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Estimation séquentielle

Pour un intervalle de confiance de niveau 1 — «, si on fixe n, la
largeur L — 11 est aléatoire.

Sionveut b — I; < w pour w fixé, la valeur minimale de n
requise est une variable aléatoire N.

Comment prédire ce N?

Pour X; ~ binomiale(1, p), avec n = 1000 on a obtenu

Xp =0.882, S2 ~ 0.1042, et la demi-largeur du intervalle de
confiance a 95% était de 0.020. Combien de répétitions
additionnelles faut-il pour réduire la demi-largeur a environ
0.005?
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Estimation séquentielle

Nous voulons 1.96S,/+/n < 0.005. En supposant que S, ne
changera pas significativement, cela donne

n>(1.96 x S,/0.005)? ~ 16011.8. En conséquence, nous
pouvons recommander de faire 15012 répétitions
additionnelles.
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Procédure a deux étapes

Cette approche est valable pour la loi de Student (ou normale).
Faire ng répétitions et calculer 8,270; la prédiction du n requis est
N* =min{n| (tr-11-a/2)Sn/Vn<1}.

On fera max(0, A+ — ng) répétitions additionnelles.
Bien s(r, il se peut que ce soit insuffisant, ou trop.

Aprés ng, recalculer S? et la demi-largeur pour chaque n. On
s'arréte dés que b — 1 < w.
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Procédure a deux étapes

Cette procédure est biaisée, car on tend a s’arréter a un N ou
S2, sous-estime la variance.

Mais lorsque w — 0, le bias disparait, N/n* — 1 a.p.1 ou n* est

la valeur optimale de N si on connaissait o?, et
PIXn—pl <w/2] =1 —a.
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IC pour des estimateurs de quantile

Si X est de répartition F, le g-quantile de F est
¢ = F'(q) =inf{x: F(x) > q}.

Soit X4, - - ., X(n) un échantillon i.i.d. de X, trié, et Fnla
fonction de répartition empirique. Un estimateur simple de &4
est le quantile empirique

€qn = Fy'(q) = inf{x : Fy(x) > g} = X((nq))-

Il est biaisé mais fortement consistent et obéit au théoreme de
la limite centrale, comme le montre le théoreme ci-aprés.
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IC pour des estimateurs de quantile: théoreme

(i) Pour chaque q, gAq,,, to as {q quand n — oo.
(i) Si X a une densité f strictement positive et continue dans
un voisinage de &q, alors

Vi(€an —$a)f(%a) B g 1y

quand n — co.
q(1—-q)

Ce TLC indique qu'il y a beaucoup de bruit (variance) si f(£q)
est petit.

De plus, pour l'utiliser afin de construire un intervalle de
confiance, il faut estimer f(£q), ce qui est difficile.
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IC pour des estimateurs de quantile

Nous pouvons néanmoins construire une méthode
non-asymptotique de calcul d’un intervalle de confiance pour
£q- supposons que F est continue en &,.

Soit B le nombre d’'observations X(; inférieures a &,.
Puisque P[X < &4] = g, B est binomiale(n, g).

Si1<j<k<n, Xy <& < Xk ssij< B< k. Alors

k-1
P[Xj) < & < Xuyl = Pli < B< k] = Z <7> q(—q)""
=

On choisit j et k pour que cette somme soit supérieure ou
égale a 1 — «a (intervalle unilatéral ou bilatéral).
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IC pour des estimateurs de quantile

Si n est grand et g n’est pas trop proche de 0 ou 1, on peut
approximer la loi binomiale par la loi normale:

B— nq

———— ~ N(0,1).
ng(1—q) ©1

On obtient alors j = an+1 —dletk=|ng+1+4],ou

§=+/ng(1 —q)o~'(1 — a/2).
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Exemple: valeur a risque

Soit L la perte nette de valeur d’'un porte-feuille d’actifs pour
une période de temps donnée [0, T]. La valeur a risque (VAR)
(au temps 0) est la valeur de x, telle que P[L > xp] = p. C’est
le (1 — p)-quantile de L.

Valeurs courantes: p = 0.01, T = 2 semaines (banques), T =
mois ou années (assurance, fonds de pension).

On peut critiquer l'utilisation de la VAR, vu qu’elle donne une
information tres limitée.

Par exemple si X901 = 107 dollars, que sait-on sur 'importance
réelle de la perte?

Une mesure complémentaire pourrait étre E[L | L > Xp], par
exemple.
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Exemple: valeur a risque

Modéles pour estimer la VAR: on doit modéliser I'évolution du
prix des actifs (souvent plusieurs milliers, dépendants).
Souvent: modeéles a facteurs.

