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Estimation et intervalles de confiance

Déterminer les quantités à mesurer déterminées.
Construire des estimateurs de celles-ci.
Mesurer leur précision.

Définition Un estimateur µ̂ d’une quantité fixe, mais inconnue,
µ, est une variable ou un vecteur aléatoire qui associe aux
données une valeur supposée approcher la véritable valeur µ.
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Efficacité des estimateurs

Considérons un estimateur X d’une certaine quantité inconnue
µ.

Le biais, la variance, l’erreur quadratique moyenne (MSE, pour
mean square error), et l’erreur relative (RE, pour relative error)
de X sont définis respectivement comme suit:

β = E [X ]− µ;

σ2 = Var(X ) = E [(X − E [X ])2];

MSE[X ] = E [(X − µ)2] = β2 + σ2;

RE[X ] =
√

MSE[X ]/|µ|, pour µ 6= 0.

Un estimateur sera dit non-biaisé si β = 0.
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Efficacité des estimateurs

La racine carrée du MSE [X ] est appelée l’erreur absolue; c’est
une mesure de la précision statistique de l’estimateur X , et
RE [X ] est une mesure de cette prédiction relativement à l’ordre
de grandeur de la moyenne µ.

Supposons de plus que l’effort numérique requis pour calculer
X (par exemple en termes de temps CPU) est une variable
aléatoire (typiquement corrélée avec X ) et dénotons son
espérance mathématique par C(X ).

L’efficacité de X est

Eff(X ) =
1

C(X ) ·MSE(X )
. (1)

Un estimateur de X sera dit être plus efficace qu’un autre
estimateur Y si Eff(X ) > Eff(Y ).
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Amélioration d’efficacité

Améliorer l’efficacité signifie trouver un estimateur Y qui est
plus efficace que l’estimateur X actuellement utilisé.

Souvent, les deux estimateurs sont non biaisés, et sont
supposés présenter des temps de calcul similaires. Par
conséquent, améliorer l’efficacité revient dans ce cas à réduire
la variance. Pour cette raison, nous parlerons souvent de
techniques de réduction de variance.

Il est toutefois parfois possible d’améliorer l’efficacité en
augmentant la variance tout en réduisant le coût de calcul.

Si le temps de calcul n’est pas pris en compte, nous
appellerons Var[X ]/Var[Y ] le facteur de réduction de variance
de Y par rapport à X . Il représente le facteur par lequel la
variance est réduite en utilisant Y au lieu de X .
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Intervalle de confiance

Toute mesure de qualité est imparfaite ou incomplète. Ainsi,
l’efficacité Eff[X ] suppose que le coût de l’erreur est symétrique
et proportionnel à son carré.

Un autre aspect important que Eff[X ] ne mesure pas est la
disponibilité d’une bonne façon d’évaluer l’erreur d’estimation.

Par exemple, si on estime cette erreur par la variance de X , il
nous faut un bon estimateur de cette variance.
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Intervalle de confiance

L’évaluation de l’erreur d’estimation est habituellement fournie
en donnant un intervalle de confiance (IC), défini comme suit.

Intervalle de confiance.
Un intervalle de confiance [I1, I2] pour une quantité µ est un
intervalle défini au moyen de deux variables aléatoires I1 et I2
satisfaisant I1 ≤ I2, donnant une certaine probabilité de
contenir µ.

[I1, I2] est un intervalle de confiance de niveau 1− α (ou à
100(1− α)%) pour µ si P[I1 ≤ µ ≤ I2] = 1− α.
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Intervalle de confiance

Habituellement, on construit un intervalle de confiance pour un
niveau visé ou nominal 1− α, mais la véritable probabilité de
couverture est différente et inconnue. La différence est l’erreur
de couverture.

La largeur de l’intervalle est I2 − I1 (une variable aléatoire).
Idéalement, nous voudrions assurer la bonne couverture, tout
en conservant E [I2 − I1] et Var[I2 − I1] petits.

Par abus de notation, nous dénoterons parfois une suite
d’estimateurs {Yn, n ≥ 1} par Yn. Deux exemples classiques
sont X n et S2

n .
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Intervalle de confiance

Lorsque n→∞, Yn est dit asymptotiquement sans biais si
E [Yn − µ]→ 0, consistant si Yn → µ en probabilité, i.e.
P[|Yn − µ| > ε]→ 0 pour tout ε > 0, et fortement consistant si
Yn → µ avec probabilité 1 (ou presque sûrement).

