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Problèmes de transport

Beaucoup de problèmes linéaires présentent certaines structures qui
simplifient grandement leur résolution.

Supposons que nous avons m origines contenant certains quantités
d’une marchandise qui doit etre transportée à n destinations pour
satisfaires certaines demandes :

origine i : contient la quantité ai ;

destination j : présente une demande bj .

Nous supposons le problème équilibré, i.e. l’offre totale est égale à
la demande totale :

m∑
i=1

ai =
n∑

j=1

bj .
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Formulation

Les nombres ai et bj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, sont
supposés non-négatifs, et de plus, souvent entiers.

cij : coût de transport d’une unité de marchandise de l’origine i à
la destination j .

On veut déterminer les quantitiés à transporter pour chaque paire
(i , j).

Fabian Bastin IFT2505



Formulation

Programme mathématique :

min
x

m∑
i=1

n∑
j=1

cijxij

s.à.
n∑

j=1

xij = ai , i = 1, 2, . . . ,m

m∑
i=1

xij = bj , j = 1, 2, . . . , n

xij ≥ 0, ∀ i , j .

Fabian Bastin IFT2505



Formulation

Réécrivons les contraintes d’égalité :

x11 + . . .+ x1n = a1
x21 + . . .+ x2n = a2

...
xm1 + . . .+ xmn = am

x11 +x21 +xm1 = b1

x12 +x22 +xm2 = b2
...

x1n +x2n +xmn = bn
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Formulation

En d’autres termes, la matrice A a la structure

A =


1T

1T

...

1T

I I . . . I


où I est la matrice identité (n × n).

Notation plus compacte :

a = (a1, a2, . . . , am)
b = (b1, b2, . . . , an)

C =


c11 c12 . . . c1n
c21 c22 . . . c2n

...
...

. . .
...

cm1 cm2 . . . cmn


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Exemple

a = (30, 80, 10, 60)
b = (10, 50, 20, 80, 20)

C =


3 4 6 8 9
2 2 4 5 5
2 2 2 3 2
3 3 2 4 2


La somme de l’offre, ainsi que de la demande, est 180.
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Réalisabilité et optimalité

Première étape : montrer que le problème est réalisable.

Soit S la demande totale (et donc, l’offre totale).

x0
ij =

aibj

S
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

est réalisable :

n∑
j=1

x0
ij =

n∑
j=1

aibj

S
= ai

m∑
i=1

x0
ij =

m∑
i=1

aibj

S
= bj

De plus, xij est bornée par ai (et bj). Un programme avec un
ensemble réalisable et borné a toujours une solution optimale. Dès
lors, un problème de transport a toujours une solution optimale.

Fabian Bastin IFT2505



Redondance

Nous avons un ensemble de m + n contraintes linéaires. Toutefois,

m∑
i=1

n∑
j=1

xij =
m∑
i=1

ai ,
m∑
i=1

n∑
j=1

xij =
n∑

j=1

bj .

On a formé deux combinaisons linéaires distinctes des contraintes,
pour former des termes de gauche identiques (et les termes de
droite sont également identiques en vertu de l’hypothèse de
départ).

Considérons la première contraintes :

n∑
j=1

x1j = a1 ⇔
m∑
i=1

n∑
j=1

xij −
m∑

2=1

n∑
j=1

xij =
n∑

j=1

bj −
m∑
i=2

ai
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Redondance

Autrement, nous avons pu réécrire la première contraintes comme
une combinaison linéaire des autres contraintes.

On pourrait faire la même chose avec n’importe quelle contrainte.
Il y a donc une contrainte redondante.

On va établir qu’on ne peut trouver qu’une redondance, et donc
ramener le problème à un ensemble de m + n − 1 vecteurs. Une
solution de base réalisable non-dégénérée consistera de m + n − 1
variables.
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Théorème

Un problème de transport a toujours une solution, mais il y a
exactement une constrainte d’égalité redondante. Quand on retire
n’importe laquelle des contraintes d’égalité, le système restant de
n + m − 1 contraintes d’égalité est linéairement indépendant.

Preuve

L’existence d’une solution et la redondance ont déjà été établis. La
somme de toutes les contraintes d’origine moins la somme de
toutes les contraintes de destination est égale à zéro, et n’importe
quelle contrainte peut être exprimée comme une combinaison
linéaire des autres. On peut donc retirer n’importe laquelle de ces
contraintes. Supposons qu’on retire la dernière.
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Théorème

Supposons par l’absurde qu’il existe une combinaison linéaire des
équations restante qui soit nulle.

Notons les coefficients d’une telle combinaison αi , i = 1, 2, . . . ,m,
et βj , j = 1, 2, . . . , n − 1.

Comme nous avons écarté la dernière contrainte, xin,
i = 1, 2, . . . ,m apparâıt seulement dans la ie équation. Dès lors,
αi = 0, i = 1, 2, . . . ,m.

Dabs les équations restantes, chaque xij n’apparâıt que dans une
équation (jamais si j = n), aussi βj = 0, j = 1, 2, . . . , n − 1.

