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Estimation séquentielle

Pour un intervalle de confiance de niveau 1− α, si on fixe n, la
largeur I2 − I1 est aléatoire.

Si on veut I2 − I1 ≤ w pour w fixé, la valeur minimale de n
requise est une variable aléatoire N.

Comment prédire ce N?

Pour Xi ∼ binomiale(1,p), avec n = 1000 on a obtenu
X n = 0.882, S2

n ≈ 0.1042, et la demi-largeur du intervalle de
confiance à 95% était de 0.020. Combien de répétitions
additionnelles faut-il pour réduire la demi-largeur à environ
0.005?
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Estimation séquentielle

Nous voulons 1.96Sn/
√

n ≤ 0.005. En supposant que Sn ne
changera pas significativement, cela donne
n ≥ (1.96× Sn/0.005)2 ≈ 16011.8. En conséquence, nous
pouvons recommander de faire 15012 répétitions
additionnelles.
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Procédure à deux étapes

Cette approche est valable pour la loi de Student (ou normale).

Faire n0 répétitions et calculer S2
n0

; la prédiction du n requis est

N̂∗ = min
{

n | (tn−1,1−α/2)Sn0/
√

n ≤ r
}
.

On fera max(0, N̂∗ − n0) répétitions additionnelles.

Bien sûr, il se peut que ce soit insuffisant, ou trop.

Après n0, recalculer S2
n et la demi-largeur pour chaque n. On

s’arrête dès que I2 − I1 ≤ w .
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Procédure à deux étapes

Cette procédure est biaisée, car on tend à s’arrêter à un N où
S2

N sous-estime la variance.

Mais lorsque w → 0, le bias disparaı̂t, N/n∗ → 1 a.p.1 où n∗ est
la valeur optimale de N si on connaissait σ2, et
P[|X N − µ| ≤ w/2]→ 1− α.
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IC pour des estimateurs de quantile

Si X est de répartition F , le q-quantile de F est

ξq = F−1(q) = inf{x : F (x) ≥ q}.

Soit X(1), . . . ,X(n) un échantillon i.i.d. de X , trié, et F̂n la
fonction de répartition empirique. Un estimateur simple de ξq
est le quantile empirique

ξ̂q,n = F̂−1
n (q) = inf{x : F̂n(x) ≥ q} = X(dnqe).

Il est biaisé mais fortement consistent et obéit au théorème de
la limite centrale, comme le montre le théorème ci-après.
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IC pour des estimateurs de quantile: théorème

(i) Pour chaque q, ξ̂q,n to as ξq quand n→∞.
(ii) Si X a une densité f strictement positive et continue dans

un voisinage de ξq, alors

√
n(ξ̂q,n − ξq)f (ξq)√

q(1− q)

D→ N(0,1) quand n→∞.

Ce TLC indique qu’il y a beaucoup de bruit (variance) si f (ξq)
est petit.

De plus, pour l’utiliser afin de construire un intervalle de
confiance, il faut estimer f (ξq), ce qui est difficile.
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IC pour des estimateurs de quantile

Nous pouvons néanmoins construire une méthode
non-asymptotique de calcul d’un intervalle de confiance pour
ξq: supposons que F est continue en ξq.

Soit B le nombre d’observations X(i) inférieures à ξq.

Puisque P[X < ξq] = q, B est binomiale(n,q).

Si 1 ≤ j < k ≤ n, X(j) < ξq ≤ X(k) ssi j ≤ B < k . Alors

P[X(j) < ξq ≤ X(k)] = P[j ≤ B < k ] =
k−1∑
i=j

(
n
i

)
qi(1− q)n−i .

On choisit j et k pour que cette somme soit supérieure ou
égale à 1− α (intervalle unilatéral ou bilatéral).
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IC pour des estimateurs de quantile

Si n est grand et q n’est pas trop proche de 0 ou 1, on peut
approximer la loi binomiale par la loi normale:

B − nq√
nq(1− q)

≈ N(0,1).

