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Forme matricielle de la méthode du simplexe

Utile pour mieux comprendre, et construire des variantes.

Soit
A = [B D]

où nous supposons que B est une base, et décomposons x et c de
manière similaire:

x = (xB, xD), c = (cB, cD).

Le programme linéaire standard devient

min
x

z = cTBxB + cTDxD

t.q. BxB + DxD = b

xB ≥ 0, xD ≥ 0.
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Forme matricielle de la méthode du simplexe

La solution de base associée, que nous supposons également
réalisable, devient

x = (xB, 0), xB = B−1b.

Dès lors,
xD = 0.

Plus généralement,

xB = B−1b− B−1DxD.

et

z = cTB
(
B−1b− B−1DxD

)
+ cTDxD

= cTBB
−1b +

(
cTD − cTBB

−1D
)
xD.
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Forme matricielle de la méthode du simplexe

Ceci permet s’exprimer n’importe quelle solution en termes de xD.
Dès lors,

rTD = cTD − cTBB
−1D

est le vecteur des coûts réduits.

En d’autres termes,(
A b
cT 0

)
=

(
B D b
cTB cTD 0

)

Forme canonique: on multiplie la partie supérieure par B−1 et on
récupère l’expression de l’objectif en termes de coûts réduits pour
la partie inférieure:(

I B−1D B−1b
0 cTD − cTBB

−1D −cTBB
−1b

)
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Méthode du simplexe révisée

Converge souvent en O(m).

La méthode revisée ordonne les calculs afin d’éviter les opérations
inutiles, en particulier pour les variables non concernées par les
pivotages.

Soit B−1 l’inverse de la base actuelle, et la solution actuelle

xB = y0 = B−1b.

Etape 1 Calculer les coefficients de coûts réduits actuels

rTD = cTD − cTBB
−1D

On calcule d’abord
λT = cTBB

−1

puis
rTD = cTD − λTD.
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Méthode du simplexe révisée

Etape 2 Déterminer le vecteur aq qui va entrer dans la base en
sélectionnant le coût réduit le plus négatif, et calculer

yq = B−1aq,

donnant l’expression de aq en termes de la base actuelle.

Etape 3 Si aucun yiq n’est > 0, arrêt: le problème n’est pas borné.
Sinon, calculer les rapports yi0/yiq pour yiq > 0 pour déterminer le
vecteur qui va quitter la base.

Etape 4 Mettre à jour B−1 et la solution actuelle B−1b. Retour à
l’étape 1.
La mise à jour de B−1 se fait en effectuant l’opération classique de
pivotage, constituée de B−1 et yq, où le pivot est l’élément

approprié dans yq. On en profite pour mettre à jour B−1b.
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Exemple

max
x

3x1 + x2 + 3x3

t.q. 2x1 + x2 + x3 ≤ 2

x1 + 2x2 + 3x3 ≤ 5

2x1 + 2x2 + x3 ≤ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Après ajout des variables d’écarts:

max
x

3x1 + x2 + 3x3

t.q. 2x1 + x2 + x3 + x4 = 2

x1 + 2x2 + 3x3 + x5 = 5

2x1 + 2x2 + x3 + x6 = 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Fabian Bastin IFT2505



Exemple

Tableau:
a1 a2 a3 a4 a5 a6 b
2 1 1 1 0 0 2
1 2 3 0 1 0 5
2 2 1 0 0 1 6

cT −3 −1 −3 0 0 0 0

On se limite à
Var xB
x4 1 0 0 2
x5 0 1 0 5
x6 0 0 1 6

Nous avons

λT = cTBB
−1 =

(
0 0 0

)
B−1 =

(
0 0 0

)
et

rTD = cTD − λTD =
(
−3 −1 −3

)
.
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Exemple

On fait entrer a2 (violant la règle du coût le plus négatif)

Var xB y2
x4 1 0 0 2 1
x5 0 1 0 5 2
x6 0 0 1 6 2

Var xB
x2 1 0 0 2
x5 −2 1 0 1
x6 −2 0 1 2

Nous avons

B−1 =

 1 0 0
−2 1 0
−2 0 1


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Exemple

Nous avons également

cTB =
(
−1 0 0

)
,

et dès lors

λT = cTBB
−1

=
(
−1 0 0

) 1 0 0
−2 1 0
−2 0 1

 =
(
−1 0 0

)
Les coûts reduits se calculent de manière similaire

(
−3 −3 0

)
−
(
−1 0 0

)2 1 1
1 3 0
2 1 0

 =
(
−1 −2 1

)
En d’autres termes,

r1 = −1, r3 = −2, r4 = 1.
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Exemple

y3 =

 1 0 0
−2 1 0
−2 0 1

1
3
1

 =

 1
1
−1


Le variable entrante retenue est x3, et on construit le tableau

Var xB y3
x2 1 0 0 2 1

x5 −2 1 0 1 1
x6 −2 0 1 2 −1

Après le pivot:
Var xB
x2 3 −1 0 1
x3 −2 1 0 1
x6 −4 1 1 3
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Exemple