X n et S2
n pour sont ainsi fortement consistants par rapport à

µ = E [Xi ].

Un intervalle de confiance (In,1, In,2) est asymptotiquement
valide si son erreur de couverture converge vers 0.
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Erreur non prise en compte

Les intervalles de confiance considérés ici prennent en compte
l’erreur due aux aléas de la simulation, mais pas l’erreur dans
l’estimation des paramètres du modèle.

Supposons par exemple que dans un certain système, les
durées de service sont indépendantes et suivent la loi gamma
de paramètres (α, β) inconnus. Supposons de plus que nous
disposions de 200 observations de durées de service et que
l’on estime (α, β) par (α̂, β̂) à partir de ces 200 observations.

On suppose pour simplifier que l’on identifie la bonne loi.

On utilise ensuite la loi estimée dans un modèle de simulation
et on calcule un intervalle de confiance pour une mesure de
performance quelconque (par exemple, la durée d’attente
moyenne) en faisant n répétitions de la simulation avec la loi
estimée.
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Erreur non prise en compte

Si n tend vers l’infini, la largeur de l’intervalle de confiance tend
vers 0, mais l’estimateur converge vers la valeur exacte du
modèle avec (α̂, β̂), qui diffère de celle du modèle avec (αβ).

Il y a donc deux sources d’erreur:
1 l’une due au fait que n est fini,
2 l’autre due à l’erreur dans les paramètres du modèle.

Souvent, il y a plusieurs sources d’erreur de ce second type et
elles dominent lorsque n est grand.
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Horizon fini

Supposons que nous observons X1, . . . ,Xn, des copies i.i.d. de
X obtenues en faisant n répétitions de la simulation, et que
nous voulons estimer µ = E [X ].

Nous estimons µ par X n et σ2 = var[X ] par S2
n .

Théorème
Si X1, . . . ,Xn sont i.i.d. N(µ, σ2), alors

(i) X n et S2
n sont indépendants;

(ii) (n − 1)S2
n/σ

2 ∼ χ2(n − 1);
(iii)
√

n(X n − µ)/Sn ∼ Student-t(n − 1).
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Horizon fini

Ce théorème permet de calculer un intervalle de confiance
pour µ au niveau 1− α:

(X n ± tn−1,1−α/2Sn/
√

n),

où P[Tn−1 ≤ tn−1,1−α/2] = 1− α/2.

Lorsque n est grand, nous pouvons approximer la loi Student-t
à n − 1 degrés de liberté au moyen d’une N(0,1).

Pour obtenir un intervalle de confiance pour σ2, on choisira x1
et x2 tels que

P[x1 < χ2
n−1 < x2] = 1− α,

ce qui permet de poser

[I1, I2] = [(n − 1)S2
n/x2, (n − 1)S2

n/x1].
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Horizon fini

Nous avons alors

P[I1 ≤ σ2 ≤ I2] = P[(n − 1)S2
n/x2 ≤ σ2 ≤ (n − 1)S2

n/x1]

= P[x1 ≤ (n − 1)S2
n/σ

2 ≤ x2]

= 1− α.

Ceci n’est valide que si les Xi suivent la loi normale.

Le tableau ci-après explicite les bornes (n − 1)/x1 et (n − 1)/x2
d’un intervalle de confiance sur σ2/S2

n . Par exemple, pour
n = 1000, un intervalle de confiance à 90% pour σ2 est donné
par

[0.930 S2
n , 1.077 S2

n ]
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Horizon fini

Bornes (n − 1)/x1 et (n − 1)/x2 d’un intervalle de confiance sur
σ2/S2

n :
α = 0.02 α = 0.10

n (n − 1)/x1 (n − 1)/x2 (n − 1)/x1 (n − 1)/x2
10 0.388 3.518 0.492 2.284
30 0.570 1.939 0.663 1.568

100 0.729 1.413 0.796 1.270
300 0.831 1.216 0.876 1.146

1000 0.902 1.111 0.930 1.077
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Horizon fini

Si on a deux échantillons indépendants, X1, . . . ,Xm i.i.d.
normales de variance σ2

x et Y1, . . . ,Yn i.i.d. normales de
variance σ2

y , on peut calculer un intervalle de confiance sur le
rapport des deux variances, en utilisant le fait que

F =
S2

x ,m/σ
2
x

S2
y ,n/σ

2
y

=
S2

x ,mσ
2
y

S2
y ,nσ

2
x
∼ F (m − 1,n − 1),

où S2
x ,m et S2

y ,n sont les variances échantillonnales.