On obtient alors j = bnq + 1− δc et k = bnq + 1 + δc, où
δ =

√
nq(1− q)Φ−1(1− α/2).
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Exemple: valeur à risque

Soit L la perte nette de valeur d’un porte-feuille d’actifs pour
une période de temps donnée [0,T ]. La valeur à risque (VAR)
(au temps 0) est la valeur de xp telle que P[L > xp] = p. C’est
le (1− p)-quantile de L.

Valeurs courantes: p = 0.01, T = 2 semaines (banques), T =
mois ou années (assurance, fonds de pension).

On peut critiquer l’utilisation de la VAR, vu qu’elle donne une
information très limitée.

Par exemple si x0.01 = 107 dollars, que sait-on sur l’importance
réelle de la perte?

Une mesure complémentaire pourrait être E [L | L > xp], par
exemple.
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Exemple: valeur à risque

Modèles pour estimer la VAR: on doit modéliser l’évolution du
prix des actifs (souvent plusieurs milliers, dépendants).
Souvent: modèles à facteurs.

On peut remplacer les actifs par des prêts, comptes à payer,
etc. Sauf dans les cas simples, on estime la VAR par
simulation. Quand p est petit: “importance sampling”.
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Intervalle de confiance par rééchantillonnage
(“bootstrap”)

Il s’agit de de techniques de simulation appliquées en
statistique; l’idée est d’estimer la distribution (inconnue et
quelconque) de l’estimateur en rééchantillonnant des
échantillons de taille n en tirant avec remplacement dans
l’échantillon de taille n original.

Pour chaque échantillon ainsi construit, nous recalculons
l’estimateur en cours d’étude.
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Principe de plug-in

Considérons un échantillon i.i.d. X = X1, . . . ,Xn, issu d’une loi
de fonction de répartition F , et un estimateur Y = g(X1, . . . ,Xn)
d’une valeur réelle inconnue θ.

Exemple:
Y = X n

avec θ = µ, ou
Y = S2

n

avec θ = σ2.

Y peut être biaisé (i.e. E [Y ] 6= θ), mais nous supposons que g
ne dépend pas de l’ordre des Xi ’s.
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Principe de plug-in

Si nous ne connaissons pas la ditribution exacte F , nous
pouvons toujours nous diriger vers la distribution empirique
construite à partir de l’échantillon X .

L’estimateur plug-in d’un paramètre θ = g(F ) est défini comme

θ̂ = g(F̂ ).

En général, l’estimateur plug-in d’une espérance θ = EF (x) est

EF̂ =
1
n

n∑
i=1

xi = x ,

autrement dit nous retrouvons l’estimateur de moyenne
classique.
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Principe de plug-in

Le principe de plug-in est en général assez bon, si la seule
source d’information disponible à propos de F vient de
l’échantillon X .

Sous cette circonstance, θ̂n = g(F̂n) ne peut pas être amélioré
comme estimateur de θ = g(F ), du moins pas dans le sens
asymptotique habituel en théorie statistique. Par exemple, si f̂k
est l’estimateur de fréquence plug-in #{xi = k}/n, alors

f̂k ∼ Bi(n, fk )/n.

Dans ce cas, l’estimateur f̂k est non-biaisé pour fk , E [f̂k ] = fk ,
de variance fk (1− fk )/n. Il s’agit de la plus petite variance
possible pour un estimateur sans biais de fk .
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Bootstrap non-paramétrique

Considérons à présent Kn(F , z) = P[Y − θ ≤ z] pour z ∈ R. Un
intervalle de confiance exact pour θ, au niveau 1− α1 − α2, est

(I1, I2) = (Y − K−1
n (F ,1− α1), Y − K−1

n (F , α2)),

où K−1
n (F ,q) est le q-quantile de Kn(F , ·).

En effet,

P[I1 > θ] = P[Y − θ > K−1
n (F ,1− α1)]

= 1− Kn(F , K−1
n (F ,1− α1))

= α1.

De même, nous avons P[I2 < θ] = α2.