λT =
(
−1 −3 0

) 3 −1 0
−2 1 0
−4 1 1

 =
(
3 −2 0

)

rTD =
(
−3 0 0

)
−
(
3 −2 0

)2 1 0
1 0 1
2 0 0


=
(
−3 0 0

)
−
(
4 3 −2

)
=
(
−7 −3 2

)
On fait entrer a1.

y1 =

 3 −1 0
−2 1 0
−4 1 1

2
1
2

 =

 5
−3
−5


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Exemple

Var xB y1
x2 3 −1 0 1 5
x3 −2 1 0 1 −3
x6 −4 1 1 3 −5

x1
3
5 −1

5 0 1
5

x3 −1
5

2
5 0 8

5
x6 −1 0 1 4

λT =
(
−3 −3 0

)
B−1 =

(
−6

5 −3
5 0

)
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Exemple

rTD =
(
−1 0 0

)
−
(
−6

5 −3
5 0

)1 1 0
2 0 1
2 0 0


=
(
−1 0 0

)
−
(
−12

5 −6
5 −3

5

)
=
(
7
5

6
5

3
5

)
x = (1/5, 0, 8/5, 0, 0, 4) est une solution optimale.
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Simplexe et décomposition LU

B−1 n’apparâıt que dans la résolution de systèmes linéaires. Mais
dans ce contexte, on ne calcule jamais B−1 pour des raisons de
stabilité numérique.

Reformulons le simplexe pour faire apparâıtre les termes linéaires.

Etape 1
xB = y0,

avec
By0 = b.
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Simplexe et décomposition LU

Etape 2 Résoudre
λTB = cTB ,

et
rTD = cTD − λTD.

Si rD ≥ 0, stop: la solution actuelle est optimale.

Etape 3 Déterminer le vecteur aq qui va entrer la base en
sélectionnant le coefficient de coût réduit le plus négatif, et
résoudre

Byq = aq.

Etape 4 Si aucun yiq > 0, stop: le problème est non borné. Sinon,
calculer les rapports yi0/yiq pour yiq > 0, et sélectionner le rapport
le plus négatif pour déterminer quel vecteur sortira de la base.
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Simplexe et décomposition LU

Etape 5 Mise à jour de B. Retour à l’étape 1.

Cette manière de formuler le simplexe offre

1 une meilleure stabilité numérique,

2 des avantages de stockage mémoire (par exemple, si B est
une matrice creuse, B−1 peut être pleine).

On décompose B comme

B = L.U

où

L est une matrice triangulaire inférieure,

U est une matrice triangulaire supérieure.
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Simplexe et décomposition

Alors

Bx = b,

⇔ LUx = b

⇔ Ly = b, y = Ux

Résoudre un système triangulaire est immédiat!

a11
a21 a22
a31 a32 a33

x1
x2
x3

 =

b1
b2
b3


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Résolution de système triangulaire

x1 = b1/a11

x2 = (b2 − a21x1)/a22

x3 = (b3 − a31x1 − a32x2)/a33

Conditions: aii 6= 0, ∀ i .

Note: on ne suppose aucun échange de ligne (parfois opéré pour
préserver la précision et le caractère creux).

Mise à jour:

B =


...

...
a1 · · · am
...

...


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Résolution de système triangulaire

Nouvelle base

B =


...

...
...

...
...

...
a1 a2 · · · ak−1 ak+1 · · · am aq
...

...
...

...
...

...


Alors

L−1B =


...

...
...

...
...

L−1a1 · · · L−1ak−1 L−1ak+1 · · · L−1am L−1aq
...

...
...

...
...


=
(
u1 . . . uk−1 uk+1 . . . um L−1aq

)
= H.
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Résolution de système triangulaire

En effet

B = LU

⇔
(
a1 . . . am

)
= L

(
u1 . . . um

)
⇔ L−1

(
a1 . . . am

)
=
(
u1 . . . um

)
H a la forme 

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×


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Résolution de système triangulaire

L−1aq est un sous-produit du calcul de yq, aussi c’est ”gratuit”.

H peut être ramené à une forme triangulaire supérieure grâce à
une série d’éliminations de Gauss.

U = Mm−1Mm−2 . . .MkH

où Mi a la forme

Mi =



1
1

. . .

1
mi 1

. . .

1


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Résolution de système triangulaire

B = LU

avec
L = LM−1

k . . .M−1
m−1.

M−1
i =



1
1

. . .

1
−mi 1

. . .

1


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