Si P[x1 < F < x2] = 1− α, l’intervalle est

[I1, I2] =

[
1
x2

S2
x ,m

S2
y ,n

,
1
x1

S2
x ,m

S2
y ,n

]
.

Ce type d’intervalles est potentiellement utile lorsqu’on estime
le facteur de réduction de variance entre deux estimateurs.
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Approximation normale

Lorsque n est grand, X n est approximativement normale même
si X ne l’est pas, en vertu du théorème de la limite centrale
(TLC).

Il existe plusieurs versions du TLC: Xi de lois différentes,
dépendance, TLCs multivariés, TLC fonctionnels, etc. Nous
citerons le résultat suivant.

Fabian Bastin IFT3245



Approximation normale

Théorème.
Soient X1,X2, . . . des variables aléatoires indépendantes, avec
E [Xi ] = µi et Var[Xi ] = σ2

i . Posons s2
n = σ2

1 + · · ·+ σ2
n,

Yn =
(X1 − µ1) + · · ·+ (Xn − µn)

sn
,

et Fn(x) = P[Yn ≤ x ]. Alors, E [Yn] = 0, Var[Yn] = 1, et

sup
n≥1, x∈R

|Fn(x)− Φ(x)| ≤ κ E(|X1 − µ1|3) + · · ·+ E(|Xn − µn|3)

s3
n

où κ = 3 si les Xi sont i.i.d. et κ = 6 sinon.
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Approximation normale

La borne sur l’erreur dépend donc de l’assymétrie des
distributions. Sous l’hypothèse où n est suffisamment grand
que pour pouvoir approximer la distribution de X n, nous
pourrons choisir pour un intervalle de confiance[

X n − z1−α/2Sn/
√

n,X n + z1−α/2Sn/
√

n
]
,

où z1−α/2 est le quantile 1− α/2 d’une normale N(0,1).

Nous pouvons raisonablement recourir au TLC pour calculer un
intervalle de confiance, sauf si un des cas suivant se présente:

n est trop petit,
α est proche de 0,
les Xi ont une loi très asymétrique,
il existe des moments supérieurs très élevés.
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Exemple: binomiale

Supposons n = 1000, Xi ∼ Binomiale(1,p); on veut estimer p.
Si on a 882 succès, X n = 0.882.

On a alors S2
n = X n(1− X n)n/(n − 1) ≈ 0.1042 et un intervalle

de confiance à 95% (approximativement) est
(X n ± 1.96Sn/

√
n) ≈ (0.862, 0.902).

L’intervalle de confiance ainsi construit nous donne aussi une
idée des chiffres significatifs de l’estimateur.

Mais si X n = 0.998, alors on voit que p est trop proche de 1 et
l’approx. normale sera très mauvaise. Dans ce cas, on va plutôt
utiliser: Y =

∑n
i=1(1− Xi) ≈ Poisson(n(1− p)).
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Exemple: durée de vie d’un système

Soit X = min(G1,max(G2,G3)). Les Gj sont i.i.d. Weibull
(α = 0.5, β = 1). On simule n fois, avec Xi la valeur de X pour
la répétition i . On calcule un intervalle de confiance à 90% pour
E [X ] via le théorème de la limite centrale.

n Prob. couverture Estim. E [I2 − I1]/µ

5 0.708 ± 0.03 1.16
10 0.750 ± 0.03 0.82
20 0.800 ± 0.03 0.60
40 0.840 ± 0.03 0.44

Il y a dégradation significative de la couverture. Les Gj (et les
Xi ) suivent en effet une loi très éloignée de la normale, et on se
trompe beaucoup en calculant un intervalle de confiance basé
sur la loi normale.
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Intervalle de confiance pour une loi discrète

Soit Y une variable aléatoire prenant ses valeurs dans
{0,1,2, . . . } et suivant une loi de paramètre µ, telle que
Pµ[Y ≥ y ] est croissant en µ, où Pµ dénote la probabilité quand
la valeur du paramètre est µ. (Le cas décroissant se traite de
manière symétrique.)

