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Vitesse de convergence du simplexe

On sait que la procédure du simplexe converge vers une solution
optimale (en supposant qu’au moins une telle solution existe) en
un nombre fini d’étapes. Il n’est reste pas moins que ce nombre
d’étapes peut être grand.

Soit n le nombre de variables et m le nombre de contraintes
linéaires, avec m ≤ n. Il peut y avoir jusqu’à n!/(m!(n −m)! bases
à considérer.

Peut-il arriver que le simplexe examine toutes les bases possibles ?
La réponse est malheureusement oui.

En général, le simplexe est une méthode rapide. Mais pour une
instance donnée, nous n’avons aucune garantie.
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Eléments de la théorie de complexité

Complexité : quantité de ressources requises par un calcul.

But : associer à un algorithme des mesures intrinsèques de ses
exigences en temps de calcul. Grosso-modo, pour ce faire, nous
avons besoin de définir

une notion de la taille des entrées ;

un ensemble d’opérations de base ;

un coût pour chaque opération de base.

Si x est une entrée donnée, le coût de calcul C (x) avec l’entrée x
est la somme des coûts de toutes les opérations de base utilisées au
cours de ce calcul.
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Eléments de la théorie de complexité

Soit A un algorithme et Jn l’ensemble de toutes les entrées de
taille n. La fonction de coût de pire cas de A est définie par

Tw
A (n) = sup

x∈Jn
C (x).

S’il existe une structure de probabilités définie sur Jn, il est
possible de définir le coût moyen comme

T a
A(n) = Ex∈Jn [C (x)].

où Ex∈Jn est l’espérance sur Jn.

Ce coût moyen est douvent plus difficile à obtenir.
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Eléments de la théorie de complexité

Comment sélection les trois types d’objet définis plus haut pour
l’analyse ?

Pour les algorithmes que nous considérons ici, le choix évident est
l’ensemble des quatre opérations algorithmiques de base :
+, −, ×, /.

Sélectionner une notion de taille d’entrée et de coût pour les
opérations de base dépend du type de données traitées par
l’algorithme. Certains type peuvent être représentés à l’intérieur
d’une quantité fixée de mémoire informatique, tandis que d’autres
nécessitent une mémoire variable.
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Eléments de la théorie de complexité

Un concept de base est celui de temps polynomial.

Un algorithme A est dit algorithme en temps polynomial si Tw
A (n)

est bornée supérieurement par un polynôme.

Un problème peut être résolu en temps polynomial s’il existe un
algorithme en temps polynomial résolvant le problème.

La notion de temps moyen polynomial est définie similairement, en
remplaçant Tw

A (n) par T a
A(n).

La notion de temps polynomial est généralement prise comme la
formalisation de l’efficacité en théorie de la complexité.
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La méthode du simplexe n’est pas en temps polynomial

Soit A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Le nombre d’étapes de pivots est typiquement un petit multiple de
n. Toutefois, le nombre d’itérations requises peut être
exponentielle.

Une forme de l’exemple de Klee-Minty est

max
x

n∑
j=1

10n−jxj

s.c. 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1, i = 1, . . . , n

xj ≥ 0, j = 1, . . . , n.
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Exemple de Klee-Minty

Considérons le cas n = 3.

max
x

100x1 + 10x2 + x3

x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Sous forme standard, cela donne m = 3, n = 6 comme nous
devons ajouter 3 variables d’écart. On peut montrer que 7 pivots
sont nécessaires.
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Exemple de Klee-Minty

Sous la forme générale, cela donne 2n − 1 pivots.

Pour n = 50, cela donne 250 − 1 ≈ 1015. Si on était capable de
réaliser un millions de pivots par seconde, il faudrait aux environs
de 33 ans pour résoudre le problème.
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Méthodes de points intérieurs : complémentarité

(Vanderbei) Pourquoi les problèmes linéaires sont-ils difficile ? En
raison de la complémentarité !

