > 0.

A nouveau, définissons

λε = λ0 + εu0

Par construction,
uT0 ai ≤ 0, ∀i ∈ P.

Pour un ε positif assez petit, λε est réalisable pour le dual, et nous
pouvons augmenter ε jusqu’à transformer une des inégalités

λTε aj < cj , j /∈ P

en égalité. Ceci détermine ε0 et un indice k correspondant.
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Algorithme primal-dual : preuve

Le nouveau vecteur λ correspond à une valeur accrue de la
fonction objectif duale :

λTb = λT0 b + εuT0 b.

De plus, le nouvel ensemble correspondant P inclut l’ndice k .

Pour tout autre indice i t.q. xi > 0 est dans p aussi, comme en
vertu de l’écart de complémentarité,

uT0 ai = 0,

pour un tel i , et dès lors

λTai = λT0 ai + ε0u
T
0 ai = ci .
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