Des exemples de telles distribution comptent les lois binomiale,
géométrique, de Poisson,. . .

On veut un intervalle de confiance [I1, I2] de niveau
(approximatif) 1− α pour µ. Posons α = α1 + α2, avec α1 > 0
et α2 > 0.

Nous voudrions P[µ < I1] ≈ α1 et P[µ > I2] ≈ α2. Si on
observe Y = y , l’intervalle sera [I1(y), I2(y)].
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Intervalle de confiance pour une loi discrète

Algorithme: Prendre pour I1(y) et I2(y) les solutions de

α1 = PI1 [Y ≥ y ] et α2 = PI2 [Y ≤ y ]. (2)

Ceci revient à fixer la probabilité que la variable Y soit
supérieure (respectivement inférieure) à l’observation y , si le
paramètre inconnu était de valeur I1 (respectivement I2).

Dans chacune de ces deux configurations, on s’attend à ce
qu’un événement ait une faible probabilité, vu qu’une faible
(forte) valeur de µ défavorise l’évenement considéré, et ce en
raison de la monotonie de Pµ[Y ≥ y ] par rapport à µ.
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Intervalle de confiance pour une loi discrète

Nous pouvons résoudre par recherche binaire, par exemple.

Pour le cas où Y est décroissant avec µ, il suffit de permuter
les signes ≥ et ≤.
La probabilité de couverture de cet intervalle est d’au moins
1− α.
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Intervalle de confiance pour une loi discrète

Proof.
Soit y∗(µ) = min{y ∈ N : I1(y) ≥ µ} et ν = I1(y∗(µ)) ≥ µ. Par
conséquent, en vertu de la croissante de Pµ avec µ,

Pµ[I1(Y ) ≥ µ] ≤ Pν [I1(Y ) ≥ µ] = Pν [Y ≥ y∗(µ)] = α1.

On montre de même que Pµ[I2(Y ) ≤ µ] ≤ α2.
Nous avons dès lors

Pµ[I1(Y ) ≤ µ ≤ I2(Y )] = 1− P[µ < I1(Y ) ∪ I2(Y ) < µ]

= 1− Pµ[µ < I1(Y )]− Pµ[I2(Y ) < µ]

≥ 1− α1 − α2 = 1− α.
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Intervalle de confiance pour une loi discrète

La probabilité de couverture exacte dépend de Fµ et est
généralement inconnue.

Reprenons l’exemple de la binomiale.

Supposons que X1, . . . ,Xn sont i.i.d. avec
P[Xi = 1] = 1− P[Xi = 0] = p, de sorte que
Y = nXn =

∑n
i=1 Xi suit une binomiale(n,p).

Intervalle de confiance sur p basé sur l’observation de Y?
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Intervalle de confiance pour une loi discrète

Pour n’importe quelles valeurs de p et de y , les probabilités
dans l’intervalle de confiance peuvent être calculées en
sommant les probabilités binomiales exactes si y est petit.

Si n est grand et p est petit, Y suit approximativement une
variable aléatoire de Poisson de moyenne np, aussi peut-on
approximer les probabilités dans en additionnant les
probabilités de Poisson appropriées.

Pour p proche de 1, nous pouvons simplement remplacer p et
Xi par 1− p et 1− Xi .
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Estimation séquentielle

Pour un intervalle de confiance de niveau 1− α, si on fixe n, la
largeur I2 − I1 est aléatoire.

Si on veut I2 − I1 ≤ w pour w fixé, la valeur minimale de n
requise est une variable aléatoire N.

Comment prédire ce N?

Pour Xi ∼ binomiale(1,p), avec n = 1000 on a obtenu
X n = 0.882, S2

n ≈ 0.1042, et la demi-largeur du intervalle de
confiance à 95% était de 0.020. Combien de répétitions
additionnelles faut-il pour réduire la demi-largeur à environ
0.005?
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Estimation séquentielle

Nous voulons 1.96Sn/
√

n ≤ 0.005. En supposant que Sn ne
changera pas significativement, cela donne
n ≥ (1.96× Sn/0.005)2 ≈ 16011.8. En conséquence, nous
pouvons recommander de faire 15012 répétitions
additionnelles.
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Procédure à deux étapes

Cette approche est valable pour la loi de Student (ou normale).