Reprenons la paire primale-duale

min
x

cT x

s.c. Ax = b

x ≥ 0,

max
λ

bTλ

s.c. ATλ+ t = c .

t ≥ 0

Nous avions obtenu

tixi = 0, i = 1, . . . , n.
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Méthodes de points intérieurs : complémentarité

On peut aussi le voir sur la forme symétrique :

min
x

cT x

s.c. Ax − u = b

x ≥ 0, u ≥ 0.

max
λ

bTλ

s.c. ATλ+ t = c .

λ ≥ 0, t ≥ 0.

Dans ce cas, nous avons

tixi = 0, i = 1, . . . , n λjuj = 0, j = 1, . . . ,m.
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Notation matricielle

On ne peut écrire tx = 0, comme le produit tx est indéfini.

Réécriture :

x =


x1
x2
x3
...

xn

⇒


x1
x2

x3
. . .

xn


Les conditions de complémentarité peuvent alors être réécrites
comme

XTe = 0, UΛe = 0.
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Conditions d’optimalité

Ax − u = b

ATλ+ t = c

XTe = 0

UΛe = 0.x , λ, t, u ≥ 0.

Ignorons (temporairement) les contraintes de non-négativité.

Nous avons 2n + 2m équations, à 2n + 2m inconnues.

Soucis : le système n’est pas linéaire. La non-linéarité des
conditions de complémentarité rend le problème de programmation
linéaire fondamentalement plus difficile que la résolution d’un
système d’équations linéaires.
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Conditions d’optimalité : µ-complémentarité

En plus d’ignorer les contraintes de non-négativité, on va relâcher
les contraintes de complémentarité en utilisant un paramètre
µ > 0 :

Ax − u = b

ATλ+ t = c

XTe = µe

UΛe = µe.

Les paires de variables primales duales contiennent deux variables
de même et fixer la valeur d’une variable fixe la seconde (alors
qu’une valeur nulle laisse l’autre variable indéterminée).
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Direction de recherche

Débuter avec une solution initiale positive (x , λ, u, t).

On va introduire des directions de recherche

∆x , ∆λ, ∆u, ∆t,

et on réécrit les équations précédentes avec

x + ∆x , λ+ ∆λ, u + ∆u, t + ∆t,

Cela donne

A(x + ∆x)− (u + ∆u) = b

AT (λ+ ∆λ) + (t + ∆t) = c

(X + ∆X )(T + ∆T )e = µe

(U + ∆U)(Λ + ∆Λ)e = µe.
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Direction de recherche

On rearrange avec les variables “∆” à gauche, les autres termes à
droite, et on “jette” les termes non-linéaires :

A∆x −∆u = b − Ax + u

AT∆λ+ ∆t = c − ATλ− t

T ∆X + X ∆T = µe − TXe

U∆Λ + Λ∆U = µe − UΛe.

C’est un système linéaire de 2m + 2n équations à 2m + 2n
inconnues, que nous pouvons résoudre, pour définir

x ← x + α∆x

λ← λ+ α∆λ

u ← u + α∆u

t ← t + α∆u

α est un paramètre qui sert à maintenir x , λ, t, u, t positifs.
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Forcer la convergence

Prendre une plus petite value de µ pour la prochaine itération.

Répéter à partir du début, jusqu’à ce que la solution courante
satisfaite, avec une certaine tolérance, les conditions d’optimalité
suivantes ;

Réalisabilité primale : b − Ax + u = 0 ;

Réalisabilité duale : c − ATλ− t = 0 ;

Ecart de dualité : bTλ− cT x = 0.

Fabian Bastin IFT2505



Forcer la convergence

Theorem

La non-réalisabilité primale devient plus petite d’un facteur
1− α à chaque itération.

La non-réalisabilité duale devient plus petite d’un facteur
1− α à chaque itération.

Si le primal et le dual sont réalisable, l’écart de dualité
diminue d’un facteur 1− α à chaque itération (si µ = 0, et
une convergence légèrement plus lente si µ > 0).

Pas si simple !

L’algorithme travaille itérativement, en calcul un pas à chaque
itération, mais comment est-mis à jour le paramètre α ? Comment
choisir et mettre à jour mu ?
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