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Stratégies de solution en points intérieurs

Trois grandes approches, suivant les différences dans les définitions
du chemin central :

1 barrière primale, méthode de poursuite de chemin,

2 méthode primale-duale de poursuite de chemin,

3 méthode primale-duale de réduction de potentiel.

Caractéristiques
R-P R-D Saut nul

simplexe primal X X
simplexe dual X X

barrière primale X
poursuite de chemin primale-duale X X

réduction de potentiel primale-duale X X
R : réalisabilité
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Méthode primale barrière

Nous partons du problème primal barrière

min
x

cT x − µ
n∑

j=1

log xj

s.à. Ax = b

x ≥ 0.

Nous voudrions le résoudre pour µ petit.

Par exemple, µ = ε/n permet d’obtenir un saut de dualité inférieur
à ε.

Souci : difficile de résoudre pour µ proche de 0.
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Méthode primale barrière

Une stratégie générale est de commencer avec µ modérément large
(p.e. µ = 100) et de résoudre le problème approximativement.

La solution correspondante est approximativement sur le chemin
central primal, mais probablement assez loin du point
correspondant à µ→ 0.

Ce point ne servira que de point de départ pour le problème avec
un µ plus petit.

Typiquement, on mettra à jour µ de l’itération k à l’itération k + 1
comme

µk+1 = γµk ,

pour 0 < γ < 1 fixé.
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Méthode primale barrière

Si on commence avec une valeur µ0, à l’itération k ,

µk = γµk0 ,

Dès, réduire µk/µ0 sous ε requiert

k =

⌈
log ε

log γ

⌉
.

Souvent, une variante de la méthode de Newton est utilisée pour
résoudre les sous-problèmes ainsi construits :

x ◦ s = µ1

Ax = b

ATy + s = c
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Méthode de Newton

Part du développement de Taylor (d’ordre 2) :

f (x + s) ≈ f (x) + sT∇x f (x) +
1

2
sT∇xx f (x)s.

pour s assez petit.

Si on se limite à l’ordre 1 et une variable,

f (x + s) ≈ f (x) + sf ′(x)

On cherche f (x + s) = 0. Cela suggère

0 ≈ f (x) + sf ′(x)

ou encore,

s = − f (x)

f ′(x)
.
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Méthode de Newton

En appliquant l’idée itérativement, avec s = xk+1 − xk , on obtient

xk+1 = xk −
f (xk)

f ′(xk)
.

On peut montrer que la méthode converge si on est suffisamment
proche du zéro de la fonction.

Le principe se généralise pour un système de n équations à n
inconnues en prenant f : Rn → Rn, avec

f (x) =


f1(x)
f2(x)

...
fn(x)


où chaque fi (·) est fonction de Rn dans R.
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Méthode de Newton

Récurrence en dimension > 1 :

xk+1 = xk − J−1(xk)f (xk).

où J−1(xk) est le Jacobien de f :

J−1(x) =


∇T

x f1(x)
∇T

x f2(x)
...

∇T
x fn(x)


On peut appliquer le principe au système des conditions
d’optimalité (mais on ne donnera pas tous les détails techniques).
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Méthode primale barrière

Etant donné un point x ∈ F̊P , la méthode de Newton consistera à
chercher des direction dx , dy et ds à partir du système

µX−2dx + ds = µX−11− c

Adx = 0

−ATdy + ds = 0

On construit le nouveau point comme

x+ = x + dx .

Si x ◦ s = µ1 pour un certain s = c− ATy, alors
d ≡ (dx ,dy ,ds) = 0.
Si une composante de x ◦ s est plus petite que µ, l’approche
tendera à augmenter cette composante, et inversément si la
composante est plus grande que µ.
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Méthode primale barrière

La méthode marche relativement bien si µ est modérément grand,
ou si l’algorithme est démarré avec un point proche de la la
solution.

Pour trouver (dx ,dy ,ds), prémultiplions les deux côtés de la
première égalité du système de Newton par X2 :

µdx + X2ds = µX1− X2c.

En prémultipliant par A et en utilisant Adx = 0, nous avons

AX2ds = µAX1− AX2c.

Comme ds = ATdy , nous avons

AX2ATdy = µAX1− AX2c.

On en tire dy , et de là, ds puis dx .
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