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Solutions de base

min
x

cTx

s.c. Ax = b,
x ≥ 0.

Supposons m ≤ n et rang(A) = m. Sans perte de généralité,
supposons les m premières colonnes de A indépendantes, et
formons

A =
(
B D

)
Solution de base: x = (xb 0), avec Bxb = b.
Solution de base dégénérée: si xb contient des composantes nulles.

Solution de base réalisable: solution de base telle que Ax = b et
x ≥ 0.
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Théorème fondamental de la programmation linéaire

Soit un PL sous forme standard, avec A de dimension m × n et de
rang plein (i.e. rang(A) = m.

S’il y a une solution réalisable, alors il y a une solution de base
réalisable.
S’il y a une solution réalisable optimale, alors il y a une
solution de base réalisable optimale.

Preuve.

Réalisabilité. Ecrivons

A =


...

...
...

a1 a2 · · · an
...

...
...


et

x = (x1, x2, · · · , xn)
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Théorème fondamental de la PL: réalisabilité

Si x est réalisable, alors

x1a1 + x2a2 + . . .+ xnan = b.

Supposons qu’il y a exactement p composantes > 0. S.p.d.g.,
supposons qu’il s’agit des p premières composante: x1, . . . , xp.
Alors, nous avons

x1a1 + x2a2 + . . .+ xpap = b.

Cas 1: a1,. . . ,ap linéairement indépendants.
Dès lors, p ≤ m. Si p = m, la preuve est complète. Supposons
donc p < m. Comme A est de rang plein, on peut choisir m − p
vecteurs (colonnes de A) à partir des n − p vecteurs restants pour
former un ensemble de m vecteurs linéairement indépendants. En
affectant la valeur 0 aux m − p variables correspondantes, on
obtient une solution de base réalisable (dégénérée).
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Théorème fondamental de la PL: réalisabilité

Cas 2: a1, . . . , ap linéairement dépendants.
Dès lors, pour un certain y = (y1, y2, . . . , yp, 0, . . . , 0) (∈ Rn),
avec au moins un yi > 0,

y1a1 + y2a2 + . . . ypap = 0.

Dès lors, pour un ε quelconque,

(x1 − εy1)a1 + (x2 − εy2)a2 + . . . (xp − εyp)ap = b.

Autrement dit,
A(x − εy) = b.

Pour ε > 0, et croissant, les composantes de x − εy augmentent,
diminuent, ou restent constantes, suivant que yi est négatif, positif
ou nul.
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Théorème fondamental de la PL: réalisabilité

Prenons
ε = min{xi/yi | yi > 0}.

Soit j l’indice permettant d’atteindre ce minimum. Alors

xj − εyj = 0,

et donc x − εy a au plus p − 1 variables positives. En répétant ce
processus si nécessaire, on peut éliminer des variables positives
jusqu’à obtenir une solution réalisable avec des colonnes
correspondantes qui sont linéairement indépendantes. Le cas 1
s’applique alors.
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Théorème fondamental de la PL: optimalité

Soit x = (x1, x2, . . . , xn) une solution optimale réalisable, et
comme précédemment, supposons qu’il y a exactement p variables
positives x1, x2, . . . , xp.

On peut distinguer à nouveau deux cas.

Le cas 1, correspondant à l’indépendance linéaire, se traite comme
pour la question de réalisabilité.

Le cas 2 procède également de manière similaire à la réalisabilité, à
ceci près que nous devons montrer que pour n’importe quel ε, la
solution x − εy est optimale.
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Théorème fondamental de la PL: optimalité

La fonction objectif prend alors comme valeur

cTx − εcTy .

Pour ε suffisamment proche de 0, qu’il soit positif ou négatif,
x − εy est réalisable (on ne change pas le signe des composants).

Dès lors, cTy = 0. En effet, si cTy 6= 0, un ε suffisamment petit
et de signe adéquat conduirait à réduire la valeur de la fonction
objectif, tout en maintenant la réalisabilité. Dès lors, x ne serait
pas optimal.

On peut alors appliquer le procédé du cas 2 sur la réalisabilité,
pour diminuer le nombre de composantes non-nulles de la solution,
tout en maintenant l’optimalité, puis en se ramenant au cas 1.
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Conséquences du théorème

On peut résoudre un PL en énumérant les solutions de base
réalisables. Problème: il peut y en avoir beaucoup. Pour n
variables et m contraintes, nous pouvons avoir jusqu’à(

n
m

)
=

n!

m!(n −m)!

solutions de base.
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Exemple

Considérons le programme

max 2x + 3y

t.q. x ≥ 1

2x + 3y ≤ 5

x ≥ 0, y ≥ 0.

On voit immédiatement que la valeur optimale est 5 (pourquoi?).