Faire n0 répétitions et calculer S2
n0

; la prédiction du n requis est

N̂∗ = min
{

n | (tn−1,1−α/2)Sn0/
√

n ≤ r
}
.

On fera max(0, N̂∗ − n0) répétitions additionnelles.

Bien sûr, il se peut que ce soit insuffisant, ou trop.

Après n0, recalculer S2
n et la demi-largeur pour chaque n. On

s’arrête dès que I2 − I1 ≤ w .
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Procédure à deux étapes

Cette procédure est biaisée, car on tend à s’arrêter à un N où
S2

N sous-estime la variance.

Mais lorsque w → 0, le bias disparaı̂t, N/n∗ → 1 a.p.1 où n∗ est
la valeur optimale de N si on connaissait σ2, et
P[|X N − µ| ≤ w/2]→ 1− α.
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IC pour des estimateurs de quantile

Si X est de répartition F , le q-quantile de F est

ξq = F−1(q) = inf{x : F (x) ≥ q}.

Soit X(1), . . . ,X(n) un échantillon i.i.d. de X , trié, et F̂n la
fonction de répartition empirique. Un estimateur simple de ξq
est le quantile empirique

ξ̂q,n = F̂−1
n (q) = inf{x : F̂n(x) ≥ q} = X(dnqe).

Il est biaisé mais fortement consistent et obéit au théorème de
la limite centrale, comme le montre le théorème ci-après.

Fabian Bastin IFT3245



IC pour des estimateurs de quantile: théorème

(i) Pour chaque q, ξ̂q,n to as ξq quand n→∞.
(ii) Si X a une densité f strictement positive et continue dans

un voisinage de ξq, alors

√
n(ξ̂q,n − ξq)f (ξq)√

q(1− q)

D→ N(0,1) quand n→∞.

Ce TLC indique qu’il y a beaucoup de bruit (variance) si f (ξq)
est petit.

De plus, pour l’utiliser afin de construire un intervalle de
confiance, il faut estimer f (ξq), ce qui est difficile.

Fabian Bastin IFT3245



IC pour des estimateurs de quantile

Nous pouvons néanmoins construire une méthode
non-asymptotique de calcul d’un intervalle de confiance pour
ξq: supposons que F est continue en ξq.

Soit B le nombre d’observations X(i) inférieures à ξq.

Puisque P[X < ξq] = q, B est binomiale(n,q).

Si 1 ≤ j < k ≤ n, X(j) < ξq ≤ X(k) ssi j ≤ B < k . Alors

P[X(j) < ξq ≤ X(k)] = P[j ≤ B < k ] =
k−1∑
i=j

(
n
i

)
qi(1− q)n−i .

On choisit j et k pour que cette somme soit supérieure ou
égale à 1− α (intervalle unilatéral ou bilatéral).
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IC pour des estimateurs de quantile

Si n est grand et q n’est pas trop proche de 0 ou 1, on peut
approximer la loi binomiale par la loi normale:

B − nq√
nq(1− q)

≈ N(0,1).

On obtient alors j = bnq + 1− δc et k = bnq + 1 + δc, où
δ =

√
nq(1− q)Φ−1(1− α/2).
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Exemple: valeur à risque

Soit L la perte nette de valeur d’un porte-feuille d’actifs pour
une période de temps donnée [0,T ]. La valeur à risque (VAR)
(au temps 0) est la valeur de xp telle que P[L > xp] = p. C’est
le (1− p)-quantile de L.

Valeurs courantes: p = 0.01, T = 2 semaines (banques), T =
mois ou années (assurance, fonds de pension).

On peut critiquer l’utilisation de la VAR, vu qu’elle donne une
information très limitée.

Par exemple si x0.01 = 107 dollars, que sait-on sur l’importance
réelle de la perte?

Une mesure complémentaire pourrait être E [L | L > xp], par
exemple.
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Exemple: valeur à risque

Modèles pour estimer la VAR: on doit modéliser l’évolution du
prix des actifs (souvent plusieurs milliers, dépendants).
Souvent: modèles à facteurs.

On peut remplacer les actifs par des prêts, comptes à payer,
etc. Sauf dans les cas simples, on estime la VAR par
simulation. Quand p est petit: “importance sampling”.
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