Fabian Bastin IFT3245



Bootstrap non-paramétrique

Toutefois, il est rare de connaı̂tre Kn(F , ·).

Une première idée serait de répéter l’expérience m fois afin
obtenir m copies i.i.d. de Y pour estimer sa distribution. Si
E [Y ] = θ, on peut estimer ainsi la distribution de Y − θ. Mais
cela ferait mn simulations!

Souvent, il est très coûteux, voire même impossible, d’avoir de
nouvelles copies de Y . L’idée du bootstrap consiste à
remplacer F par F̂n et θ par y dans Kn(F , z).

Soient x1, . . . , xn les valeurs de X1, . . . ,Xn et y = g(x1, . . . , xn).
Tirons X ∗1 , . . . ,X

∗
n au hasard avec remplacement de

l’échantillon de départ {x1, . . . , xn} (i.e., de F̂n) et calculons
Y ∗ = g(X ∗1 , . . . ,X

∗
n ).
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Bootstrap non-paramétrique de base

L’opération est répétée m fois, de sorte que nous obtenions m
copies i.i.d. de Y ∗, à savoir Y ∗1 , . . . ,Y

∗
m.

CCela revient à répéter l’expérience m fois avec F̂n au lieu de
F .

La notation étoile indique que x∗ n’est pas l’ensemble de
données réel x , mais plutôt une version randomisée, ou
rééchantillonnée, de x .
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Ex: algorithme bootstrap d’estimation d’écarts-type

1 Tirer m échantillons bootstrap indépendants x∗1, x2,. . . ,
x∗m, chacun consistant de n valeurs de données tirées
avec remplacement de x .

2 Evaluer la réplication bootstrap correspondante à chaque
échantillon bootstrap,

θ̂∗(i) = g(x∗i ), i = 1,2, . . . ,m.

3 Estimer l’erreur standard seF (θ̂) par l’écart-type
échantillonnal des m réplications:

ŝem =

√√√√ 1
m − 1

m∑
i=1

(θ̂∗(i)− θ̂∗(·))2,

où θ̂∗(·) = 1
m
∑m

i=1 θ̂
∗(i).

lim
m→∞

ŝem = seF̂ = seF̂ (θ̂∗).
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Ex: algorithme bootstrap d’estimation d’écarts-type

L’estimateur de bootstrap idéal seF̂ (θ̂∗) et son approximation
ŝem sont parfois appelés estimateurs bootstrap
non-paramétriques car ils sont basés sur F̂ , l’estimateur
non-paramétrique de la population F .
Soit K̂n,m la fonction de répartition empirique de
Y ∗1 − y , . . . ,Y ∗m − y . Pour m→∞, elle converge vers la fonction
de répartition de Y ∗ − y , qui est Kn(F̂n, ·). L’intervalle de
confiance retourné est:

(y−K̂−1
n,m(1−α1), y−K̂−1

n,m(α2)) = (2y−Y ∗(dm(1−α1)e), 2y−Y ∗(dmα2e)).

Cela revient à remplacer F par F̂n puis à approximer Kn(F̂n, ·)
par K̂n,m. Il y a donc deux sources d’erreur, qui sont cependant
la plupart du temps inévitables.

Fabian Bastin IFT3245



Bootstrap-t non-paramétrique

Supposons que nous disposons également d’un estimateur de
la variance de Y , disons S2 = h2(X1, . . . ,Xn).

Soit Jn(F , ·) la fonction de répartition de la statistique
studentisée (Y − θ)/S.

Un intervalle de confiance exact de niveau (1− α1 − α2):

(I1, I2) = (Y − J−1
n (F ,1− α1)S, Y − J−1

n (F , α2)S).