On peut remplacer les actifs par des préts, comptes a payer,

etc. Sauf dans les cas simples, on estime la VAR par
simulation. Quand p est petit: “importance sampling”.
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Intervalle de confiance par rééchantillonnage

(“bootstrap”)

Il s’agit de de techniques de simulation appliquées en
statistique; I'idée est d’estimer la distribution (inconnue et
quelconque) de I'estimateur en rééchantillonnant des
échantillons de taille n en tirant avec remplacement dans
I'échantillon de taille n original.

Pour chaque échantillon ainsi construit, nous recalculons
I'estimateur en cours d’étude.
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Principe de plug-in

Considérons un échantillon i.i.d. X = Xi,..., Xp, issu d’une loi
de fonction de répartition F, et un estimateur Y = g(X, ..., X»)
d’une valeur réelle inconnue 6.

Exemple:
Y == Xn

avec 6 = u, ou
Y =82

avec 6 = o2.

Y peut étre biaisé (i.e. E[Y] # 6), mais nous supposons que g
ne dépend pas de 'ordre des Xj’s.
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Principe de plug-in

Si nous ne connaissons pas la ditribution exacte F, nous
pouvons toujours nous diriger vers la distribution empirique
construite a partir de I'échantillon X.

Lestimateur plug-in d’un parametre 6 = g(F) est défini comme

0 = g(F).
En général, I'estimateur plug-in d’'une espérance 6 = Eg(x) est

1 < _
E’,A_-:BZX,':X,
i=1

autrement dit nous retrouvons I'estimateur de moyenne
classique.
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Principe de plug-in

Le principe de plug-in est en général assez bon, si la seule
source d’information disponible a propos de F vient de
I'échantillon X.

Sous cette circonstance, 8, = g(F;,) ne peut pas étre amélioré
comme estimateur de 6§ = g(F), du moins pas dans le sens
asymptotique habituel en théorie statistique. Par exemple, si f
est I'estimateur de fréquence plug-in #{x; = k}/n, alors

fo ~ Bi(n, f)/n.

Dans ce cas, 'estimateur f, est non-biaisé pour fy, E[?k] = fx,
de variance f,(1 — fx)/n. Il s’agit de la plus petite variance
possible pour un estimateur sans biais de f.
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Bootstrap non-paramétrique

Considérons a présent K,(F,z) = P[Y — 0 < z] pour z € R. Un
intervalle de confiance exact pour 6, au niveau 1 — ay — ap, est

(h,b)=(Y =K W(F.1—aq), Y =K, 1 (F,ap)),
ou K; '(F, q) est le g-quantile de K,(F,-).
En effet,

Plly > 6] = P[Y — 0 > K;'(F,1 — ay)]
=1-Ky(F, Ky '(F, 1 — 1))

= Q.

De méme, nous avons P[k < 0] = as.
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Bootstrap non-paramétrique

Toutefois, il est rare de connaitre K,(F,-).

Une premiére idée serait de répéter 'expérience m fois afin
obtenir m copies i.i.d. de Y pour estimer sa distribution. Si
E[Y] = 6, on peut estimer ainsi la distribution de Y — 6. Mais
cela ferait mn simulations!

Souvent, il est tres colteux, voire méme impossible, d’avoir de
nouvelles copies de Y. Lidée du bootstrap consiste a
remplacer F par F, et 6 par y dans K,(F, z).

Soient x1,...,Xxp les valeurs de Xi,..., Xp ety = g(x1,..., Xn).
Tirons X7, ..., Xy au hasard avec remplacement de
I'échantillon de départ {x1, ..., xn} (i.e., de Fp,) et calculons

Y: = g(X:, ... X2).
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Bootstrap non-paramétrique de base

Lopération est répétée m fois, de sorte que nous obtenions m
copies i.i.d. de Y*, a savoir Y,..., Y.

CCela revient a répéter I'expérience m fois avec F;, au lieu de
F.

La notation étoile indique que x* n’est pas I'ensemble de

données réel x, mais plutét une version randomisée, ou
rééchantillonnée, de x.
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Ex: algorithme bootstrap d’estimation d’écarts-type

@ Tirer m échantillons bootstrap indépendants x7j, xz... .,
X;,, chacun consistant de n valeurs de données tirées
avec remplacement de x.

@ Evaluer la réplication bootstrap correspondante a chaque
échantillon bootstrap,

0°(i) = g(x¥), i=1,2,....,m.