Sous forme standard, nous obtenons

−min − 2x − 3y

t.q. x − u = 1

2x + 3y + s = 5

x ≥ 0, y ≥ 0, s ≥ 0, u ≥ 0.
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Exemple

Graphiquement:

x

y

0 1 2 3
0

1

5 = 2x + 3y
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Relations à la convexité

But: faire le lien entre solutions de base réalisables et points
extrêmes d’un polytope.

Un point x d’un ensemble convexe C est un point extrême de C
s’il n’existe pas deux points distincts x1 et x2 dans C tels que
x = αx1 + (1− α)x2 pour un certain α, 0 < α < 1.

Polyèdre P = {x |Ax ≤ b}.

Polytope: polyèdre borné non vide.

(Voir Annexe B de Luenberger et Ye pour plus de détails).
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Convexité

Un ensemble C dans En est dit convexe si pour tout x1, x2 ∈ C ,
et pour n’importe quel réel α tel que 0 < α < 1, le point
αx1 + (1− α)x2 ∈ C .

Géométriquement, cela revient à dire que chaque point du segment
joignant deux points quelconques d’un ensemble convexe est aussi
dans cet ensemble.
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Convexité: propriétés

1 Si C est en ensemble convexe et β un nombre réel, l’ensemble

βC = {x | x = βc , c ∈ C},

est convexe.

2 Si C et D sont deux ensembles convexes, l’ensemble

C + D = {x | x = c + d , c ∈ C , d ∈ D},

est convexe.

3 L’intersection de n’importe quelle collection d’ensembles
convexes est convexe.
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Equivalence des points extrêmes et des solutions de base

Soit A une matrice m × n de rang m et b un vecteur de dimension
m. Soit K le polytope convexe consitué de l’ensemble des vecteurs
x de dimension n satisfaisant

Ax = b
x ≥ 0.

Un vecteur x est un point extrême de K si et seulement si x est
une solution de base réalisable pour le système précédent.

Preuve
· Supposons tout d’abord que x = (x1, x2, . . . , xn) est une solution
de base réalisable. S.p.d.g.,

x1a1 + x2a2 + . . .+ xmam = b,

où a1, a2, . . . , am sont les m premières colonnes de A, linéairement
indépendantes.
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Equivalence des points extrêmes et des solutions de base

Supposons par l’absurde que x n’est pas un point extrême. Il est
alors combinaison convexe de deux autres points de K :

∃ y , z ∈ K , y 6= z , α ∈ (0, 1) tels que x = αy + (1− α)z .

Comme x ≥ 0, y ≥ 0, z ≥ 0, les n −m dernières composantes de
y et z sont nulles.

Par définition de K , on a aussi

y1a1 + y2a2 + . . .+ ymam = b, z1a1 + z2a2 + . . .+ zmam = b,

Comme a1, a2, . . . , am linéairement indépendantes,

x = y = z .
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Equivalence des points extrêmes et des solutions de base

· Supposons à présent que x est un point extreme de K , et s.p.d.g.
que les composantes non-nulles de x sont les k premières
composantes. Dès lors:

x1a1 + x2a2 + . . .+ xkak = b,

avec xi > 0, i = 1, . . . , k .

Pour montrer que x est une solution de base, nous devons montrer
que a1, a2, . . . , ak sont linéairement indépendants. Supposons par
l’absurde que ce n’est pas le cas. Alors, il existe
y = (y1, y2, . . . , yk , 0 . . . , 0) tel que

y1a1 + y2a2 + . . .+ ykak = 0,
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Equivalence des points extrêmes et des solutions de base

On peut prendre ε 6= 0 suffisamment petit pour avoir

x + εy ≥ 0,

x − εy ≥ 0,

et

x =
1

2
(x + εy) +

1

2
(x − εy).

Clairement,
A(x + εy) = A(x − εy) = b,

aussi x + εy , x − εy ∈ K .

Dès lors, x peut être exprimé comme combinaison convexe de deux
points distincts de K , et donc n’est pas un point extrême.

Ceci implique qu’on doit avoir a1, . . . , ak linéairement
indépendants, et de là, k ≤ m. x est dès lors solution de base.
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Corollaires

Corollaire 1 Si l’ensemble convexe K est non vide, il y a au moins
un point extrême.

Corollaire 2 S’il existe une solution optimale finie à un problème
de programmation linéaire, il existe une solution optimale finie qui
est un point extrême de l’ensemble de contraintes.

Corollaire 3 L’ensemble de contraintes K possède un nombre fini
de points extrêmes.
Preuve. L’ensemble des points extrêmes de K est un sous-ensemble
des solutions de base, qui sont en nombre fini (il y a un nombre fini
de sélections possible de m colonnes de A parmi n colonnes).

Corollaire 4 Si le polytope convexe K est borné, alors K est un
polyhèdre convexe, i.e. K consiste de points qui sont combinaisons
convexes d’un nombre fini de points.
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