L’algorithme du bootstrap-t non-paramétrique consiste, pour
chacune des m répétitions bootstrap, à générer n observations
X ∗1 , . . . ,X

∗
n comme avant, puis à calculer Y ∗ = g(X ∗1 , . . . ,X

∗
n ),

S∗ = h(X ∗1 , . . . ,X
∗
n ), et Z ∗ = (Y ∗ − y)/S∗.
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Bootstrap-t non-paramétrique

Soient Z ∗1 , . . . ,Z
∗
m les m copies i.i.d. de Z ∗ et Ĵn,m leur fonction

de répartition empirique. Pour calculer l’intervalle de confiance,
on remplace Jn(F , ·) par Ĵn,m(·):

(I1, I2) = (y − Ĵ−1
n,m(1− α1)S, y − Ĵ−1

n,m(α2)S)

= (y − Z ∗(dm(1−α1)e)S, y − Z ∗(dmα2e)S).

Empiriquement, le bootstrap-t performe souvent le mieux.

Le choix de m influence peu l’erreur de couverture, mais un
trop petit m donne des intervalle de confiance dont la largeur
varie beaucoup.

Un choix populaire consiste à prendre m = 1000.
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Estimation du biais

Une application particulièrement intéressante du bootstrap est
la possibilité d’estimer le biais d’un estimateur quelconque.

Sous la distribution F , le biais d’un estimateur θ̂ = g(X ) d’une
quantité inconnue θ = t(F ) est défini comme

BF (θ̂, θ) = EF [g(X )]− t(F ).

L’estimateur bootstrap de biais est défini comme

BF̂ (θ̂, θ) = EF̂ [g(X ∗)]− t(F̂ ).

L’estimateur plug-in t(F̂ ) de θ peut différer de θ̂ = g(x). En
d’autres termes, BF̂ (θ̂, θ) est l’estimateur plug-in de BF (θ̂, θ),
que θ̂ soit ou non l’estimateur plug-in de θ.
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Estimation du biais

Dans la plupart des cas, EF̂ [g(X ∗)] devra être approximé par
simulation Monte-Carlo:

θ̂∗ =
1
m

m∑
i=1

θ∗(i) =
1
m

m∑
i=1

g(x∗i ).

L’estimateur de bootstrap de biais basé sur les m réplications
bootstrap est

B̂m = θ̂∗ − t(F̂ ).
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Estimation du biais: version améliorée

Il est possible d’améliorer cet estimateur quand θ̂ est
l’estimateur plug-in t(F̂ ) de θ = t(F ).

Soit P∗j la proportion du je point de données originales dans
l’échantillon bootstrap x∗ = {x∗1 , x∗2 , . . . , x∗n}:

P∗j =
#{x∗i = xj}

n
, j = 1,2, . . . ,n.

Le vecteur de rééchantillonnage

P∗ = (P∗1 ,P
∗
2 , . . . ,P

∗
n)

a des composantes non-négatives dont la somme est égale à
1.

Fabian Bastin IFT3245



Estimation du biais: version améliorée

Une réplication bootstrap θ̂∗ peut être vue comme une fonction
du vecteur de rééchantillonnage P∗. Pour θ̂ = t(F̂ ), l’estimateur
plug-in de θ, nous écrivons

θ̂∗ = T (P∗)

pour indiquer que θ̂∗ est une fonction du vecteur de
rééchantillonnage.

Les m échantillons bootstrap x∗1, x∗2,. . . , x∗m donnent lieu aux
vecteurs de rééchantillonnage correspondants P∗1 , P∗2 , . . . , P∗m.

Définissons P
∗

comme la moyenne de ces vecteurs:

P∗ =
1
m

m∑
i=1

P∗i .
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Estimation du biais: version améliorée

En écrivant

P0 =

(
1
n
,

1
n
, . . . ,

1
n

)
,

l’estimateur de biais bootstrap devient

B̂m = θ̂∗ − T (P0).

L’estimateur de bootstrap amélioré est défini comme

Bm = θ̂∗ − T (P∗).

B̂m et Bm convergent vers BF̂ , toutefois il est possible de
montrer que la convergence est plus rapide pour Bm.
Il est toutefois dangereux d’utiliser ces estimations de biais
pour corriger l’estimateur θ̂, car ils ajoutent de la variance à ce
dernier.
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