@ Estimer 'erreur standard ser(f) par I'écart-type
échantillonnal des m réplications:

Sem = J LS00 - R
i=1

n!i_r)noo sem = seg = sex(6").
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Ex: algorithme bootstrap d’estimation d’écarts-type

Lestimateur de bootstrap idéal seﬁ(é*) et son approximation
sem sont parfois appelés estimateurs bootstrap
non-paramétriques car ils sont basés sur F, l'estimateur
non-paramétrique de la population F.

Soit kn’m la fonction de répartition empirique de
Yi{—y,....,Yn—y. Pourm— oo, elle converge vers la fonction
de répartition de Y* — y, qui est K,(Fy, -). Lintervalle de
confiance retourné est:

(y=Kom(1=a1), y=Kom(@2)) = (Y= Y{imi—anty 2Y—Y{mea])-

Cela revient a remplacer F par F, puis & approximer Ky(Fy, )
par Knm. Il y a donc deux sources d’erreur, qui sont cependant
la plupart du temps inévitables.
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Bootstrap-t non-paramétrique

Supposons que nous disposons également d’'un estimateur de
la variance de Y, disons S = F2(Xq, ..., Xp).

Soit Jn(F, -) la fonction de répartition de la statistique
studentisée (Y — 0)/S.

Un intervalle de confiance exact de niveau (1 — oy — ap):

(i, )= (Y —J; " (F,1—0aq)S, Y —J, ' (F,a)S).

Lalgorithme du bootstrap-t non-paramétrique consiste, pour
chacune des m répétitions bootstrap, a générer n observations
X;, ..., X; comme avant, puis a calculer Y* = g(X7,..., X}),
S =h(X{,...,X;), etZ* =(Y*—y)/S"
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Bootstrap-t non-paramétrique

Soient Z, ..., Z% les m copies i.i.d. de Z* et J, m leur fonction
de répartition empirique. Pour calculer l'intervalle de confiance,
on remplace Jy(F,-) par Jnm(-):

(h k) = (¥ =Jdpm(1 —a1)S, y = Jpm(a2)S)
= V= Zima-annS: ¥ = Z(1ma)S):
Empiriquement, le bootstrap-t performe souvent le mieux.
Le choix de minfluence peu I'erreur de couverture, mais un
trop petit m donne des intervalle de confiance dont la largeur

varie beaucoup.

Un choix populaire consiste a prendre m = 1000.
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Estimation du biais

Une application particulierement intéressante du bootstrap est
la possibilité d’estimer le biais d’'un estimateur quelconque.

Sous la distribution F, le biais d’un estimateur § = g(X) d’'une
quantité inconnue 0 = t(F) est défini comme

Br(0,6) = EF[g(X)] — t(F).

Lestimateur bootstrap de biais est défini comme

Be(0,0) = E¢lg(X*)] — t(F).

Lestimateur plug-in tgl:') de ¢ peut différer de § = g(x). En
d'autres termes, Bx(0, 0) est I'estimateur plug-in de Bg(0, ),
que 6 soit ou non I'estimateur plug-in de 6.
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Estimation du biais

Dans la plupart des cas, Ex[g(X™)] devra étre approximé par
simulation Monte-Carlo:

R 1 m 1 m
0 _mgg (I)_mgg(xi)'

Lestimateur de bootstrap de biais basé sur les m réplications
bootstrap est

A

Bn = 6" — t(F).
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Estimation du biais: version améliorée

Il est possible d’améliorer cet estimateur quand 0 est
I'estimateur plug-in {(F) de 6 = t(F).

Soit P/* la proportion du ¢ point de données originales dans

I'échantillon bootstrap x* = {xj, x3,...,x;}:
X = x;
p;:i#{ i f},j:1,2,...,n.
n

Le vecteur de rééchantillonnage
P = (P{,Ps,...,P})

a des composantes non-négatives dont la somme est égale a
1.
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Estimation du biais: version améliorée

Une réplication bootstrap §* peut étre vue comme une fonction
du vecteur de rééchantillonnage P*. Pour § = t(F), 'estimateur
plug-in de 6, nous écrivons

0 = T(P*)

pour indiquer que 6* est une fonction du vecteur de
rééchantillonnage.

Les m échantillons bootstrap x3, x3,..., X;,, donnent lieu aux
vecteurs de rééchantillonnage correspondants Py, P;, ..., Py,

sgn w =k
Définissons P comme la moyenne de ces vecteurs:

1 &
P :mz;PT'
1=
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Estimation du biais: version améliorée

En écrivant

Lestimateur de bootstrap amélioré est défini comme

Bm = 0" — T(P).

B, et B, convergent vers Bg, toutefois il est possible de
montrer que la convergence est plus rapide pour B,.

Il est toutefois dangereux d’utiliser ces estimations de biais
pour corriger I'estimateur 8, car ils ajoutent de la variance a ce

dernier.
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