Dès lors, l’ensemble d’équations est linéairement indépendant.
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Découverte d’une solution réalisable de base

Du théorème précédent, on voit qu’une base pour le problème de
transport consiste de m + n − 1 vecteurs, et qu’un solution
réalisable de base non dégénérée consiste de m + n − 1 variables.

Tableau de solution :

x11 x12 x13 . . . x1n a1
x21 x22 x23 . . . x2n a2

...
...

...
. . .

...
...

xm1 xm2 xm3 . . . xmn am
b1 b2 b3 . . . bn

Les éléments individuels du tableau apparaissent dans des cellules
et représentent une solution. Une cellule dénote une valeur nulle.
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Règle du coin Nord-Ouest

Etape 0. Le tableau est créé, avec toutes les cellules vides.

Etape 1. On sélectionne la cellule dans le coin supérieur
gauche (d’où le nom de la méthode).

Etape 2. On alloue le montant maximum réalisable compatible
avec les exigences de sommes sur la ligne et la
colonne impliquant cette colonne (au moins une de
ces exigences sera remplie).

Etape 3. On se déplace d’une cellule vers la droite s’il reste des
exigences de ligne à satisfaire (offre). Autrement, on
se déplace d’une cellule vers le bas. Si toutes les
exigences sont remplies, arrêt. Sinon, retour à l’étape
2.
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Règle du coin Nord-Ouest : exemple

a = (30, 80, 10, 60)
b = (10, 50, 20, 80, 20)

10 20 30

30 20 30 80

10 10

40 20 60

10 50 20 80 20
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Règle du coin Nord-Ouest : dégénérescence

Il existe la possibilité qu’à un certain point, les exigences de ligne et
de colonne correspondant à une cellule soient toutes deux remplies.

La prochaine entrée sera alors un zéro, indiquant une solution de
base dégénérée. Dans pareil cas, il y a un choix à faire quand à
l’endroit où place le zéro : à droite ou en-dessous.

30 30

20 20 40

0 20 20

20 40 60

50 20 40 40

30 30

20 20 0 40

20 20

20 40 60

50 20 40 40
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Matrices triangulaires

Définition. Une matrice carrée M non singulière est dite
triangulaire si elle peut être mise sous la forme d’une matrice
triangulaire inférieure au moyen d’une permutation de ses lignes et
colonnes.



1 2 0 1 0 2
4 1 0 5 0 0
0 0 0 4 0 0
2 1 7 2 1 3
2 3 2 0 0 3
0 2 0 1 0 0





4 0 0 0 0 0
1 2 0 0 0 0
5 1 4 0 0 0
1 2 1 2 0 0
0 3 2 3 2 0
2 1 2 3 7 1


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Théorème de triangularité de base

Chaque base du problème de transport est triangulaire.

On repart du système de contraintes

x11 + . . .+ x1n = a1
x21 + . . .+ x2n = a2

...
xm1 + . . .+ xmn = am

x11 +x21 +xm1 = b1

x12 +x22 +xm2 = b2
...

x1n +x2n +xmn = bn
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Théorème de triangularité de base

Changeons le signe de la demi-partie supérieure du systèmes ; la
matrice de coefficients consiste d’entrées égales à +1, -1 ou 0. On
peut également supprimer n’importe quelle de ces équations pour
éliminer la redondance. De la matrice de coefficients résultante, on
forme une base B en sélectionnant un sous-ensemble non singulier
de m + n − 1 colonnes.

Chaque colonne de B contient au plus deux entrées non-nulles : un
+1 et un -1. Dès lors, il y a au plus 2(m + n − 1) entrées non
nulles dans la base.

Cependant, si chaque colonne contient deux entrées non nulles,
alors la somme de toutes les lignes serait zéro, contredisant la
non-singularité de B.
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Théorème de triangularité de base

Dès lors, au moins une colonne de B doit contenir seulement une
entrée non nulle. Ceci signifie que le nombre totale d’entrées non
nulles dans B est inférieur à 2(m + n − 1).

Dès lors, il y a au moins une ligne avec seulement une entrée
non-nulle, que l’on peut isoler pour créer la première ligne de la
matrice triangulaire.

Un argument similaire peut être appliqué à la sous-matrice de B
obtenue en supprimant la ligne contenant une seule entrée non
nulle et la colonne correspondant à cette entrée. Cette sous-matrice
doit également contenir une ligne avec une seule entrée non-nulle.
On repète l’argument jusqu’à obtenir B triangulaire.
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Théorème de triangularité de base : illustration

Considérons la solution réalisable

10 20 30

30 20 30 80

10 10

40 20 60

10 50 20 80 20

Il est facile de voir que la matrice x est triangulaire.
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Solutions entières

Puisque n’importe quelle matrice de base est triangulaire et que
tous les éléments non nuls sont égaux à 1 (ou -1), il suit que le
processus de substitution en arrière impliquera simplement des
additions et des soustractions de lignes et de colonnes. Aucune
multiplication n’est requise.

Il suit que si les lignes et les colonnes originales sont entières, les
valeurs de toutes les variables de base sont entières.

Fabian Bastin IFT2505


